OMG – breathtaking! That was my reaction when I clicked on this incredible new interactive map of the moon’s north polar region. Be prepared to be amazed. It took four years and 10,581 images for the LROC (Lunar Reconnaissance Orbiter Camera) team to assemble what’s believed to be the largest publicly available image mosaic in existence. With over 650 gigapixels of data at a resolution of 2 meters per pixel, you’ll feel like you’re dropping in by parachute to the lunar surface.
When you call up the map, be sure to click first on the full-screen button below the zoom slider. Now you’re ready for the full experience. With mouse in hand, you’re free to zoom and pan as you please. Take in the view of Whipple Crater shadowed in polar darkeness or zoom to the bottom of Karpinskiy Crater and fly like a bird over its fractured floor.
The images are so detailed and the zoom so smooth, there’s nothing artificial about the ride. Except the fact you’re not actually orbit. Darn close though. All the pictures were taken over the past few years by NASA’s Lunar Reconnaissance Orbiter which can fly as low as 50 km (31 miles) over the lunar surface and resolve details the size of a desk.
There are 10 snapshots along the bottom of the map – click them and you’ll be swiftly carried directly to that feature. One of them is the lunar gravity probe GRAIL-B impact site.
To create the 2-D map, a polar stereographic projection was used in to limit mapping distortions. In addition, the LROC team used information from the LOLA and GRAIL teams and an improved camera pointing model to accurately project each image in the mosaic to within 20 meters. For more information on the project, click HERE.
Chang’e-3/Yutu Timelapse Color Panorama
This newly expanded timelapse composite view shows China’s Yutu moon rover at two positions passing by crater and heading south and away from the Chang’e-3 lunar landing site forever about a week after the Dec. 14, 2013 touchdown at Mare Imbrium. This cropped view was taken from the 360-degree timelapse panorama. See complete 360 degree landing site timelapse panorama herein and APOD Feb. 3, 2014. Chang’e-3 landers extreme ultraviolet (EUV) camera is at right, antenna at left. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com.
See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm[/caption]
KENNEDY SPACE CENTER, FL – China’s maiden moon rover Yutu awoke from her regular two week long slumber on Friday, March 14, to begin the 4th Lunar Day since the probes history making touchdown on the surface of Earth’s nearest neighbor in mid December 2013.
But the endearing robot is still ailing and suffering from mechanical control issues that popped up in late January 2014 according to Chinese space officials.
The Chang’e-3 mothership lander that deposited Yutu onto the pockmarked lunar surface also awoke two days earlier on Wednesday, March 12.
“Yutu and the lander have restarted their operations and are exploring as scheduled,” according to China’s State Administration of Science, Technology and Industry for National Defence (SASTIND), responsible for executing the Chang’e-3 mission.
Yutu is China’s first ever Moon rover and successfully accomplished a soft landing on the Moon on Dec. 14, 2013, piggybacked atop the Chang’e-3 mothership lander.
However, “the control issues that have troubled Yutu since January remain,” says China’s government owned Xinhua news agency.
The hugely popular ‘Yutu’ rover is still suffering from an inability to maneuver its life giving solar panels. It is also unable to activate its six wheels and move around the surface – as I reported here.
At the time that Yutu’s 2nd Lunar sleep period began on Jan. 25, 2014, Chinese space officials had announced that the robot’s future was in jeopardy after it suffered an unidentified “ mechanical control anomaly” due to the “complicated lunar surface.”
Earlier this month, China announced that “Yutu suffered a control circuit malfunction in its driving unit.”
“The control circuit problem prevented Yutu from entering the second dormancy as planned,” said Ye Peijian, chief scientist of the Chang’e-3 program, in an exclusive interview with Xinhua.
A functioning control circuit is required to lower the rovers mast and protect the delicate components and instruments mounted on the mast from directly suffering from the extremely harsh cold of the Moon’s recurring night time periods.
“Normal dormancy needs Yutu to fold its mast and solar panels,” said Ye according to CCTV, China’s state run broadcaster.
Fortunately, the panoramic camera, radar and other sciene instruments and equipment are functioning normally, says SASTIND.
Yutu even snapped at least a pair new images of the lander during Lunar Day 3.
See our mosaic of Yutu’s Lunar Day 3 lander image as well as our the complete 360 degree timelapse color panorama from Lunar Day 1 herein and at NASA APOD on Feb. 3, 2014 – assembled by Marco Di Lorenzo and Ken Kremer.
By reawakening on March 14, the 140 kg robot also survived for its three month design lifetime on the moon.
Yutu’s goal is to accomplish a roving expedition to investigate the moon’s surface composition and natural resources.
So far the 1200 kg Chang’e-3 lander is functioning as planned during its first three lunar days, says SASTIND.
