Stunning Photos of the Hunter’s Moon Lunar Eclipse

Lunar eclipse timelapse into totality. Taken from Palmyra, New Jersey on the Delaware River near Philadelphia, Pennsylvania. Night began with stormy clouds and transitioned to clearer skies as the eclipse progressed. Sequence from approx 4AM EDT to 7AM sunrise. Credit and copyright: Frank Miller.

Did you see it? On October 8, 2014, early risers in North and South America, east Asia, Australia and the Pacific saw unique and rare views of the Hunter’s Moon as was eclipsed by Earth’s shadow. We’ve got so many great pictures to share from our Flickr group and from social media! In some shots, the fully eclipsed Moon glows with a coppery red hue, and in others the partially eclipsed Moon appears to have a bite taken out of its bright surface. Some images pair the Moon with a faint planet Uranus.

This is the second and final total lunar eclipse of 2014, and the second of four in a quartet series of lunar eclipses known as a tetrad — a series of 4 consecutive total eclipses occurring at approximately six month intervals. The next total eclipse will be on April 4, 2015, with another occurring on Sept. 28, 2015.

Enjoy the images below!

Montage of the various views of the Moon during the lunar eclipse on October 8, 2014. Credit and copyright: Chuck Manges.
Montage of the various views of the Moon during the lunar eclipse on October 8, 2014. Credit and copyright: Chuck Manges.
Near-totality eclipsed Moon, in Pisces, with Uranus at left. Delta Psc is that brightest star at upper-right of Moon. Imaged near Calabash, North Carolina. Credit and copyright: Tavi Greiner.
Near-totality eclipsed Moon, in Pisces, with Uranus at left. Delta Psc is that brightest star at upper-right of Moon. Imaged near Calabash, North Carolina. Credit and copyright: Tavi Greiner.
The red 'blood Moon' of the October 8, 2014 lunar eclipse, as seen from the Mare Island Observatory. Credit and copyright: Clifton Reed.
The red ‘blood Moon’ of the October 8, 2014, lunar eclipse, as seen from the Mare Island Observatory. Credit and copyright: Clifton Reed.
The eclipsed Moon sets over the Andes (Mts. Lopez and Capilla, Bariloche). Credit and copyright:  Guillermo Abramson.
The eclipsed Moon sets over the Andes (Mts. Lopez and Capilla, Bariloche). Credit and copyright: Guillermo Abramson.
Total Lunar Eclipse through the clouds as seen from Weatherly, PA on October 8, 2014. Credit and copyright: Tom Wildoner.
Total Lunar Eclipse through the clouds as seen from Weatherly, PA on October 8, 2014. Credit and copyright: Tom Wildoner.
'Eclipse on the edge,'  shot from the front of the Mizpah Hotel in Tonopah, Nevada. Credit and copyright: David Dickinson.
‘Eclipse on the edge,’ shot from the front of the Mizpah Hotel in Tonopah, Nevada. Credit and copyright: David Dickinson.
Last moments of the eclipse as seen from Calama, Chile. Credit and copyright: srta Andrea on Flickr.
Last moments of the eclipse as seen from Calama, Chile. Credit and copyright: srta Andrea on Flickr.
The October 8th 2014 lunar eclipse from Houston, Texas, taken with a 500m lens featuring a statue of Sam Houston. Credit and copyright: Sergio Garcia Rill.
The October 8th, 2014, lunar eclipse from Houston, Texas, taken with a 500m lens featuring a statue of Sam Houston. Credit and copyright: Sergio Garcia Rill.
Image of the lunar eclipse taken just before the midpoint of totality. Taken with a modified Canon 450D + Celestron C6-N telescope. f/4 ISO400 4s exposure. Credit and copyright: Fred Locklear.
Image of the lunar eclipse taken just before the midpoint of totality. Taken with a modified Canon 450D + Celestron C6-N telescope. f/4 ISO400 4s exposure. Credit and copyright: Fred Locklear.
Lunar Eclipse on 10-08-2014 Huffman Dam, Dayton, Ohio Canon 6D, 80mm refractor,2x Barlow (1200mm) ISO 6400,  2 sec exposure. Credit and copyright: John Chumack/Galactic Images.
Lunar Eclipse on 10-08-2014
Huffman Dam, Dayton, Ohio
Canon 6D, 80mm refractor,2x Barlow (1200mm) ISO 6400,
2 sec exposure. Credit and copyright: John Chumack/Galactic Images.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

How to Take Great Photos of the Lunar Eclipse

On Wednesday morning October 8, Earth's shadow will nibble away at the moon for this year's second total lunar eclipse. Credit: Bob King

Ready for Wednesday’s morning lunar eclipse Some people – and I envy them at times – treat an eclipse more casually. They enjoy the show with no desire to set up a telescope or take a photo. For those of us can’t part with our cameras, here’s a little guide to help you get better pictures.

From Philadelphia and other eastern U.S. cities the partial phases of the eclipse will take place with the moon well up in the western sky. By the start of totality, the moon will have dropped to within about 6º of the horizon as shown here. Source: Stellarium
From Philadelphia and other eastern U.S. cities the partial phases of the eclipse will take place with the moon well up in the western sky. By the start of totality, the moon will have dropped to within about 6º of the horizon as shown here. Source: Stellarium

If you’re also into photography and would like to grab a few shots, here are a few tips on what equipment you’ll need and camera settings. This eclipse offers unique opportunities especially for the eastern half of the country because the eclipsed moon will be low in the western sky near the start of and during morning twilight.

In the Midwest at the start of the hour-long totality, the red moon will be about 20º (two fists) above the western horizon. From the East Coast the moon slips into total eclipse only a half hour before sunrise 6-7º high. So if you live in the eastern half of the country, find a site with a good view to the west.

