Would the Real ‘SuperMoon’ Please Stand Up?

The perigee Full Moon of June 22nd, 2013. Credit: Russell Bateman (@RussellBateman1)

‘Tis the season once again, when rogue Full Moons nearing perigee seem roam the summer skies to the breathless exhortations of many an astronomical neophyte at will. We know… by now, you’d think that there’d be nothing new under the Sun (or in this case, the Moon) to write about the closest Full Moons of the year.

But love ‘em or hate ‘em, tales of the “Supermoon” will soon be gracing ye ole internet again, with hyperbole that’s usually reserved for comets, meteor showers, and celeb debauchery, all promising the “biggest Full Moon EVER…” just like last year, and the year be for that, and the year before that…

How did this come to be?

What’s happening this summer: First, here’s the lowdown on what’s coming up. The closest Full Moon of 2014 occurs next month on August 10th at 18:11 Universal Time (UT) or 1:44 PM EDT. On that date, the Moon reaches perigee or its closest approach to the Earth at 356,896 kilometres distant at 17:44, less than an hour from Full. Of course, the Moon reaches perigee nearly as close once every anomalistic month (the time from perigee-to-perigee) of 27.55 days and passes Full phase once every synodic period (the period from like phase to phase) with a long term average of 29.53 days.

Moon rise on the evening of July 11th, 2014 as seen from latitude 30 degrees north. Credit: Stellarium.
Moon rise on the evening of July 11th, 2014 as seen from latitude 30 degrees north. Credit: Stellarium.

And the August perigee of the Moon only beats out the January 1st, 2014 perigee out by a scant 25 kilometres for the title of the closest perigee of the year, although the Moon was at New phase on that date, with lots less fanfare and hoopla for that one. Perigee itself can vary from 356,400 to 370,400 kilometres distant.

But there’s more. If you consider a “Supermoon” as a Full Moon falling within 24 hours of perigee, (folks like to play fast and loose with the informal definitions when the Supermoon rolls around, as you’ll see) then we actually have a trio of Supermoons on tap for 2014, with one this week on July 12th and September 9th as well.

What, then, is this lunacy?

Well, as many an informative and helpful commenter from previous years has mentioned, the term Supermoon was actually coined by an astrologer. Yes, I know… the same precession-denialists that gave us such eyebrow raising terms as “occultation,” “trine” and the like. Don’t get us started. The term “Supermoon” is a more modern pop culture creation that first appeared in a 1979 astrology publication, and the name stuck. A more accurate astronomical term for a “Supermoon” is a perigee-syzygy Full Moon or Proxigean Moon, but those just don’t seem to be able to “fill the seats” when it comes to internet hype.

One of the more arcane aspects set forth by the 1979 definition of a Supermoon is its curiously indistinct description as a “Full Moon which occurs with the Moon at or near (within 90% of) its closest approach to Earth in a given orbit.” This is a strange demarcation, as it’s pretty vague as to the span of distance (perigee varies, due to the drag of the Sun on the Moon’s orbit in what’s known as the precession of the line of apsides) and time. The Moon and all celestial bodies move faster near perigee than apogee as per Kepler’s 2nd Law of planetary motion.

A photo essay comparing Full Moon sizes and appearance from one Supermoon to the next, spanning 2011-2012. Credit:
A photo essay comparing Full Moon sizes and appearance from one Supermoon to the next, spanning 2011-2012. Credit: Marion Haligowski/RadicalRetinscopy. Used with permission.

We very much prefer to think of a Proxigean Moon as defined by a “Full Moon within 24 hours of perigee”. There. Simple. Done.

And let’s not forget, Full phase is but an instant in time when the Moon passes an ecliptic longitude of 180 degrees opposite from the Sun. The Moon actually never reaches 100% illumination due to its 5.1 degree tilt to the ecliptic, as when it does fall exactly opposite to the Sun it also passes into the Earth’s shadow for a total lunar eclipse.

-Check out this animation of the changing size of the Moon and its tilt — known as libration and nutation, respectively — as seen from our Earthly perspective over the span of one lunation.

The truth is, the Moon does vary from 356,400 to 406,700 kilometres in its wonderfully complicated orbit about our fair world, and a discerning eye can tell the difference in its size from one lunation to the next. This means the apparent size of the Moon can vary from 29.3’ to 34.1’ — a difference of almost 5’ — from perigee to apogee. And that’s not taking into account the rising “Moon illusion,” which is actually a variation of an optical effect known as the Ponzo Illusion. And besides, the Moon is actually more distant when its on the local horizon than overhead, to the tune of about one Earth radius.

