How Humanity’s Next Moon Explorers Could Live In Lunar ‘Pits’

Images from the Lunar Reconaissance Orbiter showing pits on the lunar surface. The images are each 222 meters (728 feet) wide. Credit: NASA/GSFC/Arizona State University

Just look at that new video from NASA showing the first moon landing site in three dimensions. It’s tempting to touch on the surface nearby the Eagle lander there in the center and do some prospecting.

You’ll notice a lot of craters in that video, which is based on Lunar Reconnaissance Orbiter data. Across the moon’s surface, a separate study saw the spacecraft investigate 200 extremely steep-walled craters, known as “pits”.

These would be fascinating places to send astronauts for scientific study. Not only that, they’re actually one of the safest spots possible on the moon, according to a new study.

“Pits would be useful in a support role for human activity on the lunar surface,” stated lead researcher Robert Wagner of Arizona State University.

“A habitat placed in a pit — ideally several dozen meters back under an overhang — would provide a very safe location for astronauts: no radiation, no micrometeorites, possibly very little dust, and no wild day-night temperature swings.”

And if you look at the picture below, you can see at least one of those pits is in the Sea of Tranquility — the approximate landing area where Apollo 11 touched down 45 years ago this week. The pits were found mainly using a computer algorithm that scanned LRO photos, although a few of the craters were previously identified with the Japanese Kaguya spacecraft.

Large craters or lunar “seas” (ancient, solidified lava flows) are the locations where most of these pits are found. How they were formed is being investigated, but there are some hypotheses. Perhaps a meteorite impact caused a collapse, or perhaps molten rock flows under the surface gradually lost their lava, leaving voids.

Lunar Reconnaissance Orbiter
Lunar Reconnaissance Orbiter. Image Credit: NASA

To learn more, the researchers say more LRO images would be great (only 40% of the surface imaged had the appropriate lighting conditions for this study) and in the future, we’d need to get much closer-up than pictures taken from orbit.

“The ideal follow-up, of course, would be to drop probes into one or two of these pits, and get a really good look at what’s down there,” added Wagner.

“Pits, by their nature, cannot be explored very well from orbit — the lower walls and any floor-level caves simply cannot be seen from a good angle. Even a few pictures from ground-level would answer a lot of the outstanding questions about the nature of the voids that the pits collapsed into. We’re currently in the very early design phases of a mission concept to do exactly this, exploring one of the largest mare pits.”

You can read more about the research in the journal Icarus.

Source: NASA

‘One Small Step’ Quote On Apollo 11 Briefly Confused Legendary Broadcaster Cronkite

Apollo 11 commander Neil Armstrong stands on the moon's surface on July 20, 1969, the first human to do so. Credit: NASA/CBS/YouTube (screenshot)

Thanks to NASA putting the video up on YouTube, we’re fortunate enough today to watch the CBS coverage of Apollo 11 landing on the moon, and Neil Armstrong’s first steps, 45 years ago this week.

Legendary broadcaster Walter Cronkite, who died five years ago yesterday amid 40th anniversary celebrations, helmed the moon coverage for CBS. His quotes from that night are so much a part of history that they’ve even appeared in Hollywood; the 1995 movie Apollo 13 had an edited version of his remarks playing over the first steps.

But in the live coverage, Cronkite showed why he was so good — he had the courage to wait to make a statement until all the facts were available. Armstrong’s first words while standing on the moon ended in static. Cronkite, who must have felt pressure to immediately repeat what Armstrong said, waited until he could get confirmation.

Armstrong’s first words on the moon as heard on television were “That’s one small step for man, one giant leap for mankind.” But starting around the word “leap”, static interfered and the word “mankind” was almost unintelligible.

“I didn’t understand,” Cronkite said after a pause. ” ‘One small step for man.’ But I didn’t get the second phrase.”