Seen from Denver, total eclipse begins with the moon 30º high (three fists). All of totality and all partial phases of the eclipse will be visible from western Midwest west to Hawaii and Alaska. Source: Stellarium
Seen from Denver, total eclipse begins with the moon 30º high (three fists). All of totality and all partial phases of the eclipse will be visible from western Midwest west to Hawaii and Alaska. Source: Stellarium

A low moon means easier framing with a pleasing foreground like a grove of fall trees, a church or distant line of mountain peaks. And the lower it drops, the longer the telephoto lens you can use to enlarge the moon relative to the foreground. When the moon is high in the sky it’s more difficult to find a suitable foreground.

Sometimes it's nice to have a foreground object to add character to your eclipse photos. Last April's totally eclipsed moon joins the old Central High School clock tower in downtown Duluth, Minn. Mars at upper right. Details: 80mm lens, f/5, 1.6-second exposure at ISO 400 on a tripod. Credit: Bob King
Sometimes it’s nice to have a foreground object to add character to your eclipse photos. Last April’s totally eclipsed moon joins the old Central High School clock tower in downtown Duluth, Minn. Mars at upper right. Details: 80mm lens, f/5, 1.6-second exposure at ISO 400 on a tripod. Credit: Bob King

As the scene brightens during twilight, balancing the light of the dim moon, your photos will get even more interesting. Textures and details in foreground objects will stand out instead of appearing as silhouettes.

Use the table below to plan when to watch depending on your time zone. The blanks mean the moon will have set by the time of the event.

Eclipse Events                                                EDT                 CDT                MDT                 PDT

Penumbra first visible 4:45 a.m. 3:45 a.m. 2:45 a.m. 1:45 a.m.
Partial eclipse begins 5:15 a.m. 4:15 a.m. 3:15 a.m. 2:15 a.m.
Total eclipse begins 6:25 a.m. 5:25 a.m. 4:25 a.m. 3:25 a.m.
Mid-eclipse 6:55 a.m. 5:55 a.m. 4:55 a.m. 3:55 a.m.
Total eclipse ends 7:24 a.m. 6:24 a.m. 5:24 a.m. 4:24 a.m.
Partial eclipse ends ——— 7:34 a.m. 6:34 a.m. 5:34 a.m.
Penumbra last visible ——— ——— 7:05 a.m. 6:05 a.m.

 

Exposures and lens settings

Partial phase during the April 14-15 eclipse this year. Details: Telescope (=1300mm telephoto lens) at f/11, 1/250 second at ISO 400. Credit: Bob King
Partial phase during the April 14-15 eclipse this year. Details: Telescope (=1300mm telephoto lens) at f/11, 1/250 second at ISO 400. Credit: Bob King

The full moon and even the partially eclipsed moon (up to about half) are so bright you can shoot a handheld photo without resorting to a tripod. Exposures at ISO 400 are in the neighborhood of f/8 at 1/250-1/500 second. Only thing is, all you’ll get is the moon surrounded by blackness. These exposures are so brief almost nothing will show in your foreground except for possibly moonlit clouds. That’s usually fine for the early partial phases.

Once the moon is more than half smothered by shadow, open up your lens to a wider setting – f/2.8 to f/4 – or increase the exposure. Let the back of the camera be your guide. If the images look too bright, dial back. If too dim, increase exposure or open the lens to a wider aperture.

To capture the encroaching shadow during partial phases you'll need to overexpose the sunlit part of the moon. Details: f/11, 2-second exposure at ISO 400. Credit: Bob King
To capture the encroaching shadow during partial phases you’ll need to overexpose the sunlit part of the moon. Details: f/11, 2-second exposure at ISO 400. Credit: Bob King

While you can continue to shoot the partially eclipsed moon at f/8 from 1/30-1/125 second, you’ll miss the best part – the portion filling up with Earth’s red shadow. To capture that, break out the tripod, open the lens all the way up – f/2.8-f/4 – and expose at ISO 400 between 1/4 and 1 second.

You can also shoot at ISO 800 and cut those times in half, important if you’re using a longish telephoto lens. Remember, Earth’s rotation means the moon’s on the move and will show trailing if you expose longer than a few seconds. On the other hand, this won’t be a problem if you’re shooting with a wide angle lens though they have their limits, too.

The moon completely immersed in Earth's umbra during totality. Details: f/11, 6-second exposure, ISO 400. Credit : Bob King
The moon completely immersed in Earth’s umbra during totality. Details: f/11, 6-second exposure, ISO 400. To prevent trailing I used a motorized mount to track the moon. Credit : Bob King

During totality, expose anywhere from 1/2 to 5 seconds at f/2.8-4.5 at ISO 400. Let’s say you want to include both scenic foreground and stars in the picture using a wide angle or standard lens. Dial up the ISO to 800, open your lens wide and expose between 6-10 seconds. On the 6-second end you’ll catch only the brightest stars, but the moon won’t show trailing; on the longer end you’ll get lots more stars with some overexposure of the eclipsed moon.

Of course, you can go to even higher ISOs and shorten exposure times considerably. But in all but the newest, high-end cameras that comes at the price of increased graininess and less color saturation.

Wide scene from April's total eclipse with Spica below the moon and Mars to the right. Details: 24mm lens at f/2.8, 8-second exposure at ISO 800. The moon was deliberately overexposed to show it in a field of stars. You can vary the exposure to your taste but the shorter it is,  the fewer stars. Longer exposures will show trailing. Credit: Bob King
Wide scene from April’s total eclipse with Spica below the moon and Mars to the right. Details: 24mm lens at f/2.8, 8-second exposure at ISO 800. The moon was deliberately overexposed to show it in a field of stars. You can vary the exposure to your taste but the shorter it is, the fewer stars. Longer exposures will show trailing. Credit: Bob King

Where parts of the eclipse happen in twilight, even mobile phones may suffice. There should be enough light to capture a pretty scene with the moon just emerging from total eclipse and during the ensuing partial phases.