Like its bizarro cousin the “minimoon” and the Blue Moon (not the beer), the Supermoon will probably now forever be part of the informal astronomical lexicon. And just like recent years before 2014, astronomers will soon receive gushing platitudes during next month’s Full Moon from friends/relatives/random people on Twitter about how this was “the biggest Full Moon ever!!!”

Credit Stephen Rahn
The perigee Full Moon of May 5th, 2012. Credit: Stephen Rahn (@StephenRahn13)

Does the summer trio of Full Moons look bigger to you than any other time of year? It will be tough to tell the difference visually over the next three Full Moons. Perhaps a capture of the July, August and September Full Moons might just tease out the very slight difference between the three.

And for those preferring not to buy in to the annual Supermoon hype, the names for the July, August and September Full Moons are the Buck, Sturgeon and Corn Moon, respectively. And of course, the September Full Moon near the Equinox is also popularly known as the Harvest Moon.

And in case you’re wondering, or just looking to mark your calendar for the next annual “largest Full Moon(s) of all time,” here’s our nifty table of Supermoons through 2020, as reckoned by our handy definition of a Full Moon falling within 24 hours of perigee.

So what do you say? Let ‘em come for the hype, and stay for the science. Let’s take back the Supermoon.

Astrophoto: A ‘Mistakenly’ Beautiful View of the Crescent Moon and Leaning Tower of Pisa

The crescent Moon and the Leaning Tower of Pisa together for a beautiful nighttime view. Credit and copyright: Giuseppe Petricca.

A mistake led to this stunning image of the crescent Moon and the Tower of Pisa this week.

Astrophotographer Giuseppe Petricca from Italy had in mind a certain shot he wanted to take of the crescent Moon on June 29. “So I went out during the evening to do so,” he told Universe Today via email. “Unfortunately, I totally miscalculated the time! But, luckily, in the end, I managed to get an even more captivating shot.”

The Moon has a bit of Earthshine and a reddish glow from its low elevation in the sky, snuggling up to the Leaning Tower of Pisa. “Truly a beautiful combination and an awesome scenery. Impossible to not take a picture of it!” Giuseppe said.

This photograph was taken with a Nikon Coolpix P90 Bridge Camera on tripod, ISO 100, f4.5, 2.5″ exposure.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Beautiful Astrophotos: Crescent Moon and Venus Rising

The waning crescent Moon below Venus, rising in the east on June 24, 2014 as seen from home over the flat prairie horizon of southern Alberta, Canada. Credit and copyright: Alan Dyer.

Did you see the crescent Moon near a bright star on Tuesday morning this week? Many of our Flickr group astrophotographers captured gorgeous shots of the two together in the sky, including this eye-candy image from Alan Dyer from Canada. Just take a look!

A beautiful conjunction between the Moon, the very bright planet Venus, and the easily recognizable open star cluster of the Pleiades from central Italy on the morning of June 24, 2014. Credit and copyright: Giuseppe Petricca.
A beautiful conjunction between the Moon, the very bright planet Venus, and the easily recognizable open star cluster of the Pleiades from central Italy on the morning of June 24, 2014. Credit and copyright: Giuseppe Petricca.
The waning crescent Moon and Venus as seen from the UK on June 24, 2014. Credit and copyright: Sculptor Lil on Flickr.
The waning crescent Moon and Venus as seen from the UK on June 24, 2014. Credit and copyright: Sculptor Lil on Flickr.
Moon and Venus Conjunction approximately 1 hour before sunrise on 24th June 2014. Looking east over central London with Canary Wharf on the horizon. Credit and copyright: Roger Hutchinson.
Moon and Venus Conjunction approximately 1 hour before sunrise on 24th June 2014. Looking east over central London with Canary Wharf on the horizon. Credit and copyright: Roger Hutchinson.
Venus and Waning Crescent Moon on June 24, 2014. Credit and copyright: Stephen Rahn.
Venus and Waning Crescent Moon on June 24, 2014. Credit and copyright: Stephen Rahn.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Observing Challenge: The Moon Brushes Past Venus and Covers Mercury This Week

Credit

The summer astronomical action heats up this week, as the waning crescent Moon joins the inner planets at dawn. This week’s action comes hot on the tails of the northward solstice which occurred this past weekend, which fell on June 21st in 2014, marking the start of astronomical summer in the northern hemisphere and winter in the southern. This also means that the ecliptic angle at dawn for mid-northern latitude observers will run southward from the northeast early in the morning sky. And although the longest day was June 21st, the earliest sunrise from 40 degrees north latitude was June 14th and the latest sunset occurs on June 27th. We’re slowly taking back the night!