“The lander’s optical telescope, extreme ultraviolet camera and lunar dust measurement device completed scheduled tasks and obtained a large amount of data,” says China’s government owned Xinhua news agency.
China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.
Stay tuned here for Ken’s continuing Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more planetary and human spaceflight news. Learn more at Ken’s upcoming presentations at the NEAF astro/space convention on April 12/13.
Like many kids his age, 4-year-old Lucas Whiteley is fascinated about space and astronauts and has a lot of questions to ask. Unlike most kids, though, Lucas got his answers directly from a NASA engineer, with a custom-made video no less!
Ever dabbled in the occult? You’ll have your chance Monday night March 10 when the waxing gibbous moon glides in front of the star Lambda Geminorum for much of North America, occulting it from view for an hour or more. Occultations of stars by the moon happens regularly but most go unnoticed by casual skywatchers. Lambda is an exception because it’s one of the brighter stars that happens to lie along the moon’s path. Shining at magnitude +3.6, any small telescope and even a pair of 10×50 or larger binoculars will show it disappear along the dark edge of the moon.
With a telescope you can comfortably watch the star creep up to the moon’s edge and better anticipate the moment of its disappearance. The fun starts a few minutes before the impending black out when the moon, speeding along its orbit at some 2,280 mph (3,700 km/hr), draws very close to the star. During the final minute, Lambda may seem to hover forever at the moon’s invisible dark limb, and then – PFFFT – it’s gone! Whether you’re looking through telescope or binoculars, the star will blink out with surprising suddenness because the moon lacks an atmosphere.
If there was air up there, Lambda would gradually dim and disappear. Even without special instruments, early astronomers could be certain the moon had little if anything to protect it from the vacuum of space by observing occultations.
As the moon moves approximately its own diameter in an hour, you can watch Lambda re-emerge along the bright limb roughly an hour later, though its return will lack the drama and contrast of a dark limb disappearance. While occultations allow us to see how swiftly the moon moves in real time as well as provide information on its atmosphere or lack thereof, real science can be done, too.
Planets also are occasionally occulted by the moon. Time lapse of Venus’ disappearance on May 16, 2010
Observers along the occultation boundary in the southern U.S. can watch the star pop in and out of view as it’s alternately covered and uncovered by lunar peaks jutting from the moon’s limb. Before spacecraft thoroughly mapped the moon, careful timings made during these “grazing occultations” helped astronomers refine the profile of the moon’s limb as well as determine elevations of peaks and crater walls in polar regions. They can still be useful for refining a star’s position and motion in the sky.
The moon’s limb can also be used much like a doctor’s scalpel to split unsuspected double stars that otherwise can’t be resolved by direct observations. Take Lambda Gem for instance. We’ve known for a long time that it totes around a magnitude +10.7 companion star 10 arc seconds to its north-northeast, but previous occultations of the star have revealed an additional companion only a few hundredths of an arc second away orbiting the bright Lambda primary. The star plays a game of hide-and-seek, visible during some occultations but not others. Estimated by some as one magnitude fainter than Lambda, keep an eye out for it Monday night in the instant after Lambda goes into hiding.
Lunar occultation and reappearance of Antares Oct. 21, 2009
I watched just such a “two-step” disappearance of Antares and it fainter companion some years back. With brilliant Antares briefly out of view behind the moon’s limb, I easily spotted its magnitude +5.4 companion just 2.5 arc seconds away – an otherwise very difficult feat at my northern latitude.
Want to know more about things that disappear (and reappear) in the night? Make a visit to the International Occultation Timing Association’s websitewhere you’ll find lists of upcoming events, software and how to contribute your observations. If you’re game for Monday night’s occultation, click HEREfor a list of cities and times. Remember that the time show is Universal or Greenwich Time. Subtract 4 hours for Eastern Daylight, 5 for Central, 6 for Mountain and 7 for Pacific. Wishing you clear skies as always!
Yutu rover drives around Chang’e-3 lander – from Above And Below
Composite view shows China’s Yutu rover and tracks driving in clockwise direction around Chang’e-3 lander from Above And Below (orbit and surface). The Chang’e-3 timelapse lander color panorama (bottom) and orbital view (top) from NASA’s LRO orbiter shows Yutu rover after it drove down the ramp to the moon’s surface and began driving around the landers right side, passing by craters and heading south on Lunar Day 1. It then moved northwest during Lunar Day 2. Arrows show Yutu’s positions over time.
Credit: CNSA/NASA/Ken Kremer/Marco Di Lorenzo/Mark Robinson
See below more mosaics and LRO imagery
Story updated[/caption]
The powerful telescopic camera aboard NASA’s Lunar Reconnaissance Orbiter (LRO) has captured spectacular new images detailing the traverse of China’s Yutu moon rover around the landing site during its first two months exploring the Moon’s pockmarked grey terrain.