Cronkite waited, saying he would like to know what the phrase was. Armstrong talked on about the powder on the moon’s surface. About 30 seconds passed, then Cronkite had his answer from somebody: “His quote was, ‘That’s one small step for man, one giant leap for mankind.’ ”

CBS broadcaster Walter Cronkite reacts moments after Apollo 11 landed on the moon on July 20, 1969. Credit: NASA/CBS/YouTube (screenshot)
CBS broadcaster Walter Cronkite reacts moments after Apollo 11 landed on the moon on July 20, 1969. Credit: NASA/CBS/YouTube (screenshot)

Decades later, Cronkite recalled how he felt on that night in his 1996 biography, A Reporter’s Life:

That first landing on the moon was indeed, the most extraordinary story of our time and almost as remarkable a feat for television as the space flight itself. To see Neil Armstrong, 240,000 miles out there, as he took that giant step for mankind onto the moon’s surface, was a thrill beyond all the other thrills of that flight. All those thrills tumbled over each other so quickly that the goose pimples from one merged into the goose pimples from the next.

Cronkite also poked fun at his own reporting, saying he was speechless when lunar module Eagle landed despite having the same number of years as NASA to get ready for it.

” ‘Oh boy! Whew! Boy!’ These were my first words, profundity to be recorded for the ages. They were all I could utter,” Cronkite wrote.

Do watch the entire broadcast, it’s a joy, but the first steps take place around 22:55.

‘Moonwalk One’ Makes Us Excited About Apollo 11 All Over Again

A sign wishing the Apollo 11 crew good luck prior to the launch on July 16, 1969. Screenshot from the 1970 documentary "Moonwalk One." Credit: NASA/Theo Kamecke/YouTube

Long lineups at Cape Kennedy. Every television channel playing the same breathless coverage. Shots of rockets, of men in spacesuits, and of course the ghostly image of people stepping on to the moon for the first time.

If you’re old enough to remember Apollo 11, this documentary above should bring back a lot of warm memories. And even if you’re not (which includes the writer of this article), it gives you a small taste of just how awesome the atmosphere must have been.

“Moonwalk One” is a 1970 documentary directed by Theo Kamecke, and now we’re lucky enough to watch it for free on NASA’s YouTube channel. As soon as you can spare a couple of hours, do watch it.

The first few minutes alone are fun, with dramatic shots of Stonehenge and the Saturn V contrasted with frantic shots of traffic and dancing and signs all over the Cape.

Apollo 11's Saturn V rocket prior to the launch July 16, 1969. Screenshot from the 1970 documentary "Moonwalk One." Credit: NASA/Theo Kamecke/YouTube
Apollo 11’s Saturn V rocket prior to the launch July 16, 1969. Screenshot from the 1970 documentary “Moonwalk One.” Credit: NASA/Theo Kamecke/YouTube
Apollo 11 lunar module pilot Buzz Aldrin in a screenshot from the 1970 documentary "Moonwalk One." Credit: NASA/Theo Kamecke/YouTube
Apollo 11 lunar module pilot Buzz Aldrin in a screenshot from the 1970 documentary “Moonwalk One.” Credit: NASA/Theo Kamecke/YouTube

Video: A Bright Orange Moon Watches Bastille Day Fireworks from Above

Screenshot from Thierry Legault's video of the Bastille Day fireworks from the Eiffel Tower, July 14, 2014.

Who had the best view of the Bastille Day fireworks last night? From this lovely video from astrophotographer Thierry Legault, it appears the low-hanging, bright waning Moon may have had the preferred vantage point to watch the fine pyrotechnics from the Eiffel Tower. But Thierry had a pretty good view, as well! He told us he took this video from a hill a few kilometers west of Eiffel Tower.

Enjoy! and thanks to Thierry for sharing.

Your Weekend ‘SuperMoon’ Photos from Around the World

The big proxigean full Moon rises over Daganzo de Arriba, near Madrid, Spain on July 12, 2014. Credit and copyright: Alvaro Ibañez Perez.

Did you hear there was something special about the full Moon this weekend… that it would be, well… really super? I heard about it on every newscast I watched or listened to. Even xkcd got into the ‘Supermoon’ craze. The July “Buck” Moon was the first of three Supermoons on tap for 2014, where the Moon is at its perigee, the closest point to Earth in its orbit, close to the time when it is “officially” full.