The partial lunar eclipse of June 4, 2012, pre-dawn at moonset, from home in southern Alberta. This is a single exposure with the Canon 60Da and 18-200mm Sigma lens at 115mm and at f/5.6 for 0.4 sec at ISO 160. Copyright: Alan Dyer
The partial lunar eclipse of June 4, 2012, pre-dawn at moonset, from home in southern Alberta. This is a single exposure with the Canon 60Da and 18-200mm Sigma lens at 115mm and at f/5.6 for 0.4 sec at ISO 160. Copyright: Alan Dyer

If you’re clouded out or on the wrong side of the planet for the eclipse, you can catch live webcasts from the following sites:

* Gianluca Masi’s Virtual Telescope
* Griffith Observatory in Los Angeles
* SLOOH 

Clear skies!

Our Complete Guide to the October 8th “Hunter’s Moon” Total Lunar Eclipse

Photo by author

October 2014 means eclipse season 2 of 2 for the year is upon us.

Don’t fear the ‘Blood Moon’ that’s currently infecting the web, but if you find yourself on the correct moonward facing hemisphere of the planet, do get out and observe the total lunar eclipse coming right up on the morning of Wednesday, October 8th. This is the second and final total lunar eclipse of 2014, and the second of four in a quartet series of lunar eclipses known as a tetrad.

And the good news is, the eclipse once again favors nearly all of North America. From the western U.S. and Canada, the Moon will be high in the western skies when partial phases begin early in the morning on October 8th. The western U.S., Canada and Alaska will see the entire 61 minute span of totality, just 18 minutes shorter than last April’s lunar eclipse. The Moon will be high in the sky during totality for the Hawaiian Islands, and viewers in Australia and the Pacific Far East will witness the eclipse in the evening hours.

Visibility
The visibility regions for the total lunar eclipse. Credit: NASA/GSFC/Espenak.

This lunar eclipse is part of saros 127, and marks number 42 of a series of 72 for that particular saros. If you witnessed the total lunar eclipse visible from North America and Europe on September 27th, 1996, you caught the last of the series, and if you catch the next eclipse in the saros on October 18th, 2032, you’ve earned a veteran lunar eclipse-watchers badge of seeing an exeligmos, or “triple saros” of eclipses.

The path of the Moon through the Earth’s umbra on October 8th. Adapted from NASA/GFSC.

Timings for key phases of the eclipse are as follows:

P1- Penumbral phase begins: 8:14 UT/4:14 EDT/1:14 PDT

U1- Umbral (partial) phase begins: 9:15 UT/5:14 EDT/2:14 PDT

U2- Totality begins: 10:24 UT/6:24 EDT/3:24 PDT

Mid-totality- 10:55 UT/6:55 EDT/3:55 PDT

U3- Totality ends: 11:25 UT/7:25 EDT/4:25 PDT

U4- Umbral phase ends: 12:35 UT/5:35 PDT

P4- Penumbral phase ends: 13:35/6:35 PDT

Not all total lunar eclipses are the same when it comes to color. Totality can appear anywhere from a dark brick color, as happened during the December 9th, 1992, eclipse following the eruption of Mount Pinatubo, when the Moon nearly disappeared during totality, to a bright coppery red, as seen during the April eclipse earlier this year. The Moon passes to the north of the dark central core of the Earth’ shadow next Wednesday, so expect a brighter than normal eclipse, especially along the Moon’s northeast limb. Grab a painter’s wheel and compare the eclipsed Moon to swatches of orange through red: what colors do you see? What you’re seeing is the combinations of all the world’s sunsets refracted into the cone of the Earth’s shadow, which is about three times the size of the Moon at its average distance as seen from Earth. Remember, the Moon is experiencing a total solar eclipse as we watch the lunar eclipse unfold!

Stellarium
The October 8th total solar eclipse as seen from the Apollo 11 landing site on the nearside of the Moon. Created using Stellarium.

This color can be quantified and described on what is known as the Danjon Scale, with 0 being a very dark eclipse with the Moon barely visible, to a 4, meaning a very bright eclipse.

And yes, each total lunar eclipse is now receiving the “Blood Moon” meme thanks to ye ole Internet. Expect the conspiracy-minded to note that this eclipse occurs on the Jewish holiday of Sukkot starting at sundown on the 8th, which isn’t really all that wondrous as the Jewish calendar is a luni-solar one, and total lunar eclipses have to occur during a Full Moon by definition. Wait long enough, and an occasional “Sukkot total lunar eclipse” does indeed occur.

Uranus occultation
The footprint of the October 8th occultation of Uranus by the Moon during totality. (Credit: Occult 4.1.0).

But a truly rare event does occur during this eclipse, as the Moon actually occults (passes in front of) the planet Uranus during totality for observers in northern Alaska and northeast Asia. The rest of us in the observing zone will see a near miss. Can you spy Uranus with binoculars near the lunar limb during totality? Another such rarity occurred during Shakespeare’s time on December 30th, 1591, involving Saturn and the eclipsed Moon, and another such odd occurrence transpires in 2344 A.D.

2344 eclipse
The circumstances of the 2344 eclipse/occultation. Credit: Starry Night, NASA/GSFC & Occult 4.0.1.

The brightest star to be occulted by the total eclipsed Moon as it crosses the constellation Pisces is +7.9th magnitude HIP 4231 for the northern U.S. and Canada.

And speaking of historical eclipses, there’s a Columbus Day tie-in with the phenomenon as well. Like many mariners of his day, Columbus was well-versed in celestial navigation, and used a total lunar eclipse to get a good one-time fix on his longitude at sea, an experiment that you can easily replicate. Columbus also wasn’t above using prior knowledge of an impending lunar eclipse to get himself and his crew out of a bind with the locals when the need arose.

An outstanding sequence of images taken during the April 15th, 2014 total lunar eclipse. Credit: Michael Zeiler (Eclipse-Maps) Used with permission.
An outstanding sequence of images taken during the April 15th, 2014, total lunar eclipse. Credit: Michael Zeiler (Eclipse-Maps) Used with permission.