The dawn patrol action begins tomorrow, as the waning crescent Moon slides by Venus low in the dawn sky Tuesday morning. Geocentric (Earth-centered) conjunction occurs on June 24th at around 13:00 Universal Time/9:00 AM EDT, as the 8% illuminated Moon sits 1.3 degrees — just shy of three Full Moon diameters — from -3.8 magnitude Venus. Also note that the open cluster the Pleiades (Messier 45) sits nearby. Well, nearby as seen from our Earthbound vantage point… the Moon is just over one light second away, Venus is 11 light minutes away, and the Pleiades are about 400 light years distant.

Jun 24 5AM Starry Night
Looking east the morning of Tuesday, June 24th at 5:00 AM EDT from latitude 30 degrees north. Created using Starry Night Education software.

And speaking of the Pleiades, Venus will once again meet the cluster in 2020 in the dusk sky, just like it did in 2012. This is the result of an eight year cycle, where apparitions of Venus roughly repeat. Unfortunately we won’t, however, get another transit of Venus across the face of the Sun until 2117!

Can you follow the crescent Moon up in to the daytime sky? Tuesday is also a great time to hunt for Venus in the daytime sky, using the nearby crescent Moon as a guide. Both sit about 32 degrees from the Sun on June 24th. Just make sure you physically block the dazzling Sun behind a building or hill in your quest.

From there, the waning Moon continues to thin on successive mornings as it heads towards New phase on Friday, June 27th at 8:09 UT/4:09 AM EDT and the start of lunation 1132. You might be able to spy the uber-thin Moon about 20-24 hours from to New on the morning prior. The Moon will also occult (pass in front of) Mercury Thursday morning, as the planet just begins its dawn apparition and emerges from the glare of the Sun.

Credit
The position of the Moon and Mercury post-sunrise on the morning of June 26th. Credit: Stellarium.

Unfortunately, catching the event will be a challenge. Mercury is almost always occulted by the Moon in the daytime due to its close proximity to the Sun. The footprint of the occultation runs from the Middle East across North Africa to the southeastern U.S. and northern South America, but only a thin sliver of land from northern Alabama to Venezuela will see the occultation begin just before sunrise… for the remainder of the U.S. SE, the occultation will be underway at sunrise and Mercury will emerge from behind the dark limb of the Moon in daylight.

Credit
The ground track of the June 26th occultation. Credit: Occult 4.0.

Mercury and the Moon sit 10 degrees from the Sun during the event. Stargazer and veteran daytime planet hunter Shahrin Ahmad based in Malaysia notes that while it is possible to catch Mercury at 10 degrees from the Sun in the daytime using proper precautions, it’ll shine at magnitude +3.5, almost a full 5 magnitudes (100 times) fainter than its maximum possible brightness of -1.5. The only other occultation of Mercury by the Moon in 2014 favors Australia and New Zealand on October 22nd.

This current morning apparition of Mercury this July is equally favorable for the southern hemisphere, and the planet reaches 20.9 degrees elongation west of the Sun on July 12th.

You can see Mercury crossing the field of view of SOHO’s LASCO C3 camera from left to right recently, along with comet C/2014 E2 Jacques as a small moving dot down at about the 7 o’clock position.

SOHO
Mercury (arrowed) and comet E2 Jacques (in the box) as seen from SOHO. (Click  here for animation)

And keep an eye on the morning action this summer, as Jupiter joins the morning roundup in August for a fine pairing with Venus on August 18th.

The Moon will then reemerge in the dusk evening sky this weekend and may just be visible as a 40-44 hour old crescent on Saturday night June 28th. The appearance of the returning Moon this month also marks the start of the month of Ramadan on the Islamic calendar, a month of fasting. The Muslim calendar is strictly based on the lunar cycle, and thus loses about 11 days per year compared to the Gregorian calendar, which strives to keep the tropical and sidereal solar years in sync. On years when the sighting of the crescent Moon is right on the edge of theoretical observability, there can actually be some debate as to the exact evening on which Ramadan will begin.