If you didn’t hear about it, (or weren’t paying attention) you may not have noticed anything different, as its not radically different from a regular full Moon. Read all the detail of what a Supermoon is here. But as Geoff Chester of the US Naval Observatory, said on NASA’s website, “However, if it gets people out and looking at the night sky and maybe hooks them into astronomy, then it’s a good thing,”

And people were out with their cameras, too! Here’s a great collection of full Moon images from this weekend, as seen in our Flickr Gallery.

An over-exposed beauty showing the full Moon rising through the clouds on July 12, 2014 near  Bromsgrove, England, United Kingdom. Credit and copyright: Sarah and Simon Fisher.
An over-exposed beauty showing the full Moon rising through the clouds on July 12, 2014 near Bromsgrove, England, United Kingdom. Credit and copyright: Sarah and Simon Fisher.
The rising "super moon" of July 12, 2014, rising above a canola field in southern Alberta, Canada.  Credit and copyright: Alan Dyer/Amazing Sky Photography.
The rising “super moon” of July 12, 2014, rising above a canola field in southern Alberta, Canada. Credit and copyright: Alan Dyer/Amazing Sky Photography.
A Mississippi Super Moonscape on July 12, 2014. Credit and Copyright: Veronica M Photography.
A Mississippi Super Moonscape on July 12, 2014. Credit and Copyright: Veronica M Photography.
The 'Supermoon' setting on the morning of July 13, 2014 at around 6 am local time near Kapiolani, Honolulu, Hawaii. Credit and copyright:  Henry Weiland.
The ‘Supermoon’ setting on the morning of July 13, 2014 at around 6 am local time near Kapiolani, Honolulu, Hawaii. Credit and copyright: Henry Weiland.
A 3-exoposure of the full Moon on July 12, 2014, taken near Cap-Rouge, Quebec City, Quebec, Canada. Credit and copyright:  Denis Marquis.
A 3-exoposure of the full Moon on July 12, 2014, taken near Cap-Rouge, Quebec City, Quebec, Canada. Credit and copyright: Denis Marquis.
The July 12, 2014 Supermoon or perigee full moon shares the night sky with fireworks from a display in Chester, New York. Credit and copyright: Tom Bushey.
The July 12, 2014 Supermoon or perigee full moon shares the night sky with fireworks from a display in Chester, New York. Credit and copyright: Tom Bushey.
Moonrise with a flyby. July 13, 2014 from the UK. Credit and copyright: SculptorLil on Flickr.
Moonrise with a flyby. July 13, 2014 from the UK. Credit and copyright: SculptorLil on Flickr.
The rising waning Moon on July 13, 2014, from near Bedfordshire, UK. Credit and copyright: DawnSunrise on Flickr.
The rising waning Moon on July 13, 2014, from near Bedfordshire, UK. Credit and copyright: DawnSunrise on Flickr.

Thanks to everyone who submitted images! Check out even more great images in Universe Today’s Flickr Group!

Be advised that this month’s big full Moon was not the closest of the year. The closest Full Moon of 2014 occurs next month on August 10th at 18:11 Universal Time (UT) or 1:44 PM EDT. On that date, the Moon reaches perigee or its closest approach to the Earth at 356,896 kilometres distant at 17:44, less than an hour from Full.

Would the Real ‘SuperMoon’ Please Stand Up?

The perigee Full Moon of June 22nd, 2013. Credit: Russell Bateman (@RussellBateman1)

‘Tis the season once again, when rogue Full Moons nearing perigee seem roam the summer skies to the breathless exhortations of many an astronomical neophyte at will. We know… by now, you’d think that there’d be nothing new under the Sun (or in this case, the Moon) to write about the closest Full Moons of the year.

But love ‘em or hate ‘em, tales of the “Supermoon” will soon be gracing ye ole internet again, with hyperbole that’s usually reserved for comets, meteor showers, and celeb debauchery, all promising the “biggest Full Moon EVER…” just like last year, and the year be for that, and the year before that…

How did this come to be?

