Seeing Red: Spectacular Views of this Morning’s Total Lunar Eclipse

Photos by author.

Did the Moon appear a little on crimson side to you last night? It’s not your imagination, but it was a fine textbook example of a total lunar eclipse. This was the first total lunar eclipse visible from the Earth since late 2011, and the first of four visible from the Americas over the next 18 months.  

And although much of the U.S. and Canadian eastern seaboard was under cloud cover, those west of the Mississippi River were treated to a fine show. We were the lucky exception here at Astroguyz HQ just north of Tampa Bay in Florida, as the storm front held off juuusst long enough to witness the eclipse in its entirety.

We will admit, though, that there were some tense moments. A wave of thick clouds threatened to end our session altogether just moments before the onset of totality before finally abating. We shot stills, streamed video, made observations, and heck, just stepped back once in a while to stare at the ruby-tinged beauty that was totality.

And judging from the flurry of web traffic, the odd late Monday night/ early Tuesday morning timing for this eclipse did little to stem folks interest. We noted to Virtual Star Party co-host that the excitement was reminiscent to the early morning landing of Curiosity on the Red Planet.

Anyhow, here’s just a sampling of some of the great pics currently pouring in to Universe Today:

 Credit: Henry Weiland of Honolulu, Hawaii
An eclipsed Moon+Spica. Credit: Henry Weiland of Honolulu, Hawaii

Visually, we’d place this morning’s eclipse between a Danjon value of 3 and 4, with a bright yellowish rim contrasting with a dark, coppery core near the center of the umbra. One astute viewer noted during the webcast that the eclipsed Moon took on a decidedly 3-D appearance, versus its usual flat look when nearing Full.

The eclipsed Moon, Mars and Spica. Credit: @Astrocolors
The eclipsed Moon, Mars and Spica. Credit: @Astrocolors

And speaking of Mars, we fielded lots of “what are those bright stars nearby?” questions as well. The bright blue-white star Spica and the planet Mars “photobombed” many eclipse images. Spica just missed being occulted by the Moon during the eclipse by less than two degrees, And Mars just passed opposition this week and was at its closest approach to the Earth for 2014 on the night of the eclipse.

Approaching totality as seen from Jacksonville, Florida. Credit Richard Hay @WinObs
Approaching totality as seen from Jacksonville, Florida. Credit: Richard Hay @WinObs.

As totality approached, shutter-speeds became longer as the red edge of the Moon became apparent. It always amazes me to think that the Earth casts that long red shadow back into the void of space every night, but its only during a lunar eclipse that you actually get to see it. We’re always told that the Earth is round, but during a lunar eclipse is one of the only times that you can really witness this curve, up close and personal.

NYC Credit: AstroVal1
A gathering of red objects, both celestial and terrestrial. Credit: AstroVal1, New York City.

This eclipse was placed reasonably high in the sky for Northern hemisphere viewers, though that also meant a lack of pics with foreground, except of course for creative shots like the one above. And with the explosion of digital imaging technology, its amazing what folks are doing to image eclipses, even using mobile phones:

IPhone eclipse. Credit: Mike Weasner.
An IPhone eclipse. Credit: Mike Weasner.

We’ve come a long way since the days of film and doing back of the envelope calculations for afocal SLR photography of the Moon, that’s for sure. Unlike solar totality, lunar eclipses are a long at stately affair. In fact, totality during this eclipse lasted for one hour and 18 minutes, about 29 minutes short of the theoretical maximum. This morning’s eclipse won’t be topped in length until 2018.

Credit: Rob Sparks.
A brick red Moon in eclipse. Credit: Rob Sparks.

This also marked our first attempts at adventures in live-streaming an eclipse both on UStream and G+, which was a blast. Thanks to co-hosts and saros chasers Scott Lewis, Fraser Cain, Thad Szabo and Katie Mack (@AstroKatie) for making the broadcast a success!

As of yet, there’s no images of the eclipse from space-based assets, though some may surface. Universe Today’s Elizabeth Howell noted that NASA engineers took precautions to protect the Lunar Reconnaissance Orbiter during the event: an extended lack of sunlight is a bad thing for solar-powered spacecraft. As of yet, there’s no word as to how the LADEE spacecraft also in orbit around the Moon fared, though its due to complete its mission and crash into the Moon this month.

Moon and Spica. Photo by Author.
The eclipsed Moon and Spica. Photo by Author.

And like the “Blue,” “Super” and “Mini” Moon, the Blood Moon meme is now — for better or worse — here to stay. We’ve already fielded  multiple queries for media sources asking if the current tetrad of eclipses has any special significance, and the answer is no; I would still file your taxes on this April the 15th. Eclipses happen, as do wars, earthquakes and lost car keys… each and every year.

Credit: John O'Connor, Fort Pierce, Florida.
Approaching totality. Credit: John O’Connor, Fort Pierce, Florida.

Want more? There’s no word yet as to if anyone caught any of the more bizarre challenges during this eclipse, such as completing a triple saros exeligmos, catching an ISS transit, spotting a selenelion or catching a stellar occultation during the eclipse. If you did any of the above, let us know!

And finally, the biggest post-eclipse question on everyone’s mind is always: when’s the next one? Well, Australians only have to wait two weeks until a partial solar eclipse graces their continent on April 29th… and the next total lunar eclipse once again favors North America and the Pacific region on October 8th, 2014.

T’was a great kickoff this morning of eclipse season 1 of 2 for 2014!

 

 

 

 

 

 

 

Why The Eclipse Forced A Shutdown Of Lunar Spacecraft’s Instruments

Lunar Reconnaissance Orbiter
Lunar Reconnaissance Orbiter. Image Credit: NASA

While people across North America marvelled at the blood-red moon early this morning, some NASA engineers had a different topic on their minds: making sure the Lunar Reconnaissance Orbiter would survive the period of extended shadow during the eclipse.