Don’t miss the wanderings of our nearest natural neighbor across the dawn and dusk sky this week!

See This Orange Smudge? This Could Be NASA’s Target For The Asteroid Mission

An image of asteroid 2011 MD -- a candidate for a potential future mission to an asteroid -- taken by NASA's Spitzer Space Telescope in February 2014. The exposure took 20 hours to accomplish and was done in infrared light. Credit: NASA

In the center of the image above is an orange smudge. It may not look like much to the untrained eye, but to NASA it represents potential. It’s a candidate asteroid target for a mission the agency badly wants to happen, even though nobody knows for sure yet if things will line up for humans to visit there one day.

This is a picture of asteroid 2011 MD taken by NASA’s Spitzer Space Telescope. It’s about 6 meters (20 feet) across and appears to have a low density, the agency said in a statement. While NASA is still looking for other candidates for its asteroid initiative, the agency added this would be the sort of asteroid it’s looking to visit.

“The asteroid appears to have a structure perhaps resembling a pile of rocks, or a ‘rubble pile.’Since solid rock is about three times as dense as water, this suggests about two-thirds of the asteroid must be empty space,” NASA stated in this press release.

“The research team behind the observation says the asteroid could be a collection of small rocks, held loosely together by gravity, or it may be one solid rock with a surrounding halo of small particles.”

Artist's conception of the structure around 2011 MD, a candidate asteroid for NASA's proposed asteroid redirect mission. Credit: NASA/JPL-Caltech
Artist’s conception of the structure around 2011 MD, a candidate asteroid for NASA’s proposed asteroid redirect mission. Credit: NASA/JPL-Caltech

You can read more about this asteroid in Astrophysical Journal Letters. There was another study done on 2011 MD earlier this year that was also in ApJL, or in preprint version in Arxiv.

Announcing this asteroid candidate was just one of several things NASA made public today. It added that it plans to send off an ARM (Asteroid Redirect Mission) robotic spacecraft in 2019, and about one year before that it will decide which asteroid to send this spacecraft to.

NASA has two concept ideas for ARM, and it’s planning to award $4.9 million (it had initially planned for up to $6 million) for others to make more detailed investigations into which is the more feasible. Read the full list of recipients at this NASA website.

One idea is to pick up a small asteroid, and the other is to carve off a small portion of a bigger asteroid. Whatever the choice, it would involve coming up with an object that is less than 32 feet (10 meters) across to move to the moon’s orbit. NASA will decide what to do later this year.

“The studies will be completed over a six-month period beginning in July, during which time system concepts and key technologies needed for ARM will be refined and matured. The studies also will include an assessment of the feasibility of potential commercial partners to support the robotic mission,” NASA stated.

An astronaut retrieves a sample from an asteroid in this artist's conception. Credit: NASA
An astronaut retrieves a sample from an asteroid in this artist’s conception. Credit: NASA

Also, some more details about other candidates: NASA has found nine so far that it deems suitable, and size estimates have been made on three of those nine candidates. A fourth, 2008 HU4, will be close to Earth in 2016 and allow for “interplanetary radar” to learn more about its size and rotation, NASA said. The other ones will not get close enough to Earth for a better look before the mission selection is done.

NASA added that it expects to add more through its Near-Earth Object program, as one to two asteroids get close enough to our planet every year for analysis. Further, the agency hopes to learn more about asteroid makeup through its planned Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer (OSIRIS-REx) mission, which is on its way to asteroid Bennu in 2018 after a launch in 2016.

All of this, of course, is dependent on NASA’s budgetary situation for the years to come, which in turn depends on support in Congress.

Opportunity Peers Out from ‘Pillinger Point’ – Honoring British Beagle 2 Mars Scientist Where Ancient Water Flowed

Opportunity Mars rover peers into vast Endeavour Crater from Pillinger Point mountain ridge named in honor of Colin Pillinger, the Principal Investigator for the British Beagle 2 lander built to search for life on Mars. Pillinger passed away from a brain hemorrhage on May 7, 2014. This navcam camera photo mosaic was assembled from images taken on June 5, 2014 (Sol 3684) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

NASA’s decade old Opportunity rover has reached a long sought after region of aluminum-rich clay mineral outcrops at a new Endeavour crater ridge now “named ‘Pillinger Point’ after Colin Pillinger the Principal Investigator for the [British] Beagle 2 Mars lander”, Prof. Ray Arvidson, Deputy Principal Investigator for the rover, told Universe Today exclusively. See above the spectacular panoramic view from ‘Pillinger Point’ – where ancient water once flowed billions of year ago.