What’s happening this summer: First, here’s the lowdown on what’s coming up. The closest Full Moon of 2014 occurs next month on August 10th at 18:11 Universal Time (UT) or 1:44 PM EDT. On that date, the Moon reaches perigee or its closest approach to the Earth at 356,896 kilometres distant at 17:44, less than an hour from Full. Of course, the Moon reaches perigee nearly as close once every anomalistic month (the time from perigee-to-perigee) of 27.55 days and passes Full phase once every synodic period (the period from like phase to phase) with a long term average of 29.53 days.

Moon rise on the evening of July 11th, 2014 as seen from latitude 30 degrees north. Credit: Stellarium.
Moon rise on the evening of July 11th, 2014 as seen from latitude 30 degrees north. Credit: Stellarium.

And the August perigee of the Moon only beats out the January 1st, 2014 perigee out by a scant 25 kilometres for the title of the closest perigee of the year, although the Moon was at New phase on that date, with lots less fanfare and hoopla for that one. Perigee itself can vary from 356,400 to 370,400 kilometres distant.

But there’s more. If you consider a “Supermoon” as a Full Moon falling within 24 hours of perigee, (folks like to play fast and loose with the informal definitions when the Supermoon rolls around, as you’ll see) then we actually have a trio of Supermoons on tap for 2014, with one this week on July 12th and September 9th as well.

What, then, is this lunacy?

Well, as many an informative and helpful commenter from previous years has mentioned, the term Supermoon was actually coined by an astrologer. Yes, I know… the same precession-denialists that gave us such eyebrow raising terms as “occultation,” “trine” and the like. Don’t get us started. The term “Supermoon” is a more modern pop culture creation that first appeared in a 1979 astrology publication, and the name stuck. A more accurate astronomical term for a “Supermoon” is a perigee-syzygy Full Moon or Proxigean Moon, but those just don’t seem to be able to “fill the seats” when it comes to internet hype.

One of the more arcane aspects set forth by the 1979 definition of a Supermoon is its curiously indistinct description as a “Full Moon which occurs with the Moon at or near (within 90% of) its closest approach to Earth in a given orbit.” This is a strange demarcation, as it’s pretty vague as to the span of distance (perigee varies, due to the drag of the Sun on the Moon’s orbit in what’s known as the precession of the line of apsides) and time. The Moon and all celestial bodies move faster near perigee than apogee as per Kepler’s 2nd Law of planetary motion.

A photo essay comparing Full Moon sizes and appearance from one Supermoon to the next, spanning 2011-2012. Credit:
A photo essay comparing Full Moon sizes and appearance from one Supermoon to the next, spanning 2011-2012. Credit: Marion Haligowski/RadicalRetinscopy. Used with permission.

We very much prefer to think of a Proxigean Moon as defined by a “Full Moon within 24 hours of perigee”. There. Simple. Done.

And let’s not forget, Full phase is but an instant in time when the Moon passes an ecliptic longitude of 180 degrees opposite from the Sun. The Moon actually never reaches 100% illumination due to its 5.1 degree tilt to the ecliptic, as when it does fall exactly opposite to the Sun it also passes into the Earth’s shadow for a total lunar eclipse.

-Check out this animation of the changing size of the Moon and its tilt — known as libration and nutation, respectively — as seen from our Earthly perspective over the span of one lunation.

The truth is, the Moon does vary from 356,400 to 406,700 kilometres in its wonderfully complicated orbit about our fair world, and a discerning eye can tell the difference in its size from one lunation to the next. This means the apparent size of the Moon can vary from 29.3’ to 34.1’ — a difference of almost 5’ — from perigee to apogee. And that’s not taking into account the rising “Moon illusion,” which is actually a variation of an optical effect known as the Ponzo Illusion. And besides, the Moon is actually more distant when its on the local horizon than overhead, to the tune of about one Earth radius.