The newly released high resolution LRO images even show Yutu’s tracks cutting into the lunar surface as the world famous Chinese robot drove in a clockwise direction around the Chang’e-3 lander that delivered it to the ground in mid-December 2013.
You can precisely follow Yutu’s movements over time – from ‘above and below’ – in our new composite view (shown above) combining the latest LRO image with our timelapse mosaic showing the rover’s history making path from the touchdown point last December to today’s location.
Yutu is China’s first ever Moon rover and successfully accomplished a soft landing on the Moon on Dec. 14, 2013, piggybacked atop the Chang’e-3 mothership lander.
Barely seven hours after touchdown, the six wheeled moon buggy drove down a pair of ramps onto the desolate gray plains of the lunar surface at Mare Imbrium (Sea of Rains) covered by volcanic material.
Altogether three images of the rover and lander have been taken to date by the Lunar Reconnaissance Orbiter Camera (LROC) aboard LRO – specifically the hi res narrow angle camera (NAC).
The LROC NAC images were captured on Dec. 25, 2013, Jan. 21, 2014 and Feb. 17, 2014 as LRO soared overhead.
The four image LRO composite below includes a pre-landing image taken on June 30, 2013.
Since the solar incidence angles were different, the local topography and reflectance changes between images showing different levels of details.
“In the case of the Chang’e 3 site, with the sun higher in the sky one can now see the rover Yutu’s tracks (in the February image),” wrote Mark Robinson, Principal Investigator for the LROC camera in an LRO update.
The solar powered rover and lander can only operate during periods of lunar daylight, which last 14 days each.
During each lunar night, they both must power down and enter hibernate mode since there is no sunlight available to generate power and no communications are possible with Earth.
Here is a gif animation from the NASA LRO team combining all four LROC images.
During Lunar Day 1, Yutu drove down the landers ramps and moved around the right side in a clockwise direction.
By the end of the first lunar day, Yutu had driven to a position about 30 meters (100 feet) south of the Chang’e-3 lander, based on the imagery.
See our complete 360 degree timelapse color panorama from Lunar Day 1 herein and at NASA APOD on Feb. 3, 2014 – assembled by Marco Di Lorenzo and Ken Kremer.
After awakening for Lunar Day 2, Yutu then moved northwest and parked about 17 meters (56 feet) southwest of the lander, according to Robinson.
By comparing the Janaury and February images “it is apparent that Yutu did not move appreciably from the January location,” said Robinson.
At this moment Yutu and the companion Chang’e-3 lander are sleeping through their 3rd Lunar Night.
They entered hibernation mode on Feb. 22 and Feb. 23, 2014 respectively.
Hopefully both probes will awaken from their slumber sometime in the next week when the Moon again basks in daylight glow to begin a 4th day of lunar surface science operations.
“We all wish it would be able to wake up again,” said Ye Peijian, chief scientist of the Chang’e-3 program, according to CCTV, China’s state run broadcaster.
However, the hugely popular ‘Yutu’ rover is still suffering from an inability to maneuver its life giving solar panels. It is also unable to move – as I reported here.
The 140 kg rover is now nearing its planned 3 month long life expectancy on a moon roving expedition to investigate the moon’s surface composition and natural resources.
China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.
Stay tuned here for Ken’s continuing Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more planetary and human spaceflight news. Learn more at Ken’s upcoming presentations at the NEAF astro/space convention on April 12/13.
This time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at two different positions during its trek over the Moon’s surface at its landing site from Dec. 15-18, 2013. This view was taken from the 360-degree panorama.
Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo.
See our complete 5 position Yutu timelapse pano herein and 3 position pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm
Story updated[/caption]
The serious technical malfunction afflicting the life and continued operations of China’s Yutu moon rover since the start of its second Lunar Night time hibernation in late January 2014 has been identified as an inability to properly maneuver the life giving solar panels, according to a top Chinese space official.
“Yutu suffered a control circuit malfunction in its driving unit,” according to a newly published report on March 1 by the state owned Xinhua news agency.
“The control circuit problem prevented Yutu from entering the second dormancy as planned,” said Ye Peijian, chief scientist of the Chang’e-3 program, in an exclusive interview with Xinhua.
At the time that Yutu’s 2nd Lunar sleep period began on Jan. 25, 2014, Chinese space officials had announced that the robot’s future was in jeopardy after it suffered an unidentified “ mechanical control anomaly” due to the “complicated lunar surface.”
A functioning control circuit is required to lower the rovers mast and protect the delicate components and instruments mounted on the mast from directly suffering from the extremely harsh cold of the Moon’s recurring night time periods.