The Beagle 2 lander was built to search for signs of life on Mars.

The Mars Exploration Rover (MER) team named the noteworthy ridge in honor of Prof. Colin Pillinger – a British planetary scientist at the Open University in Milton Keynes, who passed away at the age of 70 on May 7, 2014.

‘Pillinger Point’ is a scientifically bountiful place possessing both clay mineral outcrops and mineral veins where “waters came up through the cracks”, Arvidson explained to me.

Since water is a prerequisite for life as we know it, this is a truly fitting tribute to name Opportunity’s current exploration site ‘Pillinger Point’ after Prof. Pillinger.

See our new photo mosaic above captured by Opportunity peering out from ‘Pillinger Point’ ridge on June 5, 2014 (Sol 3684) and showing a panoramic view around the eroded mountain ridge and into vast Endeavour crater.

The gigantic crater spans 14 miles (22 kilometers) in diameter.

See below our Opportunity 10 Year traverse map showing the location of Pillinger Point along the segmented rim of Endeavour crater.

British planetary scientist Colin Pillinger with the Beagle 2 lander.
British planetary scientist Colin Pillinger with the Beagle 2 lander.

Pillinger Point is situated south of Solander Point and Murray Ridge along the western rim of Endeavour in a region with caches of clay minerals indicative of an ancient Martian habitable zone.

For the past several months, the six wheeled robot has been trekking southwards from Solander towards the exposures of aluminum-rich clays – now named Pillinger Point- detected from orbit by the CRISM spectrometer aboard NASA’s powerful Martian ‘Spysat’ – the Mars Reconnaissance Orbiter (MRO) – while gathering context data at rock outcrops along the winding way.

“We are about 3/5 of the way along the outcrops that show an Al-OH [aluminum-hydroxl] montmorillonite [clay mineral] signature at 2.2 micrometers from CRISM along track oversampled data,” Arvidson told me.

“We have another ~160 meters to go before reaching a break in the outcrops and a broad valley.”

The rover mission scientists ultimate goal is travel even further south to ‘Cape Tribulation’ which holds a motherlode of the ‘phyllosilicate’ clay minerals based on extensive CRISM measurements accomplished earlier at Arvidson’s direction.

“The idea is to characterize the outcrops as we go and then once we reach the valley travel quickly to Cape Tribulation and the smectite valley, which is still ~2 km to the south of the present rover location,” Arvidson explained.

Mars Express and Beagle 2 were launched in 2003, the same year as NASA’s twin rovers Spirit and Opportunity, on their interplanetary voyages to help unlock the mysteries of Mars potential for supporting microbial life forms.

Pillinger was the driving force behind the British built Beagle 2 lander which flew to the Red Planet piggybacked on ESA’s Mars Express orbiter. Unfortunately Beagle 2 vanished without a trace after being deployed from the orbiter on Dec. 19, 2003 with an expected air bag assisted landing on Christmas Day, Dec. 25, 2003.

In an obituary by the BBC, Dr David Parker, the chief executive of the UK Space Agency, said that Prof. Pillinger had played a critical role in raising the profile of the British space programme and had inspired “young people to dream big dreams”.

NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater’s western rim. The center is southeastward and also clearly shows the distant rim. See the complete panorama below. This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater’s western rim. The center is southeastward and also clearly shows the distant rim. See the complete panorama below. This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

During his distinguished career Pillinger also analyzed lunar rock samples from NASA’s Apollo moon landing missions and worked on ESA’s Rosetta mission.

“It’s important to note that Colin’s contribution to planetary science goes back to working on Moon samples from Apollo, as well as his work on meteorites,” Dr Parker told the BBC.

Today, June 16, marks Opportunity’s 3696th Sol or Martian Day roving Mars – compared to a warranty of just 90 Sols.

So far she has snapped over 193,400 amazing images on the first overland expedition across the Red Planet.

Her total odometry stands at over 24.51 miles (39.44 kilometers) since touchdown on Jan. 24, 2004 at Meridiani Planum.

NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater's western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge.  This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized.  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater’s western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge. This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Meanwhile on the opposite side of Mars, Opportunity’s younger sister rover Curiosity is trekking towards gigantic Mount Sharp after drilling into her 3rd Red Planet rock at Kimberley.

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer

Traverse Map for NASA’s Opportunity rover from 2004 to 2014 - A Decade on Mars. This map shows the entire path the rover has driven during a decade on Mars and over 3692 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location along Pillinger Point ridge south of Solander Point summit at the western rim of Endeavour Crater and heading to clay minerals at Cape Tribulation.  Opportunity discovered clay minerals at Esperance - indicative of a habitable zone.  Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Traverse Map for NASA’s Opportunity rover from 2004 to 2014 – A Decade on Mars
This map shows the entire path the rover has driven during a decade on Mars and over 3692 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location along Pillinger Point ridge south of Solander Point summit at the western rim of Endeavour Crater and heading to clay minerals at Cape Tribulation. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer

An Astronomical Eloping: How Rare is a “Friday the 13th Honey Moon?”

The June 2012 "Honey Moon" rising. Photo credit: Stephen Rahn.

Ah, Friday the 13th. Whether you fear it or it’s just your favorite slasher flick, it’s coming right around the bend later this week. And while it’s pretty much a non-event as far as astronomy is concerned, there’s bound to be some woo in the works, because the June Full Moon — dubbed the “Honey Moon” — falls on the same date.

Well, sort of. We made mention of this month’s Full Moon falling on Friday the 13th in last week’s post on the occultation of Saturn by Earth’s Moon. We’re not out to alarm any triskaidekaphobics, but we always love the chance to have some fun with calendars in the name of astronomy.

What we’re seeing here is merely the intersection of three cycles of events… and nothing more. These sorts of things can be fun to calculate and can provide a teachable moment, even when that well meaning but often misinformed relative/coworker/stranger on Twitter sends it your way . Hey, some people golf or collect steel pennies, this is our shtick.

A “Friday the 13th Honey Moon” is basically the subset of: 1. Fridays that fall on the 13th day of the month (OK, that’s two input parameters, we know) that also 2. Fall in the month of June, and 3. Occur on a Full Moon.

Friday the 13th occurs from one to three times a calendar year, so you can already see that one will occasionally happen to land on a Full Moon date fairly frequently… but how ‘bout in June? To this end, we compiled this handy listing of “Full Moons that fall on the 13th day of the month” — 15 in all — that occur from 1990 to 2030:

Full Moon's that fell on the 13th from 1990-2030 as reckoned in Universal Time. Only one (March 1998) fell on a Friday the 13th. Chart by author.
Full Moons that fell on the 13th from 1990-2030 as reckoned in Universal Time. Only two (March 1998 and June 2014) fall on a Friday the 13th. Chart by author.

That’s about one every two to three years. But you have to go aaaaall the way back to June 13th, 1919 to find a Full Moon that fell on a Friday the 13th in the month of June. This will next occur on June 13th, 2098.

Of course, this is just an interesting intersection concerning the vagaries and nuances of our Gregorian calendar and the lunar cycle. You could just as easily see significance where there is none in the Full Moon coinciding with the next Superbowl or Academy Awards. Humans love to pick out patterns where often none exist.

(Fun homework assignment: When is the last/next total lunar eclipse that occurs on Friday the 13th?)

And keep in mind, the instant of the Full Moon this week occurs on Friday at 4:13 UT… this means that from the U.S. Central time zone westward, the Full Moon actually falls on Thursday the 12th.

The rising Moon just hours before Full on Thursday June 12th. Note Saturn to the upper right. Created using Stellarium.
The rising Moon just hours before Full on Thursday June 12th. Note Saturn to the upper right. Created using Stellarium.

Fun fact: the 13th falls on a Friday more than any other day of the month! It’s true… in a span of 400 years following the institution of the Gregorian calendar in 1582, Friday fell on the 13th a total of 688 times, while Thursday and Saturday the 13th fell in last place at 684.

But there’s is something else that’s special about the June Full Moon. It also falls closest to the June solstice, marking the start of astronomical northern hemisphere summer and winter in the southern. This means that the Full Moon nearest the June solstice rides at its lowest to the southern horizon for northern hemisphere observers, but is high in the sky for observers south of the equator.

The June 2012 Full Honey (or do you say Strawberry?) Moon.
The June 2012 Full Honey (or do you say Strawberry?) Moon. Photo by author.