Photographing an eclipse with a DSLR is as easy as shooting an image of the Moon. Try this a few evenings before the big event. A minimum focal length of 200mm is needed to render the Moon larger than a white dot in the image, and remember that the Moon is much darker during total eclipse, and you’ll need to step the exposure times rapidly down from 1/100th of a second to 2 to 4 seconds during totality.

A long-running effort by Sky & Telescope has been looking for amateur observations of precise crater contacts along the rim of the umbra in an effort to measure variations in the diameter of the Earth’s shadow.

starry night
The Moon versus Uranus as seen from Napa, California just past mid-eclipse on the morning of October 8th. Credit: Starry Night Education Software.

As always, weather prospects are the big question mark when it comes to eclipses. Typically, the southwestern U.S. experiences 13-20 clear days in the month of October; prospects worsen to the northwest, with an average of 3-12 days. We’ll be looking at resources such as NOAA, Skippy Sky and ClearSkyChart on the evenings leading up to the 8th. The great thing about a lunar eclipse is, you don’t need a 100% clear sky to see it: just a clear view of the Moon!

Up for a challenge? We’ve yet to see a capture of a shadow transit of the International Space Station in front of the eclipsed Moon. This time around, such a capture should be possible across southern coastal California and the Baja peninsula just minutes prior to the onset of totality.

Orbitron
A shadow pass of the International Space Station just prior to the onset of totality. Note the position of the Moon. Created using Orbitron.

Another bizarre catch, known as a selenelion — witnessing the end of lunar totality after sunrise — may just be possible across the northeastern U.S. into the Canadian Maritimes as the eclipsed Moon sets during totality. The more elevation you can get the better! This works because the Moon lingers a bit in the large shadow of the Earth, plus atmospheric refraction gives the low altitude Sun and Moon a slight boost.

Clouded out? On the wrong side of the planet? You can watch the eclipse online at the following links:

– Live views courtesy of Gialuca Masi and the Virtual Telescope starting at 10:00 UT on October 8th.

– A live webcast starting at 9:00 UT courtesy of Slooh:

– A Columbia State University broadcast, (time to be determined).

Planning an ad-hoc broadcast? Let us know!

And as the eclipse wraps up, the biggest question is always: When’s the next one? Well, lunar eclipse number three of the four eclipse tetrad occurs next year on April 4th, 2015… but in just two weeks time, the western United States and Canada will also witness a fine partial solar eclipse on Oct 23rd

Stay tuned!

Got images of the total lunar eclipse? Send ‘em in to Universe Today’s Flickr forum!

Interested in eclipse sci-fi? Check out our latest short stories Exeligmos and Shadowfall.

Gallery: 5 Exotic Places NASA’s Next-Generation Rocket Could Help Explore

Looking to the future of space exploration, NASA and TopCoder have launched the "High Performance Fast Computing Challenge" to improve the performance of their Pleiades supercomputer. Credit: NASA/MSFC

TORONTO, CANADA – Could NASA’s new rocket bring a probe to sample the geysers of Saturn’s moon Enceladus, or ferry human explorers to the surface of Mars? Representatives of contractor Boeing think so.

They’ve put together some ideas for sending their Space Launch System to these far-flung destinations, which they presented at the International Astronautical Congress today (Oct. 1).

Bear in mind that the SLS hasn’t yet flown — it’s slated for 2018 if funding lasts and the schedule holds — and the destinations below are just in the conceptual stage. The gallery below summarizes some of the destinations SLS could visit. For more information, check out this brochure by Boeing.

Enceladus

Artist's conception of the Cassini spacecraft flying amid geysers on Enceladus, a moon of Saturn. Credit: Karl Kofoed / NASA
Artist’s conception of the Cassini spacecraft flying amid geysers on Enceladus, a moon of Saturn. Credit: Karl Kofoed / NASA

The icy moon of Saturn is known as a hotspot for geysers; earlier this year, scientists found 101 gushers using data from the prolific Cassini probe. Using the SLS could bring a satellite there in four years, as opposed to about seven with rockets on the market today, according to Boeing. It also could carry a heavier spacecraft.

Europa

Artist's conception of Europa's surface, backdropped by planet Jupiter. Credit: NASA/JPL-Caltech
Artist’s conception of Europa’s surface, backdropped by planet Jupiter. Credit: NASA/JPL-Caltech

Europa is known to have a subterranean ocean, and it also is capable of spewing water plumes — as researchers using the Hubble Space Telescope discovered earlier this year. The SLS could get to Europa a lot faster than a launch with an Atlas, according to Boeing — it would only take two years to fly there directly as opposed to more than six years with the Atlas, which would need to fly by Venus first to pick up some speed.

Trojan asteroids

Artist's diagram of Jupiter and some Trojan asteroids nearby the gas giant. Credit: NASA/JPL-Caltech
Artist’s diagram of Jupiter and some Trojan asteroids nearby the gas giant. Credit: NASA/JPL-Caltech

Trailing before and after Jupiter are more than a million asteroids that are called Trojans. This means any probe in the area would have no lack of targets to study, providing it had enough fuel on board. A mission profile from Boeing suggests the SLS could bring a spacecraft out there that could swing by a target at least half a dozen times.

Mars

Artist's impression of astronauts exploring Mars. Credit: NASA/Pat Rawlings, SAIC
Artist’s impression of astronauts exploring Mars. Credit: NASA/Pat Rawlings, SAIC

One of the largest challenges of getting to Mars is figuring out how to send all the life-support equipment and food that humans require — on top of the humans themselves! Since SLS is a heavy-lift rocket, Boeing is trying to position its rocket as the ideal one to get humans to Mars. But it remains to be seen what concept works best to get people out there.