LRO uses solar panels to get energy for its batteries, so for two passes through the Earth’s shadow it would not be able to get any sunlight at all. Tweets on the official account show all as well in the first few hours after the eclipse.

“The spacecraft will be going straight from the moon’s shadow to the Earth’s shadow while it orbits during the eclipse,” stated Noah Petro, LRO’s deputy project scientist at NASA’s Goddard Space Flight Center, in a release before the eclipse occurred.

“We’re taking precautions to make sure everything is fine,” Petro added. “We’re turning off the instruments and will monitor the spacecraft every few hours when it’s visible from Earth.”

LRO’s Twitter account asked “Who turned off the heat and lights?” during the eclipse, then reported a happy acquisition of signal after the shadow passed by. “AOS, and sunlight, sweet sunlight! My batteries are charging again before I make another trip to the lunar far side.”

Hear more about LRO’s eclipse journey in the video below. For more information, check out NASA’s LRO website.  UPDATE, 10:28 a.m. EDT: NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft also is fine after the eclipse, according to its Twitter account.

Webcasts and Forecasts for Tonight’s Total Lunar Eclipse

The December 21st 2010 Solstice eclipse. Photos by author.

Are you ready for some eclipse action? We’re now within 24 hours of the Moon reaching its ascending node along the ecliptic at 13:25 Universal Time (UT)/ 9:25 AM EDT on Tuesday morning and meeting the shadow of the Earth just over seven hours earlier.

We’ve written about viewing prospects for tonight’s lunar eclipse. This eclipse is the first total lunar eclipse since December 10th, 2011 and is the first in a series of four — known as an eclipse tetrad — visible from North America in 2014 and 2015. Totality lasts 1 hour and 18 minutes and falls just 29 minutes short of the theoretical maximum, which was last neared on January 21st, 2000 and won’t be topped until July 27th, 2018.

This will be an early morning event for U.S. East Coasters spanning 2:00 to 5:30 AM local (from the start of the partial umbral phases and totality), and a midnight spanning-event for the Pacific coast starting at 11:00 PM Monday night until 2:30 AM Tuesday morning on the 15th.

And as always with celestial events, the chief question on every observer’s mind is: will the skies be clear come show time? Should I stay put, or ponder going mobile?

When it comes to astronomical observing, a majority a mainstream weather resources only tell part of the story, often only listing cloud cover and precipitation percentages. Seeing, transparency, and low versus middle and high cloud decks can often mean the difference between a successful observing session and deciding to pack it in and watch Cosmos reruns online. But the good news is, you don’t need crystal clear skies to observe a total lunar eclipse, just a view of the Moon, which can easily “burn through” a high cirrus cloud deck. We’re going to share a few sites that are essential tools for planning an observing session and what they say about the prospects for seeing tonight’s eclipse.

Cloud cover prospects. Credit: NOAA.
Cloud cover prospects towards the end of tomorrow morning’s lunar eclipse. Credit: NOAA.

Now the bad news: things aren’t looking good for eastern North America. In fact, the dividing line between “cloudy” and “clear” runs right down through central Ontario and follows the Mississippi River at mid-eclipse, which occurs at 7:47 UT/3:47 AM EDT. There’s a high pressure front sweeping eastward, bringing rain and cloudy skies with it. The Florida peninsula and parts of New England and the Canadian Maritimes may have shots at viewing the eclipse through partly cloudy skies.

The National Oceanic and Atmospheric Administration maintains a great interactive site with graphical interactive forecasts, to include satellite maps. Another long-standing source of good info is the Weather Underground. For tailor-made astronomy forecasts, we’re checking Clear Sky Chart (formerly Clear Sky Clock) and SkippySky daily for upcoming prospects. A great feature in SkippySky is that it not only gives you cloud cover maps, but layers them with high versus middle and low clouds… again, a thin high cloud deck during the lunar eclipse could still mean game on!

Clouded out? There’s a half dozen webcasts planned for tonight’s lunar eclipse as well.

Dependable Slooh will have a live broadcast with commentary on the eclipse starting at 2AM EDT/6:00 UT:

Also, our good friends at the Virtual Telescope Project will be covering the lunar eclipse as part of their ongoing Global Astronomy Month campaign and will utilize several North American observers to cover the event:

NASA is also planning a broadcast out of the Marshall Space Flight Center of the eclipse along with a discussion on Reddit with NASA planetary scientist Renee Weber also starting at 2:00 AM EDT:

Video streaming by Ustream

The Coca-Cola Space Science Center and Columbus State University also plans host a webcast of the lunar eclipse starting at 3:00 UT/11:00 PM EDT.

Also, the PBS Star Gazers project is planning on hosting a broadcast of the eclipse starting at 1:30 AM EDT/5:30 UT:

Video streaming by Ustream

And finally, we hope to launch our very own initiation into the world of eclipse webcasting with an hour-long broadcast of the crucial phase transition from partial to total eclipse starting at 2:30 AM EDT/6:30 UT, weather willing:

Live streaming video by Ustream

And hey, word is that doomsday purveyor John Hagee is planning a broadcast of a more “End of the World” bent tonight as well. We didn’t know he was an astronomy fan…

Prospects call for a brighter than normal eclipse, as atmospheric sciences professor at the University of Colorado Richard Keen notes that the Earth’s stratosphere is currently relatively clear of dust and volcanic ash. Still, we’ve been surprised before. The darkness and color of the eclipsed Moon is expressed on what’s known as the Danjon scale. As during eclipses previous, we’ll be data-mining Twitter for estimates and averages to see how they stack up… tweet those observations to #DanjonNumber.