The June solstice this year falls on Saturday, June 21st at 10:51 UT /6:51 AM EDT. The Full Moon closest to the June solstice is nearly, but not always, in June… It can occur up to July 6th, and the last time it fell in July is 2012 and the next is 2015. The July Full Moon is known as the Full Buck Moon.

Our good friends over at Slooh will be webcasting the Full Honey Moon this Friday the starting at 1:30 UT/9:30 PM EDT (Thursday June 12th) for two hours from its Canary Islands site and the Pontificia Universidad Católica de Chile observatory near Santiago, Chile. The broadcast will be hosted by Slooh astronomer Geoff Fox, astronomer and author of The Sun’s Heartbeat Bob Berman, and Slooh engineer Paul Cox.

Is there a connection between late spring weddings, the June Full Moon and the modern term “honeymoon”? Well, the rising June Full Moon certainly takes on an amber color for northern hemisphere observers as it rises low through the sultry summer skies. The Moon’s orbit is actually tilted five degrees relative to the ecliptic, which means it alternates from “flat” to “hilly” about every 9 years varying from 18 to 28 degrees relative to the celestial equator. We’re approaching a flat year — known as minimum or minor lunar standstill — in 2015, after which the Moon’s apparent path across the sky will begin to widen once again towards 2024.

Credit Wikimedia Commons graphic in the Public Domain.
The ~9 year variation between major and minor lunar standstill. Credit Wikimedia Commons graphic in the Public Domain.

Bob Berman has this to say about the origin of the term: “Is this Full Moon of June the true origin of the word honeymoon, since it is amber, and since weddings were traditionally held this month? That phrase dates back nearly half a millennium to 1552, but one thing has changed: weddings have shifted, and are now most often held in August or September. The idea back then was that a marriage is like the phases of the Moon, with the Full Moon being analogous to a wedding. Meaning, it’s the happiest and ‘brightest’ time in a relationship.”

It’s also worth noting the June Full Moon was known as the Strawberry Moon to the Algonquin Indians of North America. Huh… and here we thought most weddings were in May.

Whatever the case, you can get out enjoy the rising Full Moon with that significant other this week… and don’t fear the Honey Moon.

Surprise! The Earth And Moon May Be 60 Million Years Older Than We Thought

Distance Between the Earth and Moon
The Earth rising over the Moon's surface, as seen by the Apollo 8 mission. Credit: NASA

Wondering why a new research team says the Earth and the Moon is 60 million years older than previously believed? Well, it’s a gas. It has to do with the proportion of different gas types that have stuck around since the Earth was formed about 4.5 billion years ago.

Since Earth had no solid surface at the time, traditional geology doesn’t really work — there’s no rock layers to examine, for example. So while the geologists caution we’ll likely never know for sure when the Earth came together, a new dating method for the gases show it was earlier than believed, they said.

To back up a step, the leading theory for how the Moon formed is that a Mars-sized object smashed into our planet, created a chain of debris, and over a long time gradually came together and formed the Moon. There’s been a flurry of news on this event in recent days. Different science groups have found evidence of the crash in Earth and Moon materials, and said it could explain why the Moon’s far side is so rugged compared to the near side.

For this study, Guillaume Avice and Bernard Marty (who are both geochemists from the University of Lorraine in Nancy, France) examined xenon gas in quartz found in Australia (previously believed to be 2.7 billion years old) and South Africa (3.4 billion years old).

64% illuminated waning gibbous Moon on August 26, 2013. Credit and copyright: Themagster3 on Flickr.
64% illuminated waning gibbous Moon on August 26, 2013. Credit and copyright: Themagster3 on Flickr.

“Recalibrating dating techniques using the ancient gas allowed them to refine the estimate of when the Earth began to form,” stated the Goldschmidt Geochemistry Conference in Sacramento, California, where this was presented today (June 10). “This allows them to calculate that the Moon-forming impact is around 60 million years (+/- 20 m. y.) older than had been thought.”

This also affects calculations concerning when the Earth’s atmosphere formed. Since the atmosphere could not have stuck around after the big crash, this means that the previous estimate of 100 million years after the solar system’s formation wouldn’t work. So if the Earth and the Moon are 60 million years older, the Earth’s atmosphere formed about 40 million years after the solar system’s formation.

It’ll be interesting to see if other scientists agree with the analysis.