Like its bizarro cousin the “minimoon” and the Blue Moon (not the beer), the Supermoon will probably now forever be part of the informal astronomical lexicon. And just like recent years before 2014, astronomers will soon receive gushing platitudes during next month’s Full Moon from friends/relatives/random people on Twitter about how this was “the biggest Full Moon ever!!!”

Credit Stephen Rahn
The perigee Full Moon of May 5th, 2012. Credit: Stephen Rahn (@StephenRahn13)

Does the summer trio of Full Moons look bigger to you than any other time of year? It will be tough to tell the difference visually over the next three Full Moons. Perhaps a capture of the July, August and September Full Moons might just tease out the very slight difference between the three.

And for those preferring not to buy in to the annual Supermoon hype, the names for the July, August and September Full Moons are the Buck, Sturgeon and Corn Moon, respectively. And of course, the September Full Moon near the Equinox is also popularly known as the Harvest Moon.

And in case you’re wondering, or just looking to mark your calendar for the next annual “largest Full Moon(s) of all time,” here’s our nifty table of Supermoons through 2020, as reckoned by our handy definition of a Full Moon falling within 24 hours of perigee.

So what do you say? Let ‘em come for the hype, and stay for the science. Let’s take back the Supermoon.

Astrophoto: A ‘Mistakenly’ Beautiful View of the Crescent Moon and Leaning Tower of Pisa

The crescent Moon and the Leaning Tower of Pisa together for a beautiful nighttime view. Credit and copyright: Giuseppe Petricca.

A mistake led to this stunning image of the crescent Moon and the Tower of Pisa this week.

Astrophotographer Giuseppe Petricca from Italy had in mind a certain shot he wanted to take of the crescent Moon on June 29. “So I went out during the evening to do so,” he told Universe Today via email. “Unfortunately, I totally miscalculated the time! But, luckily, in the end, I managed to get an even more captivating shot.”

The Moon has a bit of Earthshine and a reddish glow from its low elevation in the sky, snuggling up to the Leaning Tower of Pisa. “Truly a beautiful combination and an awesome scenery. Impossible to not take a picture of it!” Giuseppe said.

This photograph was taken with a Nikon Coolpix P90 Bridge Camera on tripod, ISO 100, f4.5, 2.5″ exposure.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Beautiful Astrophotos: Crescent Moon and Venus Rising

The waning crescent Moon below Venus, rising in the east on June 24, 2014 as seen from home over the flat prairie horizon of southern Alberta, Canada. Credit and copyright: Alan Dyer.

Did you see the crescent Moon near a bright star on Tuesday morning this week? Many of our Flickr group astrophotographers captured gorgeous shots of the two together in the sky, including this eye-candy image from Alan Dyer from Canada. Just take a look!

A beautiful conjunction between the Moon, the very bright planet Venus, and the easily recognizable open star cluster of the Pleiades from central Italy on the morning of June 24, 2014. Credit and copyright: Giuseppe Petricca.
A beautiful conjunction between the Moon, the very bright planet Venus, and the easily recognizable open star cluster of the Pleiades from central Italy on the morning of June 24, 2014. Credit and copyright: Giuseppe Petricca.
The waning crescent Moon and Venus as seen from the UK on June 24, 2014. Credit and copyright: Sculptor Lil on Flickr.
The waning crescent Moon and Venus as seen from the UK on June 24, 2014. Credit and copyright: Sculptor Lil on Flickr.
Moon and Venus Conjunction approximately 1 hour before sunrise on 24th June 2014. Looking east over central London with Canary Wharf on the horizon. Credit and copyright: Roger Hutchinson.
Moon and Venus Conjunction approximately 1 hour before sunrise on 24th June 2014. Looking east over central London with Canary Wharf on the horizon. Credit and copyright: Roger Hutchinson.
Venus and Waning Crescent Moon on June 24, 2014. Credit and copyright: Stephen Rahn.
Venus and Waning Crescent Moon on June 24, 2014. Credit and copyright: Stephen Rahn.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Observing Challenge: The Moon Brushes Past Venus and Covers Mercury This Week

Credit

The summer astronomical action heats up this week, as the waning crescent Moon joins the inner planets at dawn. This week’s action comes hot on the tails of the northward solstice which occurred this past weekend, which fell on June 21st in 2014, marking the start of astronomical summer in the northern hemisphere and winter in the southern. This also means that the ecliptic angle at dawn for mid-northern latitude observers will run southward from the northeast early in the morning sky. And although the longest day was June 21st, the earliest sunrise from 40 degrees north latitude was June 14th and the latest sunset occurs on June 27th. We’re slowly taking back the night!