Opportunities to catch the ISS transiting the Moon... during tonight's eclipse. Credit: CALSky.
Opportunities to catch the ISS transiting the Moon during tonight’s eclipse. Credit: CALSky.

We also ran the possibilities for catching a shadow transit of the International Space Station in front of the eclipsed Moon for North American observers. To our knowledge, this has never been done before. Live near one of the two paths depicted above? You may be the first to accomplish this unusual feat.   Check in with CALSky for specifics.

Our backyard "eclipse broadcasting station."
Our backyard “eclipse broadcasting station.”

Finally, ever wonder when the next eclipse will occur during the Sunday night Virtual Star Party? If you’re like us, you consider and ponder such astronomical occurrences… and it turns out, the very last lunar eclipse in the current tetrad next year on September 28th, 2015 does just that. And stick around until July 13th, 2037 and we’ll have the first ever total solar eclipse occurring during the show… we just need someone in Australia to stream it!

Tonight’s eclipse is number 56 of saros 122. Reader Rob Sparks notes that the last eclipse (55) in this series occurred on April 4th 1996 and also hosted an extra-special celestial treat, as Comet Hyakutake was just beginning to put on its memorable performance.

In short, don’t fear the “Blood Moon,”  but do get out and catch tonight’s fine lunar eclipse… we’ll be doing a post-eclipse photo roundup tomorrow, so be sure to send those pics in to Universe Today!

The Science Behind the “Blood Moon Tetrad” and Why Lunar Eclipses Don’t Mean the End of the World

A mosaic of the 2003 total lunar eclipse. photos by author.

 By now, you may have already heard the latest tale of gloom and doom surrounding the upcoming series of lunar eclipses.

This latest “End of the World of the Week” comes to us in what’s being termed as a “Blood Moon,” and it’s an internet meme that’s elicited enough questions from friends, family and random people on Twitter that it merits addressing from an astronomical perspective.

Like the hysteria surrounding the supposed Mayan prophecy back in 2012 and Comet ISON last year, the purveyors of Blood Moon lunacy offer a pretty mixed and often contradictory bag when it comes down to actually what will occur.

But just like during the Mayan apocalypse nonsense, you didn’t have to tally up just how many Piktuns are in a Baktun to smell a rat. December 21st 2012 came and went, the galactic core roughly aligned with the solstice — just like it does every year — and the end of the world types slithered back into their holes to look for something else produce more dubious YouTube videos about.

Here’s the gist of what’s got some folks wound up about the upcoming cycle of eclipses. The April 15th total lunar eclipse is the first in series of four total eclipses spanning back-to-back years, known as a tetrad. There are eight tetrads in the 21st century: if you observed the set total lunar eclipses back in 2003 and 2004, you saw the first tetrad of the 21st century.

The eclipses in this particular tetrad, however, coincide with the Full Moon marking Passover on April 15th and April 4th and the Jewish observance of Sukkot on October 8th and September 28th. Many then go on to cite the cryptic biblical verse from Revelation 6:12, which states;

“I watched as he opened the sixth seal. There was a great earthquake. The Sun turned black like sackcloth made of goat hair. The whole Moon turned blood red.”

Whoa, some scary allegory, indeed… but does this mean the end of the world is nigh?

I wouldn’t charge that credit card through the roof just yet.

First off, looking at the eclipse tetrads for the 21st century, we see that they’re not really all that rare:

21st century eclipse tetrads:

Eclipse #1 Eclipse #2 Eclipse #3 Eclipse #4
May 16th, 2003 November 9th, 2003 May 4th , 2004 October 28th, 2004
April 15th, 2014*+ October 8th, 2014 April  4th, 2015*+ September 28th, 2015
April 25th, 2032 October 18th, 2032 April 14th, 2033*+ October 8th, 2033
March 25th, 2043* September 19th, 2043 March 13th, 2044 September 7th, 2044
May 6th, 2050 October 30th, 2050 April 26th, 2051 October 19th, 2051
April  4th, 2061*+ September 29th, 2061 March 25th, 2062* September  18th, 2062
March 4th, 2072 August 28th, 2072 February 22nd, 2073 August 17th, 2073
March 15th, 2090 September 8th, 2090 March 5th, 2091 August 29th, 2091
*Paschal Full Moon
+Eclipse coincides with Passover

 

Furthermore, Passover is always marked by a Full Moon, and a lunar eclipse always coincides with a Full Moon by definition, meaning it cannot occur at any other phase. The Jewish calendar is a luni-solar based calendar that attempts to mark the passage of astronomical time via the apparent course that the Sun and the Moon tracks through the sky. The Muslim calendar is an example of a strictly lunar calendar, and our western Gregorian calendar is an example of a straight up solar one. The Full Moon marking Passover often, though not always, coincides with the Paschal Moon heralding Easter. And for that matter, Passover actually starts at sunset the evening prior in 2014 on April 14th. Easter is reckoned as the Sunday after the Full Moon falling after March 21st which is the date the Catholic Church fixes as the vernal equinox, though in this current decade, it falls on March 20th. Easter can therefore fall anywhere from March 22nd to April 25th, and in 2014 falls on the late-ish side, on April 20th.