Source: Goldschmidt Geochemistry Conference

Mystery Solved? Why There are No Lunar ‘Seas’ On The Far Side Of The Moon

Composite image of the far side of the moon taken by the Lunar Reconnaissance Orbiter in 2009. Credit: NASA

In these days of daily image releases from Saturn, Mars, the Moon and other spots in the universe, it’s hard to remember just how exciting it was back in the 1950s and 1960s when a few images trickled out to the world at the time. Perhaps one of the biggest early surprises was how jagged and cragged the back side of the moon looked. Where were the lunar “seas” that we are familiar with on the Earth-facing side of the moon?

About 55 years after the first Soviet images of the farside were sent to Earth, a team of researchers led by graduate astrophysics student Arpita Roy (at Penn State University) may have an explanation.

They say it’s due to the violent way that the Moon formed — likely after a Mars-sized object collided with our Earth, creating a sea of debris that gradually coalseced into the Moon we see today. The huge crash and gathering together heated up both our planet and the Moon, but the Moon got cooler first because it was smaller.

Since the Earth was still hot — radiating at more than 2,500 degrees Celsius (4,500 degrees Fahrenheit) — and the Moon very close to the planet, the heat of the Earth had quite the effect. The far side of the Moon cooled down while the near side remained very hot.

“This gradient was important for crustal formation on the moon. The moon’s crust has high concentrations of aluminum and calcium, elements that are very hard to vaporize,” Penn State stated.

Credit-Scott Chapman
Credit-Scott Chapman

Calcium and aluminum are the first elements that “snow out” as rock vapor cools, and they would have remained in the atmosphere on the Moon’s far side. (The near side was too hot.)

“Thousands to millions of years later, these elements combined with silicates in the Moon’s mantle to form plagioclase feldspars, which eventually moved to the surface and formed the Moon’s crust,” Penn State added. “The farside crust had more of these minerals and is thicker.”

The seas themselves were formed after huge meteors crashed into the Moon’s Earth-facing side, rupturing the crust and letting the basaltic lava beneath burst forth. The crust on the far side was too thick for the meteors to penetrate, in most cases, leaving the rugged surface we are familiar with today.

The research was published yesterday (June 9) in Astrophysical Journal Letters. And by the way, there’s been a flurry of news in recent days about the Earth and the Moon’s formation: the “signal” in Earth’s crust and the oxygen signature on the Moon.

Source: Penn State University

Moon-Forming Crash Left A ‘Signal’ In Planet Earth

The Moon sets above the Continental Divide in Colorado from 86,000 feet. Taken June 27, 2013 on a meteorological balloon launched from Boulder, Colorado. Credit and copyright: Patrick Cullis.

What physical evidence exists of a huge collision that formed our Moon and nearly blew the Earth apart, about 4.5 billion years ago? This is the leading theory for how the Moon came to be, but given it happened so long ago the physical evidence is scarce.

Readers may recall the story from last week talking about how oxygen in Moon rocks shows evidence of this crash. This week, there’s a new study  from the same conference that focuses on the other side of the puzzle piece: what can we see on planet Earth? Turns out there might be a “signal” showing us the way.

As the theory goes, the colliding body — which some researchers call “Theia” — would have created a cloud of fragments surrounding our planet that eventually coalesced into the Moon.

The new research says that evidence of this collision would have showed up in the mantle, a layer of the Earth’s interior, and could explain a puzzling difference in isotopes (types) of certain elements that was known before.

“The energy released by the impact between the Earth and Theia would have been huge, certainly enough to melt the whole planet,” stated research lead Sujoy Mukhopadhyay, an associate professor at Harvard University.

Layers of the Earth
Layers of the Earth

“But we believe that the impact energy was not evenly distributed throughout the ancient Earth. This means that a major part of the impacted hemisphere would probably have been completely vaporized, but the opposite hemisphere would have been partly shielded, and would not have undergone complete melting.”

The team said that the impact did not completely stir the mantle, which would explain why the ratio of isotopes of helium and nitrogen inside the shallow part of the mantle is much higher than the deep mantle.

They also analyzed two isotopes of xenon. Scientists know already that the material on the surface has a lower isotope ratio to what is inside, but what is new is comparing these isotopes pointed to an age of the collision: about 100 million years after the Earth formed.

The research was presented today at the Goldschmidt conference in Sacramento, California.

Source: Goldschmidt