The Moon

Artist's impression of astronauts on the moon. This image was used to illustrate a landing concept of NASA's now defunct Constellation program. Credit: John Frassanito and Associates / NASA
Artist’s impression of astronauts on the moon. This image was used to illustrate a landing concept of NASA’s now defunct Constellation program. Credit: John Frassanito and Associates / NASA

Boeing has an idea to bring a lander down to the Moon that could then lift off multiple times in search of other destinations. Such a concept would require a hefty amount of fuel and equipment. If it works, Boeing says the SLS could assist with plans for lunar mining and other exploration ideas.

Assembly Completed on Powerful Delta IV Rocket Boosting Maiden Orion Capsule Test Flight

A United Launch Alliance technician monitors the core booster elements of a Delta IV Heavy rocket after being integrated in preparation for Exploration Flight Test-1 at Space Launch Complex 37 on Cape Canaveral Air Force Station. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – Assembly of the powerful Delta IV rocket boosting the pathfinder version of NASA’s Orion crew capsule on its maiden test flight in December has been completed.

Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars and other destinations in our Solar System.

The state-of-the-art Orion spacecraft is scheduled to launch on its inaugural uncrewed mission, dubbed Exploration Flight Test-1 (EFT-1), in December 2014 atop the Delta IV Heavy rocket. It replaces NASA’s now retired space shuttle orbiters.

The triple barreled Delta IV Heavy is currently the most powerful rocket in America’s fleet following the retirement of the NASA’s Space Shuttle program.

Engineers from the rocket’s manufacturer – United Launch Alliance (ULA) – took a major step forward towards Orion’s first flight when they completed the integration of the three primary core elements of the rockets first stage with the single engine upper stage.

These three RS-68 engines will power each of the attached Delta IV Heavy Common Booster Cores (CBCs) the will launch NASA’s maiden Orion on the EFT-1 mission in December 2014.   Credit: Ken Kremer/kenkremer.com
These three RS-68 engines will power each of the attached Delta IV Heavy Common Booster Cores (CBCs) that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014. Credit: Ken Kremer/kenkremer.com

All of the rocket integration work and preflight processing took place inside ULA’s Horizontal Integration Facility (HIF), at Cape Canaveral Air Force Station in Florida.

Universe Today recently visited the Delta IV booster during an up close tour inside the HIF facility last week where the rocket was unveiled to the media in a horizontally stacked configuration. See my Delta IV photos herein.

The HIF building is located at Space Launch Complex 37 (SLC-37), on Cape Canaveral, a short distance away from the launch pad where the Orion EFT-1 mission will lift off on Dec. 4.

“The day-to-day processing is performed by ULA,” said Merri Anne Stowe of NASA’s Fleet Systems Integration Branch of the Launch Services Program (LSP), in a NASA statement.

“NASA’s role is to keep a watchful eye on everything and be there to help if any issues come up.”

The first stage is comprised of a trio of three Delta IV Common Booster Cores (CBCs).

Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37.   Credit: Ken Kremer/kenkremer.com
Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37. Credit: Ken Kremer/kenkremer.com

Each CBC measures 134 feet in length and 17 feet in diameter. They are equipped with an RS-68 engine powered by liquid hydrogen and liquid oxygen propellants producing 656,000 pounds of thrust. Together they generate 1.96 million pounds of thrust.

This past spring I visited the HIF after the first two CBCs arrived by barge from their ULA assembly plant in Decatur, Alabama, located about 20 miles west of Huntsville.

The first CBC booster was attached to the center booster in June. The second one was attached in early August, according to ULA.

“After the three core stages went through their initial inspections and processing, the struts were attached, connecting the booster stages with the center core,” Stowe said. “All of this takes place horizontally.”

The Delta IV cryogenic second stage testing and attachment was completed in August and September. It measures 45 feet in length and 17 feet in diameter. It is equipped with a single RL10-B-2 engine, that also burns liquid hydrogen and liquid oxygen propellant and generates 25,000 pounds of thrust.

“The hardware for Exploration Flight Test-1 is coming together well,” Stowe noted in a NASA statement.

“We haven’t had to deal with any serious problems. All of the advance planning appears to be paying off.”

This same Delta IV upper stage will be used in the Block 1 version of NASA’s new heavy lift rocket, the Space Launch System (SLS).

Be sure to read my recent article detailing the ribbon cutting ceremony opening the manufacture of the SLS core stage at NASA’s Michoud Assembly Facility in New Orleans, LA. The SLS will be the most powerful rocket ever built by humans, exceeding that of the iconic Saturn V rocket that sent humans to walk on the surface of the Moon.

Wide view of the new welding tool at the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans at a ribbon-cutting ceremony Sept. 12, 2014.  Credit: Ken Kremer – kenkremer.com
Wide view of the new welding tool at the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans at a ribbon-cutting ceremony Sept. 12, 2014. Credit: Ken Kremer – kenkremer.com

The Delta IV rocket will be rolled out to the SLC-37 Cape Canaveral launch pad this week.
Assembly of the Orion EFT-1 capsule and stacking atop the service module was also completed in September at the Kennedy Space Center (KSC).

I was also on hand at KSC when the Orion crew module/service module (CM/SM) stack was rolled out on Sept. 11, 2014, on a 36-wheel transporter from its high bay assembly facility in the Neil Armstrong Operations and Checkout Building.

NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to Launch Abort System Facility (LASF) on Sept. 11, 2014 at the Kennedy Space Center, FL.  Credit: Ken Kremer - kenkremer.com
NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to Launch Abort System Facility (LASF) on Sept. 11, 2014, at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

It was moved about 1 mile to its next stop on the way to SLC-37 – the KSC fueling facility named the Payload Hazardous Servicing Facility (PHFS). Read my Orion move story here.