To achieve synchrony, the Jewish calendar must add what’s known as embolismic or intercalculary months (a second month of Adar) every few years, which in fact it did just last month. Eclipses happen, and sometimes they occur on Passover. It’s rare that they pop up on tetrad cycles, yes, but it’s at best a mathematical curiosity that is a result of our attempt to keep our various calendrical systems in sync with the heavens.  It’s interesting to check out the tally of total eclipses versus tetrads over a two millennium span:

Century Number of Total Lunar Eclipses Number of Tetrads Century Number of Total Lunar Eclipses Number of Tetrads
11th

62

0

21st

85

8

12th

59

0

22nd

69

4

13th

60

0

23rd

61

0

14th

77

6

24th

60

0

15th

83

4

25th

69

4

16th

77

6

26th

87

8

17th

61

0

27th

79

7

18th

60

0

28th

64

0

19th

62

0

29th

57

0

20th

81

5

30th

63

1

 

Note that over a five millennium span from 1999 BC to 3000 AD, the max number of eclipse tetrads that any century can have is 8, which occurs this century and last happened in the 9th century AD.

Of course, the visual appearance of a “Blood of the Moon” that’s possibly alluded to in Revelation is a real phenomena that you can see next week from North and South America as the Moon enters into the dark umbra or core of the shadow of the Earth. But this occurs during every total lunar eclipse, and the redness of the Moon is simply due to the scattering of sunlight through the Earth’s atmosphere. Incidentally, this redness can vary considerably due to the amount of dust, ash, and particulate aerosols aloft in the Earth’s atmosphere, resulting in anything from a bright cherry red eclipse during totality to an eclipsed Moon almost disappearing from view altogether… but it’s well understood by science and not at all supernatural.

The changing colors of a lunar eclipse: a mosaic of four eclipses. Photos by author.
The changing colors of a lunar eclipse: a mosaic of four eclipses. Photos by author.

Curiously, the Revelation passage could be read to mean a total solar eclipse as well, though both can never happen on the same day.  Lunar and solar eclipses occur in pairs two weeks apart at Full and New Moon phases when the nodes of the Moon’s ecliptic crossing comes into alignment with the Sun — known as a syzygy, an ultimate triple word score in Scrabble, by the way — and this eclipse season sees a non-central annular eclipse following the April 15th eclipse on April 29th.

And yes, earthquakes, wars, disease, relationship breakups and lost car keys are on tap to occur in 2014 and 2015… just like during any other year. Lunar eclipses marked the fall of Constantinople in 1453 and the World Series victory of the Red Sox in 2004, but they’re far from rare. We humans love to see patterns, and sometimes this habit works against us, making us see them where none exists. This is simply a case of the gambler’s fallacy, counting the hits at the cost of the misses. We could just as easily make a case that the upcoming eclipse tetrad of April 15th, October 8th, April 4th and September 28th marks US Tax Day, Croatian Independence Day, The Feast of Benedict of the Moor & — Michael Scott take note — International World Rabies Day… perhaps the final 2015 eclipse should be known as a “Rabies Moon?”

So, what’s the harm in believing in a little gloom and doom? The harm in believing the world ends tomorrow comes when we fail to plan for still being here the day after. The harm comes when something like the Heavens Gate mass suicide goes down. We are indeed linked to the universe, but not in the mundane and trivial way that astrologers and doomsdayers would have you believe. Science shows us where we came from and where we might be headed.  We’ve already fielded queries from folks asking if it’s safe (!) to stare at the Blood Moon during the eclipse, and the answer is yes… don’t give in to superstition and miss out on this spectacular show of nature because of some internet nonsense.

The upcoming lunar eclipse next week won’t mean the end of the world for anyone, except, perhaps, NASA’s LADEE spacecraft… be sure not to miss it!

 

NASA Announces ‘Take the Plunge’ Contest – Guess when LADEE Hits the Moon – Soon!

You can enter NASA’s ‘Take the Plunge’ contest and guess LADEE’s impending lunar impact date, expected on or before April 21, 2014. Credit: NASA

You can enter NASA’s ‘Take the Plunge’ contest and guess LADEE’s impending lunar impact date, expected on or before April 21, 2014. Credit: NASA
Contest entry details below – deadline soon[/caption]

When will LADEE hit the Moon for its looming end of mission finale?

NASA’s resoundingly successful LADEE lunar dust exploring mission is nearly out of gas – and needs your help, now!

With its inevitable doom approaching, NASA needs you to summon your thoughts and is challenging you to participate in a ‘Take the Plunge’ contest – figuratively not literally – and guess LADEE’s impending impact date.

LADEE, which stand for Lunar Atmosphere and Dust Environment Explorer, will smack violently into the Moon and scatter into zillions of bits and pieces sometime in the next two and a half weeks, on or before about April 21.

But exactly when will it impact the lunar surface? NASA wants to hear your best guess!

The ‘Take the Plunge’ contest was announced by NASA today, April 4, at a media briefing.

For more information about the challenge and how to enter, visit: http://socialforms.nasa.gov/ladee

This dissolve  animation compares the LRO image (geometrically corrected) of LADEE  captured on Jan 14, 2014 with a computer-generated and labeled image of LADEE .  LRO and LADEE are both NASA science spacecraft currently in orbit around the Moon. Credit:  NASA/Goddard/Arizona State University
This dissolve animation compares the LRO image (geometrically corrected) of LADEE captured on Jan 14, 2014 with a computer-generated and labeled image of LADEE . LRO and LADEE are both NASA science spacecraft currently in orbit around the Moon. Credit: NASA/Goddard/Arizona State University

Between now and its inevitable doom, mission controllers will command LADEE to continue gathering groundbreaking science.

And it will do so at an even lower attitude that it orbits today by firing its orbit maneuvering thrusters tonight and this weekend.

The couch sized probe seeks to eek out every last smidgeon of data about the Moons ultra tenuous dust and atmospheric environment from an ultra low altitude just a few miles (km) above the pockmarked lunar surface.