The dawn patrol action begins tomorrow, as the waning crescent Moon slides by Venus low in the dawn sky Tuesday morning. Geocentric (Earth-centered) conjunction occurs on June 24th at around 13:00 Universal Time/9:00 AM EDT, as the 8% illuminated Moon sits 1.3 degrees — just shy of three Full Moon diameters — from -3.8 magnitude Venus. Also note that the open cluster the Pleiades (Messier 45) sits nearby. Well, nearby as seen from our Earthbound vantage point… the Moon is just over one light second away, Venus is 11 light minutes away, and the Pleiades are about 400 light years distant.

Jun 24 5AM Starry Night
Looking east the morning of Tuesday, June 24th at 5:00 AM EDT from latitude 30 degrees north. Created using Starry Night Education software.

And speaking of the Pleiades, Venus will once again meet the cluster in 2020 in the dusk sky, just like it did in 2012. This is the result of an eight year cycle, where apparitions of Venus roughly repeat. Unfortunately we won’t, however, get another transit of Venus across the face of the Sun until 2117!

Can you follow the crescent Moon up in to the daytime sky? Tuesday is also a great time to hunt for Venus in the daytime sky, using the nearby crescent Moon as a guide. Both sit about 32 degrees from the Sun on June 24th. Just make sure you physically block the dazzling Sun behind a building or hill in your quest.

From there, the waning Moon continues to thin on successive mornings as it heads towards New phase on Friday, June 27th at 8:09 UT/4:09 AM EDT and the start of lunation 1132. You might be able to spy the uber-thin Moon about 20-24 hours from to New on the morning prior. The Moon will also occult (pass in front of) Mercury Thursday morning, as the planet just begins its dawn apparition and emerges from the glare of the Sun.

Credit
The position of the Moon and Mercury post-sunrise on the morning of June 26th. Credit: Stellarium.

Unfortunately, catching the event will be a challenge. Mercury is almost always occulted by the Moon in the daytime due to its close proximity to the Sun. The footprint of the occultation runs from the Middle East across North Africa to the southeastern U.S. and northern South America, but only a thin sliver of land from northern Alabama to Venezuela will see the occultation begin just before sunrise… for the remainder of the U.S. SE, the occultation will be underway at sunrise and Mercury will emerge from behind the dark limb of the Moon in daylight.

Credit
The ground track of the June 26th occultation. Credit: Occult 4.0.

Mercury and the Moon sit 10 degrees from the Sun during the event. Stargazer and veteran daytime planet hunter Shahrin Ahmad based in Malaysia notes that while it is possible to catch Mercury at 10 degrees from the Sun in the daytime using proper precautions, it’ll shine at magnitude +3.5, almost a full 5 magnitudes (100 times) fainter than its maximum possible brightness of -1.5. The only other occultation of Mercury by the Moon in 2014 favors Australia and New Zealand on October 22nd.

This current morning apparition of Mercury this July is equally favorable for the southern hemisphere, and the planet reaches 20.9 degrees elongation west of the Sun on July 12th.

You can see Mercury crossing the field of view of SOHO’s LASCO C3 camera from left to right recently, along with comet C/2014 E2 Jacques as a small moving dot down at about the 7 o’clock position.

SOHO
Mercury (arrowed) and comet E2 Jacques (in the box) as seen from SOHO. (Click  here for animation)

And keep an eye on the morning action this summer, as Jupiter joins the morning roundup in August for a fine pairing with Venus on August 18th.