The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s Orion EFT 1 crew module departs Neil Armstrong Operation and Checkout Building on Sept. 11, 2014 at the Kennedy Space Center, FL, beginning the long journey to the launch pad and planned liftoff on Dec. 4, 2014.  Credit: Ken Kremer - kenkremer.com
NASA’s Orion EFT 1 crew module departs Neil Armstrong Operation and Checkout Building on Sept. 11, 2014 at the Kennedy Space Center, FL, beginning the long journey to the launch pad and planned liftoff on Dec. 4, 2014. Credit: Ken Kremer – kenkremer.com
Space journalists including Ken Kremer/Universe Today pose with the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37.   Credit: Ken Kremer/kenkremer.com
Space journalists including Ken Kremer/Universe Today pose with the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37. Credit: Ken Kremer/kenkremer.com

A Splash of Color Across the Supermoon

Color variations observed a day after the supermoon are indicative of compositional differences over the Lunar surface (image credit: Noel Carboni).

A software engineer from Florida recently captured an image of the day-old supermoon in September that clearly conveys color variations across its surface.  Such variations are often imperceptible, but the brightness and color differences were digitally enhanced to make them easier to discern.    The color variations are indicative of compositional differences across the Lunar surface (e.g., iron content and impact ejecta).

A supermoon is a full Moon that is observed during the satellite’s closest approach to Earth.  The Moon’s orbit is described by a marginally elongated ellipse rather than a circle, and hence the Moon’s distance from Earth is not constant. The Moon will achieve its largest apparent diameter in the Sky during that closest approach, which in part gives rise to the supermoon designation.

Noel Carboni, who imaged the supermoon a day after the full phase, told Universe Today that he, “created the image using 17 frames shot with a Canon EOS-40D, which was mounted to a 10-inch Meade telescope.”  He added that, “each exposure was 1/40th of a second, and a workstation was used to stitch the image which is more than 17,000 pixels square.”

Carboni noted that, “Ever since the 1980s, I have harbored a growing interest in digital imaging. It is exciting that nowadays affordable and high quality image capture equipment are available to consumers, and that formidable digital image processing tools are available to just plain folks!”

His astrophotography may be well known to readers of Universe Today, as his work has been featured on NASA’s Astronomy Picture of the Day (APOD) and elsewhere.  A gallery of Carboni’s astrophotography can be viewed at his webpage.

Readers desiring to learn more about the Moon and its surface can join the Moon Zoo Citizen Science Project, and glance at images from NASA’s Lunar Reconnaissance Orbiter.   The Moon Zoo project aims to inspect millions of images captured by that instrument, which will invariably help scientists advance our understanding of the Moon.

Seeking Apollo Pictures? Here’s How To Find Obscure Shots From The Moon-Landing Program

Apollo 14 astronaut Ed Mitchell at work in the Ocean of Storms on the Moon. Credit: NASA / Lunar and Planetary Institute

While any image from the Apollo program is stunning, some of the more iconic ones are used over and over again while equally amazing pictures remain relatively unknown.

A recent Reddit thread posted what the user said was some of the “more uncommon” images of the program. You can see the full slideshow here.

In the same spirit, we’ve posted some Apollo images below from the Lunar and Planetary Institute, which maintains a catalog of NASA shots (including some in high-resolution) on its website. We also recommend the 1999 Michael Light book Full Moon, which has dozens of lesser-known Apollo shots of high quality.

A half-Earth shines in this image taken by the Apollo 13 crew in April 1970. Credit: NASA / Lunar and Planetary Institute
A half-Earth shines in this image taken by the Apollo 13 crew in April 1970. Credit: NASA / Lunar and Planetary Institute
Footprints, dusty spacesuit knees and tools -- all a part of the Apollo 12 mission in November 1969. Credit: NASA / Lunar and Planetary Institute
Footprints, dusty spacesuit knees and tools — all a part of the Apollo 12 mission in November 1969. Credit: NASA / Lunar and Planetary Institute
Apollo 11 astronaut Buzz Aldrin inside the lunar module at the Moon's Sea of Tranquility in July 1969. Credit: NASA / Lunar and Planetary Institute
Apollo 11 astronaut Buzz Aldrin inside the lunar module at the Moon’s Sea of Tranquility in July 1969. Credit: NASA / Lunar and Planetary Institute
Shadowy lunar craters poke out in this image taken by the Apollo 8 crew in December 1968. Credit: NASA / Lunar and Planetary Institute
Shadowy lunar craters poke out in this image taken by the Apollo 8 crew in December 1968. Credit: NASA / Lunar and Planetary Institute
An Apollo 16 astronaut works near the lunar rover in the Descartes Highlands in April 1972. Credit: NASA / Lunar and Planetary Institute
An Apollo 16 astronaut works near the lunar rover in the Descartes Highlands in April 1972. Credit: NASA / Lunar and Planetary Institute

A Triple Occultation Bonanza: A Challenging Series of Occultations This Weekend and More

The 1st Quarter Moon occults Saturn during the last event in the series on August 5th, 2015. Sequence courtesy of Teale Britstra.

Got clear skies? This week’s equinox means the return of astronomical Fall for northern hemisphere observers and a slow but steady return of longer nights afterwards. And as the Moon returns to the evening skies, all eyes turn to the astronomical action transpiring low to the southwest at dusk.

Three planets and two “occasional” planets lie along the Moon’s apparent path this coming weekend: Mars, Saturn, Mercury and the tiny worldlets of 4 Vesta and 1 Ceres. Discovered in the early 19th century, Ceres and Vesta enjoyed planetary status initially before being relegated to the realm of the asteroids, only to make a brief comeback in 2006 before once again being purged along with Pluto to dwarf planet status.

Credit: Stellarium.
The Moon approaches Saturn on the evening of September 28th as seen from latitude 30 degrees north. Credit: Stellarium.