But because the moon’s gravity field is so uneven, the probes thrusters must be frequently fired to keep it on course and prevent premature crashes.

“The moon’s gravity field is so lumpy, and the terrain is so highly variable with crater ridges and valleys that frequent maneuvers are required or the LADEE spacecraft will impact the moon’s surface,” said Butler Hine, LADEE project manager at Ames.

“Even if we perform all maneuvers perfectly, there’s still a chance LADEE could impact the moon sometime before April 21, which is when we expect LADEE’s orbit to naturally decay after using all the fuel onboard.”

LADEE will fly as low as fly approximately 1 to 2 miles (2 to 3 kilometers) above the surface.

Everyone of all ages is eligible to enter NASA’s “Take the Plunge: LADEE Impact Challenge.”

The submissions deadline is 3 p.m. PDT Friday, April 11.

NASA says that winners post impact. They will receive a commemorative, personalized certificate from the LADEE program via email.

Series of LADEE star tracker images features the lunar terrain.  Credit: NASA Ames
Series of LADEE star tracker images features the lunar terrain. Credit: NASA Ames

Watch for my upcoming story on LADEE’s science accomplishments and what’s planned for her final days.

LADEE was launched on Sept. 6, 2013 from NASA Wallops in Virginia on a science mission to investigate the composition and properties of the Moon’s pristine and extremely tenuous atmosphere, or exosphere, and untangle the mysteries of its lofted lunar dust dating back to the Apollo Moon landing era.

Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com

The science mission duration had initially been planned to last approximately 100 days and finish with a final impact on the Moon on about March 24th.

NASA granted LADEE a month long extension since the residual rocket fuel is more than anticipated due to the expertise of LADEE’s navigation engineers and the precision of the launch atop the Orbital Sciences Minotaur V rocket and orbital insertion.

Stay tuned here for Ken’s continuing LADEE, Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, Mars rover and more planetary and human spaceflight news.

Learn more at Ken’s upcoming presentations at the NEAF astro/space convention, NY on April 12/13 and at Washington Crossing State Park, NJ on April 6.

Ken Kremer

Full scale model of NASA’s LADEE lunar orbiter on display at the free visitor center at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com
Full scale model of NASA’s LADEE lunar orbiter on display at the free visitor center at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Get Ready for the April 15, 2014 Total Lunar Eclipse: Our Complete Guide

Totality! A seen during the "December solstice eclipse" of 2010. Photo by author.

 April the 15th: In the United States, it’s a date dreaded by many, as the date to file taxes – or beg for an extension – looms large. But this year, Tax Day gives lovers of the sky something to look forward to, as the first of four total lunar eclipses for 2014 and 2015 occurs on the night of April 14th/15th favoring North and South America.

The circumstances for the April 15th, 2105 eclipse.
The circumstances for the April 15th, 2014 eclipse. The top chart shows the path of the Moon through the umbra, and the bottom chart shows the visibility region (light to shaded areas) Click here for a technical description. Credit:  Eclipse Predictions by Fred Espenak, NASA/GSFC.

This marks the first total lunar eclipse visible from since December 10th 2011, which was visible at moonset from North America, and marks the start of the first of two eclipse seasons for 2014. Totality will last 1 hour, 17 minutes and 48 seconds, and will be visible in its entirety from the central Atlantic westward to eastern Australia. Unlike a total solar eclipse, which occurs along a narrow track, a total lunar eclipse can be viewed by the entire moonward facing hemisphere of the Earth.

Tracing the umbra: a mosaic of the December 2010 eclipse. Photos by author.
Tracing the umbra: a mosaic of the December 2010 eclipse. Photos by author.

The action begins at 4:37 Universal Time (UT)/12:37 AM EDT, when the Moon enters the western edge of the Earth’s shadow known as the penumbra. The Moon will be completely immersed in the penumbra by 5:58 UT/1:58 AM EDT, but don’t expect to see anything more than a faint tan shading that’s slightly darker on the Moon’s northeastern edge.

The real action begins moments later, as the Moon encounters the ragged edge of the umbra, or the inner core of the Earth’s shadow. When does the umbra first become apparent to you? Totality then begins at 7:06 UT/3:06 AM EDT and lasts until 8:24 UT/4:24 AM EDT, with mid-eclipse occurring just south of the center of the Earth’s shadow at 7:46 UT/3:46 AM EDT.

Finally, the eclipse ends as the Moon slides out of the penumbra at 10:37 UT/ 6:37 AM EDT.  Michael Zeiler (@EclipseMaps) has complied a fine video guide to the eclipse:

Field guide to the total lunar eclipse of April 14 – 15, 2014 from Michael Zeiler on Vimeo.

This eclipse is also notable for being part of a series of four lunar eclipses in 2014 & 2015, known as a “tetrad.” NASA eclipse expert Fred Espenak notes that this series of eclipses is also notable in that all four are visible in part or in their entirety from the United States. We’re in a cycle of 9 sets of tetrads for the 21st century, which began with the first set in 2003. Before that, you have to go all the way back to the 16th century for the last set of eclipse tetrads!

4AM EDT. Credit Starry Night Education software.
The position of the Moon within the Earth’s umbra on the morning of April 15th at 4AM EDT/8UT. Credit: Starry Night Education software.

For saros buffs, the April 15th eclipse is Member 56 of 75 of saros 122, which began on August 14th 1022 A.D. and runs out until a final penumbral eclipse of the series on October 29th, 2338. There are only two total eclipses left in this particular saros, one in 2032 and 2050. If you caught the total lunar eclipse of April 4th, 1996, you saw the last lunar eclipse in this same saros series.