The Moon will then reemerge in the dusk evening sky this weekend and may just be visible as a 40-44 hour old crescent on Saturday night June 28th. The appearance of the returning Moon this month also marks the start of the month of Ramadan on the Islamic calendar, a month of fasting. The Muslim calendar is strictly based on the lunar cycle, and thus loses about 11 days per year compared to the Gregorian calendar, which strives to keep the tropical and sidereal solar years in sync. On years when the sighting of the crescent Moon is right on the edge of theoretical observability, there can actually be some debate as to the exact evening on which Ramadan will begin.

Don’t miss the wanderings of our nearest natural neighbor across the dawn and dusk sky this week!

See This Orange Smudge? This Could Be NASA’s Target For The Asteroid Mission

An image of asteroid 2011 MD -- a candidate for a potential future mission to an asteroid -- taken by NASA's Spitzer Space Telescope in February 2014. The exposure took 20 hours to accomplish and was done in infrared light. Credit: NASA

In the center of the image above is an orange smudge. It may not look like much to the untrained eye, but to NASA it represents potential. It’s a candidate asteroid target for a mission the agency badly wants to happen, even though nobody knows for sure yet if things will line up for humans to visit there one day.

This is a picture of asteroid 2011 MD taken by NASA’s Spitzer Space Telescope. It’s about 6 meters (20 feet) across and appears to have a low density, the agency said in a statement. While NASA is still looking for other candidates for its asteroid initiative, the agency added this would be the sort of asteroid it’s looking to visit.

“The asteroid appears to have a structure perhaps resembling a pile of rocks, or a ‘rubble pile.’Since solid rock is about three times as dense as water, this suggests about two-thirds of the asteroid must be empty space,” NASA stated in this press release.

“The research team behind the observation says the asteroid could be a collection of small rocks, held loosely together by gravity, or it may be one solid rock with a surrounding halo of small particles.”

Artist's conception of the structure around 2011 MD, a candidate asteroid for NASA's proposed asteroid redirect mission. Credit: NASA/JPL-Caltech
Artist’s conception of the structure around 2011 MD, a candidate asteroid for NASA’s proposed asteroid redirect mission. Credit: NASA/JPL-Caltech

You can read more about this asteroid in Astrophysical Journal Letters. There was another study done on 2011 MD earlier this year that was also in ApJL, or in preprint version in Arxiv.

Announcing this asteroid candidate was just one of several things NASA made public today. It added that it plans to send off an ARM (Asteroid Redirect Mission) robotic spacecraft in 2019, and about one year before that it will decide which asteroid to send this spacecraft to.

NASA has two concept ideas for ARM, and it’s planning to award $4.9 million (it had initially planned for up to $6 million) for others to make more detailed investigations into which is the more feasible. Read the full list of recipients at this NASA website.

One idea is to pick up a small asteroid, and the other is to carve off a small portion of a bigger asteroid. Whatever the choice, it would involve coming up with an object that is less than 32 feet (10 meters) across to move to the moon’s orbit. NASA will decide what to do later this year.

“The studies will be completed over a six-month period beginning in July, during which time system concepts and key technologies needed for ARM will be refined and matured. The studies also will include an assessment of the feasibility of potential commercial partners to support the robotic mission,” NASA stated.

An astronaut retrieves a sample from an asteroid in this artist's conception. Credit: NASA
An astronaut retrieves a sample from an asteroid in this artist’s conception. Credit: NASA

Also, some more details about other candidates: NASA has found nine so far that it deems suitable, and size estimates have been made on three of those nine candidates. A fourth, 2008 HU4, will be close to Earth in 2016 and allow for “interplanetary radar” to learn more about its size and rotation, NASA said. The other ones will not get close enough to Earth for a better look before the mission selection is done.

NASA added that it expects to add more through its Near-Earth Object program, as one to two asteroids get close enough to our planet every year for analysis. Further, the agency hopes to learn more about asteroid makeup through its planned Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer (OSIRIS-REx) mission, which is on its way to asteroid Bennu in 2018 after a launch in 2016.

All of this, of course, is dependent on NASA’s budgetary situation for the years to come, which in turn depends on support in Congress.