On Sunday September 28th, the four day old Moon will actually occult (pass in front of) Saturn, Ceres, and Vesta in quick succession. The Saturn occultation is part of a series of 12 in an ongoing cycle. This particular occultation is best for Hawaiian-based observers on the evening of September 28th. Astute observers will recall that Ceres and Vesta fit in the same 15’ field of view earlier this summer. Both are now over six degrees apart and slowly widening. Unfortunately, there is no location worldwide where it’s possible to see all (or two) of these objects occulted simultaneously. The best spots for catching the occultations of +7.8 magnitude Vesta and +9.0 magnitude Ceres are from the Horn of Africa and just off of the Chilean coast of South America, respectively. The rest of us will see a close but photogenic conjunction of the trio and the Moon. To our knowledge, an occultation of Ceres or Vesta by the dark limb of the Moon has yet to be recorded. Vesta also reaches perihelion this week on September 23rd at 4:00 UT, about 2.2 astronomical units from the Sun and 2.6 A.U.s from Earth.

Credit: Andrew Symes
4 Vesta and 1 Ceres share the same field of view this past summer. Credit: Andrew Symes @FailedProtostar.

The reappearance of the Moon in the evening skies is also a great time to try your hand (or eyes) at the fine visual athletic sport of waxing crescent moon-spotting. The Moon passes New phase marking the start of lunation 1135 on Wednesday, September 24th at 6:12 UT/2:12 AM EDT. First sighting opportunities will occur over the South Pacific on the same evening, with worldwide opportunities to spy the razor-thin Moon low to the west the following night. Aim your binoculars at the Moon and sweep about three degrees to the south, and you’ll spy Mercury and the bright star Spica just over a degree apart.

This week’s New Moon is also notable for marking the celebration of Rosh Hashanah, and the beginning of the Jewish year 5775 A.M. at sundown on Wednesday. The Jewish calendar is a hybrid luni-solar one, and inserted an embolismic or intercalculary month earlier this spring to stay in sync with the solar year.

Occult 4.0
The occultation footprint of Saturn. The dashed line denotes where the event occurs in the daytime, while the solid line marks where it can be seen after sunset. Created using Occult 4.1.0.

The Moon also visits Mars and Antares on September 29th. The ruddy pair sits just three degrees apart on the 28th, making an interesting study in contrast. Which one looks “redder” to you? Antares was actually named by the Greeks to refer to it as the “equal to,” “pseudo,” or “anti-Mars…” Mars can take on anything from a yellowish to pumpkin orange appearance, depending on the current amount of dust suspended in its atmosphere. The action around Mars is also heating up, as NASA’s MAVEN spacecraft just arrived in orbit around the Red Planet and India’s Mars Orbiter is set to join it this week… and all as Comet A1 Siding Spring makes a close pass on October 19th!

And speaking of spacecraft, another news maker is photo-bombing the dusk scene, although of course it’s much too faint to see. NASA’s Dawn mission is en route to enter orbit around Ceres in early 2015, and currently lies near R.A. 15h 02’ and declination -14 37’, just over a degree from Ceres as seen from Earth. The Moon will briefly “occult” the Dawn spacecraft as well on September 28th.

Credit: Starry Night
Crowded skies: the Moon approaching Saturn, 4 Vesta, 1 Ceres and the Dawn spacecraft on the 28th. The red arrow shows the direction of the Moon. Created using Starry Night Education Software.

Be sure to keep an eye out for Earthshine on the dark limb of the Moon as our natural neighbor in space waxes from crescent to First Quarter. What you’re seeing is the reflection of sunlight from the gibbous Earth illuminating the lunar plains on the nighttime side of the Moon. This effect gives the Moon a dramatic 3D appearance and can vary depending on the amount of cloud and snow cover currently facing the Moon.

Such a close trio of conjunctions raises the question: when was the last time the Moon covered two or more planets at once? Well, on April 23rd 1998, the Moon actually occulted Venus and Jupiter at the same time, although you had to journey to Ascension Island to witness it!

Credit: Stellarium
The waning crescent Moon approaches Jupiter and Venus on April 23rd, 1998. Credit: Stellarium.

Such bizarre conjunctions are extremely rare. You need a close pairing of less than half a degree for two bright objects to be covered by the Moon at the same time. And often, such conjunctions occur too close to the Sun for observation. A great consequence of such passages, however, is that it can result in a “smiley-face” conjunction, such as the one that occurs on October 15th, 2036:

Credit: Starry Night.
Smile: A close pass of the Moon, Saturn, and Regulus in 2036. Credit: Stellarium.

Such an occurrence lends credence to a certain sense of cosmic irony in the universe.

And be sure to keep an eye on the Moon, as eclipse season 2 of 2 for 2014 kicks off next week, with the second total lunar eclipse of the year visible from North America.

More to come!

A 3-D Printed Telescope Took This Picture Of The Moon — And The Plans Are Coming

A shot of the moon taken by a telescope created by 3-D printing. Credit: University of Sheffield

What would Galileo think of this? Here’s a shot of our closest large celestial neighbor, the Moon, taken through a 3-D printed telescope. Better yet — before long, the creators of this telescope promise, the plans will be made available on the Internet for all to use.

The concept (called PiKon) is based on a Newtonian reflecting telescope, with the rays of light focused onto a Raspberry Pi camera’s photo sensor.

“This is all about democratizing technology, making it cheap and readily available to the general public,” stated Mark Wrigley, who-co led the design. He runs a one-person company (Alternative Photonics) and built the telescope with support from the University of Sheffield in the United Kingdom.

“And the PiKon is just the start. It is our aim to not only use the public’s feedback and participation to improve it, but also to launch new products which will be of value to people.”

The mirror size of the telescope was not disclosed in a press release, but its magnification is 160. This makes it able to look at planets, moons, galaxies and star clusters. Stacking images is also possible to look for moving objects such as comets, the university stated.

The creators say it only costs £100 ($165) to make, so we can hardly wait to see what the plans contain. More information on the telescope is available on the PiKon website.

Source: University of Sheffield

Stalking Uranus: A Complete Guide to the 2014 Opposition Season

Uranus as seen through the automated eyes of Voyager 2 in 1986. (Credit: NASA/JPL).

It’s no joke… now is the time to begin searching the much-maligned (and mispronounced) planet Uranus as it reaches opposition in early October leading up to a very special celestial event.