Lunar eclipses have turned up at some curious junctures in history. For example, a lunar eclipse preceded the fall of Constantinople in 1453. A 2004 lunar eclipse also fell on the night that the Red Sox won the World Series after an 86 year losing streak, though of course, lunar eclipses kept on occurring during those losing years as well. Christopher Columbus was known to evoke an eclipse on occasion to get him and his crew out of a jam, and also attempted to use a lunar eclipse to gauge his position at sea using a method first described by Ptolemy while studying the lunar eclipse of September 20th, 331 B.C.

A handful of stars in the +8th to +12th magnitude range will be occulted by the eclipsed Moon as well. Brad Timerson of the International Occultation Timing Association (IOTA) has put together a list, along with graze line prospects across the United States. The brightest star to be occulted by the eclipsed Moon is +5th magnitude 76 Virginis across western South America and Hawaii:

Credit: Occult 4.0
The occultation footprint of 76 Virginis during the April 15th lunar eclipse. Credit: Occult 4.0

Note that the bright star Spica will be only just over a degree from the eclipsed Moon, and Mars will also be nearby, just a week past its 2014 opposition. And to top it off, Saturn is just one constellation to the east in Libra!

During the partial phases of the eclipse, watch for the Moon to take on a “Pacman-like” appearance. The Earth’s umbra is just under three times the size of the Moon, and the Greek astronomer Aristarchus of Samos used this fact and a little geometry to gauge the distance to our natural satellite in the 3rd century B.C.

As totality approaches, expect the innermost rim of the Moon to take on a ruddy hue. This is the famous “combination of all the sunrises and sunsets” currently underway worldwide as light is bent through the Earth’s atmosphere into its shadow. It’s happening every night, and during the totality of a lunar eclipse is the only chance that we get to see it.

4AM Credit: Stellarium
Looking to the southwest at 4 AM EDT from latitude 30 degrees north on the morning of April 15th. Credit: Stellarium.

You don’t need anything more sophisticated than the naked eye or “Mark 1 eyeball” to enjoy a lunar eclipse, though it’s fun to watch through binoculars or a low-power telescope field of view. One interesting project that has been ongoing is to conduct timings for the moment when the umbra contacts various craters on the Moon. It’s a curious mystery that the Earth’s shadow varies by a small (1%) but perceptible amount from one eclipse to the next, and efforts by amateur observers may go a long way towards solving this riddle.

Said color of the fully eclipsed Moon can vary considerably as well: the Danjon scale describes the appearance of the eclipsed Moon, from bright and coppery red (Danjon 4) to so dark as to almost be invisible (Danjon 0). This is a product of the amount of dust, volcanic ash and aerosols currently aloft in the Earth’s atmosphere.  During the lunar eclipse of December 9th, 1992 the Moon nearly disappeared all together, due largely to the eruption of Mount Pinatubo the year prior.

A lunar eclipse also presents a chance to nab what’s known as a Selenelion. This occurs when the Sun and the totally eclipsed Moon appear above the local horizon at the same time. This is possible mainly because the Earth’s shadow is larger than the Moon, allowing it to linger a bit inside the umbra after sunrise or before sunset. Gaining some altitude is key to making this unusual observation.  During the April 15th eclipse, selenelion sightings favor the Mid-Atlantic and Greenland where totality is underway at sunrise and eastern Australia, where the reverse is true at sunset.

Want to have a go at measuring the brightness or magnitude of the eclipsed Moon? Here’s a bizarre but fun way to do it: take a pair of binoculars and compare the pinpoint Moon during totality to the magnitude of a known star, such as Antares or Spica.

Note that to do this, you’ll first need to gauge the magnitude extinction of your particular binoculars: NASA’s got a table for that, or you could field test the method days prior on Venus, currently shining at a brilliant -4.2 in the dawn. Hey, what’s a $1,000 pair of image-stabilized binocs for?

And of course, weather prospects are the big question mark for the event. Mid-April weather for North America is notoriously fickle. We’ll be watching the Clear Sky Chart and Skippy Sky for prospects days before the eclipse.

Photography during an eclipse is fun and easy to do, and you’ll have the waxing gibbous Moon available to practice on days prior to event. Keep in mind, you’ll need to slow down those shutter speeds as the Moon enters into totality, we’re talking going down from 1/60th of a second down to ¼” pretty quickly. In the event of a truly dark eclipse, the Moon may vanish in the view finder all together. Don’t be afraid to step exposures up to the 1 to 4 second range in this instance, as you’ve got over an hour to experiment.

Photo by author
Our “eclipse hunting rig…” the DSLR is piggy-backed to shoot stills on the main scope, which will shoot video. Note that the “f/34 field stop” will most likely be removed!  Photo by author

Thus far, only one webcast for the eclipse has surfaced, courtesy of the venerable Slooh. We’ll most likely be doing a follow up roundup of eclipse webcasts as they present themselves, as well as a look at prospects for things like a transit of the ISS in front of the eclipsed Moon and weather forecasts closer to show time.

And speaking of spacecraft, China’s Chang’e 3 lander and Yutu rover will have a fine view of a solar eclipse overhead from their Mare Imbrium vantage point, as will NASA’s LRO and LADEE orbiters overhead. In fact, NASA hinted last year that the April 15th eclipse might spell the end of LADEE entirely…

And thus marks the start of eclipse season one of two for 2014. Next up will be a curious non-central annular solar eclipse over Antarctica on April 29th, followed by another total lunar eclipse on October 8th, and a fourth and final partial solar eclipse of the year for North America of October 23rd.

Watch this space and follow us on Twitter as @Astroguyz, as we’ll be “all eclipses, all the time,” for April… no new taxes guaranteed!

Next up: Heard the one about the Blood Moon? Yeah, us too… join us as we debunk the latest lunacy surrounding the eclipse tetrad!

–      Got pics of the lunar eclipse? Send ‘em in to Universe Today, as a post-eclipse photo round up is a very real possibility!

 

The Moon Is Just 95 Million Years Younger Than The Solar System: Study

An airplane at about 2,400 meters above the ground passes in front of the Moon on its way to landing at the Charles de Gaulle Airport in Paris, France. Taken from about 70 km from Paris. Credit and copyright: Sebastien Lebrigand.

Stuff from Earth’s interior, combined with simulations, have one research team pinning down the Moon’s age to only 95 million years after the Solar System formed (which would make our closest satellite about 4.4 billion years old.)

The simulation involved replicating how the Earth and the other terrestrial planets (Mercury, Venus and Mars) grew from a protoplanetary disc surrounding the young Sun. After 259 simulations, the researchers uncovered a link between when a Mars-sized object smacked Earth (eventually forming the Moon) and how much material Earth gained after the crash.

“This correlation just jumped out of the simulations and held in each set of old simulations we looked at,” stated Seth Jacobson of the Observatory of Cote d’Azur in France, who led the study.

Buzz Aldrin's bootprint on the surface of the moon during the Apollo 11 mission on July 20, 1969. Credit: NASA
Buzz Aldrin’s bootprint on the surface of the moon during the Apollo 11 mission on July 20, 1969. Credit: NASA

Researchers are calling this a “geologic clock” that dates the Moon independently from the samples Apollo astronauts collected from the moon in the 1960s and 1970s, which were dated using radioactive decay of atomic nuclei. The Earth’s mass was estimated using previously published material examining how plentiful “siderophile” (iron-associated) elements were in Earth’s mantle.

The exact date, for the curious, puts the Moon’s formation at 95 ±32 million years after the solar system began. The measurement agrees with some, but not all, radioactive dating methods.

The researchers argue that this new understanding will help scientists figure out which of the radioactive dating methods are the most useful to figure out the Moon’s age, but it will be interesting to see what other teams think of that conclusion.

You can read the full study in Nature.

Source: Southwest Research Institute

Astrophotos: Here’s What a Super-thin Crescent Moon Looks Like

A tiny crescent Moon, with only about 1% of the lunar surface illuminated, one day a few hours after the New Moon phase. March 31, 2014 from Sulmona, Abruzzo, Italy. Credit and copyright: Giuseppe Petricca.

Last night, you could have sung that old astronomical favorite, “By the light of the slivery Moon.” Yep, it was a teeny, tiny sliver of a crescent Moon, with just under 2% of the lunar surface illuminated. In fact, depending on where you live, the sliver could have been even tinier. Giuseppe Petricca from Sulmona, Abruzzo, Italy snapped a 1% illuminated Moon (above) and then realized he also managed to capture images of the crescent Moon during the day when the Moon was just 0.7% illuminated! (below) “It was less than a day since the New Moon!” Giuseppe said via email. “I was absolutely amazed, to say the least!”

See his daytime image below, plus many more “slivery” tiny crescent Moons as seen from around the world:

The tiny crescent Moon captured during the daytime in Sulmona, Abruzzo, Italy, in a 0.7% phase, minus than a day since New Moon. Credit and copyright: Giuseppe Petricca.
The tiny crescent Moon captured during the daytime in Sulmona, Abruzzo, Italy, in a 0.7% phase, minus than a day since New Moon. Credit and copyright: Giuseppe Petricca.

The one-day old crescent Moon on March 31, 2014. Credit and copyright: Robert Sparks.
The one-day old crescent Moon on March 31, 2014. Credit and copyright: Robert Sparks.

The 1.2 day old Moon, 2% illuminated, from Weatherly, PA. Inset picture taken with 12" Meade telescope. Credit and copyright: Tom Wildoner.
The 1.2 day old Moon, 2% illuminated, from Weatherly, PA. Inset picture taken with 12″ Meade telescope. Credit and copyright: Tom Wildoner.
 The Moon at sunset with only 2% of its surface illuminated. Credit and copyright:  Héctor Barrios.

The Moon at sunset with only 2% of its surface illuminated. Credit and copyright: Héctor Barrios.
A thin crescent Moon on April 1, 2014. Credit and copyright: Jason Hill.
A thin crescent Moon on April 1, 2014. Credit and copyright: Jason Hill.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Observing Alert: Watch the Moon Cross the Hyades This Week

(Credit Tavi)

A photogenic grouping greets evening sky watchers this week providing a fine teaser leading up to a spectacular eclipse.

On the evening of Thursday, April 3rd headed into the morning of the 4th, the waxing crescent Moon crosses in front of the Hyades open star cluster.  This is the V-shaped asterism that marks the head on Taurus the Bull, highlighted by the brilliant foreground star Aldebaran as the bull’s “eye”.  Viewers across North America will have a ring-side seat to this “bull-fight” as the 20% illuminated Moon stampedes over several members of the Hyades in its path.

Starry Night
The passage of the Moon through the Hyades over a three hour span on the night of April 3rd (April 4th in Universal Time) comparing the North American locales of Tampa, Florida and Seattle, Washington. (Credit: Starry Night Education Software).