Last month, we looked at the challenges of spying the solar system’s outermost ice giant world, Neptune. Currently located in the adjacent constellation Aquarius, Neptune is now 39 degrees from Uranus and widening. The two worlds had a close conjunction of just over one degree of separation in late 1993, and only long time observers of the distant worlds remember a time waaaay back in the early-1970s where the two worlds appeared farther apart than 2014 as seen from our Earthly vantage point.

Stellarium
Uranus rising to the east the evening of October 7th, just prior to the start of the October 8th lunar eclipse later the same evening. Created  using Stellarium.

In 2014, opposition occurs at 21:00 Universal Time (UT)/5:00 PM EDT on October 7th. If this date sounds familiar, it’s because Full Moon and the second total lunar eclipse of 2014 and the ongoing lunar tetrad of eclipses occurs less than 24 hours afterwards. This puts Uranus extremely close to the eclipsed Moon, and a remote slice of the high Arctic will actually see the Moon occult (pass in front of) Uranus during totality. Such a coincidence is extremely rare: the last time the Moon occulted a naked eye planet during totality occurred back during Shakespearian times in 1591, when Saturn was covered by the eclipsed Moon. This close conjunction as seen from English soil possibly by the bard himself was mentioned in David Levy’s book and doctoral thesis The Sky in Early Modern English Literature, and a similar event involving Saturn occurs in 2344 AD.

Credit:
The footprint of the October 8th occultation of Uranus. Credit: Occult 4.1.

We’re also in a cycle of occultations of Uranus in 2014, as the speedy Moon slides in front of the slow moving world every lunation until December 2015. Oppositions of Uranus — actually pronounced “YOOR-un-us” so as not to rhyme with a bodily orifice — currently occur in the month of September and move forward across our calendar by about 4 days a year.

Credit:
Uranus (lower left) near the limb of the gibbous Moon of September 11th, 2014. Credit: Roger Hutchinson.

This year sees Uranus in the astronomical constellation Pisces just south of the March equinoctial point. Uranus is moving towards and will pass within a degree of the +5.7 magnitude star 96 Piscium in late October through early November. Shining at magnitude +5.7 through the opposition season, Uranus presents a disk 3.7” in size at the telescope. You can get a positive ID on the planet by patiently sweeping the field of view: Uranus is the tiny blue-green “dot” that, unlike a star, refuses to come into a pinpoint focus.

The apparent path of Uranus from September 2014 through January 2015 across the constellation Pisces. The inset shows the tilt and orbit of its major moons across a 2′ field of view. Created by the author using Starry Night Education software.

Uranus also presents us with one of the key mysteries of the solar system. Namely, what’s up with its 97.8 degree rotational tilt? Clearly, the world sustained a major blow sometime in the solar system’s early history. In 2014, we’re viewing the world at about a 28 degree tilt and widening. This will continue until we’re looking straight at the south pole of Uranus in early 2030s. Of course, “south” and “north” are pretty arbitrary when you’re knocked back over 90 degrees on your axis! And while we enjoy the September Equinox next week on September 23rd, the last equinox for any would-be “Uranians” occurred on December 16th, 2007. This put the orbit of its moons edge-on from our point of view from 2006-2009 for only the third time since discovery of the planet in 1781. This won’t occur again until around 2049. Uranus also passed aphelion in 2009, which means it’s still at the farther end of its 19.1 to 17.3 astronomical unit (A.U.) range from the Sun in its 84 year orbit.

The moons of Uranus and Neptune as imaged during the 2011 opposition season. Credit: Rolf Wahl Olsen, used with permission.
The moons of Uranus and Neptune as imaged during the 2011 opposition season. Credit: Rolf Wahl Olsen, used with permission.

And as often as Uranus ends up as the butt (bad pun) of many a scatological punch line, we can at least be glad that the world didn’t get named Georgium Sidus (Latin for “George’s Star”) after William Herschel’s benefactor, King George the III. Yes, this was a serious proposal (!). Herschel initially thought he’d found a comet upon spying Uranus, until he realized its slow motion implied a large object orbiting far out in the solar system.

A replica... Credit:
A replica of the reflecting telescope that Herschel used to discover Uranus. Credit: Alun Salt/Wikimedia Commons image under a Creative Commons Attribution Share-Alike 2.0 license.

Spurious sightings of Uranus actually crop up on star maps prior to Herschel’s time, and in theory, it hovers juuusst above naked eye visibility near opposition as seen from a dark sky site… can you pick out Uranus without optical assistance during totality next month? Hershel and Lassell also made claims of spotting early ring systems around both Uranus and Neptune, though the true discovery of a tenuous ring system of Uranus was made by the Kuiper Airborne Observatory (a forerunner of SOFIA) during an occultation of a background star in 1977.

Credit: Ed Kotapish
A corkscrew chart for the moons of Uranus through October. Credit: Ed Kotapish/Rings PDS node.

Looking for something more? Owners of large light buckets can capture and even image (see above) 5 of the 27 known moons of Uranus. We charted the orbital elongations for favorable apparitions through October 2014 (to the left). Check out last year’s chart for magnitudes, periods, and maximum separations for each respective moon. An occulting bar eyepiece may help you in your quest to cut down the ‘glare’ of nearby Uranus.

When will we return to Uranus? Thus far, humanity has explored the world up close exactly once, when Voyager 2 passed by in 1986. A possible “Uranus Probe” (perhaps, Uranus Orbiter is a better term) similar to Cassini has been an on- and off- proposal over the years, though it’d be a tough sell in the current era of ever dwindling budgets. Plutonium, a mandatory power source for deep space missions, is also in short supply. Such a mission might take up to a decade to enter orbit around Uranus, and would represent the farthest orbital reconnaissance of a world in our solar system. Speedy New Horizons is just whizzing by Pluto next July.

All great thoughts to ponder as you scour the skies for Uranus in the coming weeks!