The brightest stars to be occulted are the Delta Tauri trio of stars ranging in magnitudes from +3.8 (Delta Tauri^1) to +4.8(2) and +4.3(3). Such occlusions – known in astronomy as occultations – are fun to watch, and can reveal the existence of close binary companions as they wink out behind the lunar limb. Several dozen occultations of stars brighter than +5th magnitude by the Moon happen each year, and the best events occur when the Moon is waxing and the stars disappear against its dark leading edge. We recently caught one such event last month when the Moon occulted the bright star Lambda Geminorum:

We are currently seeing the Moon cross the Hyades during every lunation until the year 2020, though it’s a particularly favorable time to catch the event in April 2014 as the Moon is a slender crescent. Notice that you can just make out the dark limb of the Moon with the naked eye? What you’re seeing is termed Earthshine, and that’s just what it is: the nighttime side of the Moon being illuminated by sunlight that is reflected off of the Earth. Standing on the Earthward side of the Moon, an observer would see a waning gibbous Earth about two degrees across. Yutu has a great view!

Credit Occult 4.0
The occultation footprint for Delta Tauri^1. Credit: Occult 4.0

The Moon will cross its descending node where its apparent path intersects the ecliptic on April 1st (no joke, we swear) at 2:30 Universal Time or 10:30 PM EDT on March 31st. The next nodal crossing now occurs in just two weeks, and the Earth’s shadow will be there to greet the Moon on the morning of April 15th in the first of four total lunar eclipses that span 2014 and 2015. The month of April also sees the Moon’s orbit at its least eccentric, a time at which perigee – the Moon’s closest point to Earth – is at its most distant and apogee – its farthest point – is at its closest. This currently happens near the equinoxes, through the nodes slowly travel across the ecliptic completing one revolution every 18.6 years. Perigee can vary from 356,400 to 370,400 kilometres, and apogee can span a distance from 404,000 to 406,700 kilometres.

Stellarium
Looking west from the US SE at about 10PM local on the evening of April 3rd. Credit: Stellarium.

We’re also headed towards a “shallow year” in 2015 when the Moon has the least variability in respect to its declination. This trend will then reverse, climaxing with a “Long Nights Moon” riding high in the sky in 2025, which last occurred in 2006. The Moon will inch ever closer to Aldebaran on every successive lunation now, and begins a series of occultations of Aldebaran on January 29th, 2015 through the end of 2018. Occultations of Aldebaran always occur near these shallow years, and will be followed by a cycle of occultations of Regulus starting in 2017. We caught an excellent daytime occultation of Aldebaran by the Moon from North Pole, Alaska during the last cycle in the late 1990s.

Photos by Author
The Moon passing between the Hyades and Pleiades in 2011 with Earthshine highlighted. Photos by author.

Now for the wow factor. Our Moon is 3,474 kilometres across and located just over one light second away. The Hyades star cluster covers about 6 ½ degrees of sky – about 7 times the size of the Full Moon – but is the closest open cluster to the Earth at 153 light years distant and has a core diameter of about 18 light years across. As mentioned previous, Aldebaran isn’t physically associated with the Hyades, but is merely located in the same direction at 65 light years distant.

The Hyades star cluster also provided early 20th astronomers with an excellent study in galactic motion. At an estimated 625 million years in age, the Hyades are slowly getting disbanded and strewn about the Milky Way galaxy in a process known as evaporation. The Hyades are also part of a larger stellar incorporation known as the Taurus Moving Cluster. Moving at an average of about 43 kilometres a second, the members of the Hyades are receding from us towards a divergent point near the bright star Betelgeuse in the shoulder of Orion. 50 million years hence, the Hyades will be invisible to the naked eye as seen from Earth, looking like a non-descript open cluster and providing a much smaller target for the Moon to occult at 20’ across. Astronomer Lewis Boss was the first to plot the motion of the Hyades through space in 1908, and the cluster stands as an essential rung on the cosmic distance ladder, with agreeing measurements independently made by both Hubble and Hipparcos and soon to be refined by Gaia.

Photographing and documenting this week’s passage of our Moon across the Hyades is easy with a DSLR camera: don’t be afraid to vary those ISO and shutter speeds to get the mix of the brilliant crescent Moon, the fainter earthshine, and background stars just right. The more adventurous might want to try actually catching the numerous occultations of bright stars on video. And U.S. and Canadian west coast observers are well placed to catch the Moon cross right though the core of the Hyades… a video animation of the event is not out of the question!

And from there, the Moon heads on to its date with destiny and a fine total lunar eclipse on April 15th which favors North American longitudes. We’ll be back later this week with our complete and comprehensive eclipse guide!

Stunning Astrophoto: Moon in the Lighthouse

The full Moon in this sequence was captured at the Cape Espichel lighthouse near Cabo Espichel, Sesimbra, Portugal on March 16, 2014. Credit and copyright: Miguel Claro.

The March full Moon, sometimes called the “Worm Moon” for signaling the coming of spring in the northern hemisphere. This artistically stunning image taken by astrophotopher Miguel Claro is a sequence of 93 images taken at 2-minute intervals as the Moon traveled across the sky and past the Cape Espichel lighthouse near Sesimbra, Portugal. Miguel tells us that the lighthouse originally opened in 1790, and by 1865 it was powered by olive oil, changing to regular fuel in 1886, and much later by electricity by about 1926. The lighthouse measures 32 meters high and lies at an altitude of 168m above the see level. Presently, its luminous range is 20 nautical miles, about 38 km out to sea on a clear night.

Miguel used a Canon 60D – 35mm at f/4 ISO500; 1/5 sec. The sequence was taken on March 16, 2014 between 19:16 and 20:42.

Here’s a closeup:

The Cabo Espichel lighthouse near, Sesimbra, Portugal and the full Moon on March 16, 2014. Credit and copyright: Miguel Claro.
The Cabo Espichel lighthouse near, Sesimbra, Portugal and the full Moon on March 16, 2014. Credit and copyright: Miguel Claro.

See more of Miguel’s work at his website.

You can check out other recent full Moon photos and more taken by our readers at our Flickr page.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.