“Normal dormancy needs Yutu to fold its mast and solar panels,” said Ye.
The high gain communications antenna and the imaging cameras are attached to the mast.
They must be folded down into a warmed electronics box to shield them from the damaging effects of the Moon’s nightfall when temperatures plunge dramatically to below minus 180 Celsius, or minus 292 degrees Fahrenheit.
The solar panels also generate power during each Lunar day to keep the robot alive and conduct its mission of scientific exploration roving across the lunar terrain.
The rover and Chang’e-3 stationary lander must power down and sleep during each lunar night since there is no sunlight available to generate power and no communications are possible with Earth.
The panel driving unit also helps maneuver the panels into position to efficiently point to the sun to maximize the electrical output.
“The driving unit malfunction prevented Yutu to do those actions” said Ye.
Each lunar day and night lasts for alternating periods of 14 Earth days.
“This means Yutu had to go through the lunar night in extremely low temperatures.”
Apparently the mast was not retracted and remained vertical during the lunar nights 2 and 3.
And the camera somehow survived the harsh temperature decline and managed to continue operating since it snapped two images of the Chan’ge-3 lander during Lunar Day 3. See our two image mosaic – below.
In addition to being chief scientist of the Chang’e-3 program Ye is also a member of the National Committee of the Chinese People’s Political Consultative Conference, the country’s top political advisory body.
Yutu is China’s first ever Moon rover and successfully accomplished a soft landing on the Moon on Dec. 14, 2013, piggybacked atop the Chang’e-3 mothership lander.
Barely seven hours after touchdown, the six wheeled moon buggy drove down a pair of ramps onto the desolate gray plains of the lunar surface at Mare Imbrium (Sea of Rains) covered by volcanic material.
For a time in mid-February, mission scientists feared that Yutu would no longer function when because no signals were received until two days later than the planned “awakening” from Lunar Night 2 on Feb. 10.
Fortunately, Yutu did finally wake up some 48 hours late on Feb. 12 and function on Lunar Day 3.
And the team engaged in troubleshooting to try and identify and rectify the technical problems.
Since then, Chinese space engineers engaged in troubleshooting to try and identify and rectify the technical problems in a race against time to find a solution before the start of Lunar Night 3.
“Yutu only carried out fixed point observations during its third lunar day.” according to China’s State Administration of Science, Technology and Industry for National Defence (SASTIND), responsible for the mission.
However it did complete some limited scientific observations. And fortunately the ground penetrating radar, panoramic and infrared imaging equipment all functioned normally.
Yutu and the companion Chang’e-3 lander have again gone into sleep mode during Lunar Night 3 on Feb. 22 and Feb 23 respectively, local Beijing time.
But the issue with the control circuit malfunction in its driving unit remains unresolved and still threatens the outlook for Yutu’s future exploration.
See our new Chang’e-3/Yutu lunar panoramas by Ken Kremer and Marco Di Lorenzo herein and at NASA APOD on Feb. 3, 2014.
Yutu is now nearing its planned 3 month long life expectancy on a moon roving expedition to investigate the moon’s surface composition and natural resources.
The 1200 kg stationary lander is functioning normally. It is as expected to return science data about the Moon and conduct telescopic observations of the Earth and celestial objects for at least one year.
Yutu, which translates as ‘Jade Rabbit’ is named after the rabbit in Chinese mythology that lives on the Moon as a pet of the Moon goddess Chang’e.
“We all wish it would be able to wake up again,” said Ye according to CCTV, China’s state run broadcaster.
Ye will be reporting about Yutu and the Chang’e-3 mission at the annual session of the top advisory body, which opened today, Monday, March 3.
China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.
Stay tuned here for Ken’s continuing Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, Curiosity, GPM, LADEE, Mars and more planetary and human spaceflight news. Learn more at Ken’s upcoming presentations at the NEAF convention on April 12/13.
Here’s a few great astrophotos for today! Astrophotographer César Cantú from the Chilidog Observatory in Monterrey, Mexico captured this stunning halo around the Sun on March 2, 2014. A solar halo is an optical phenomenon produced by ice crystals creating colored or white arcs and spots in the sky. Conditions in the atmosphere have to be just right, with moisture or ice crystals creating a “rainbow” effect around the Sun. Sometimes the halos surround the Sun completely, other times, they appear as arcs around the Sun creating what is known as sundogs. Basically, sunlight is reflecting off moisture in the atmosphere.
Ice crystals in Earth’s atmosphere can also cause rings around the Moon, and moondogs and even Venus “pillars.”
But make sure you look at the crescent Moon tonight — if you’ve missed seeing the thin crescent the past two evenings, tonight it will still be only 11% illuminated (according to Universe Today’s Phases of the Moon app!). Tonight you still might have the chance to see a little Earthshine — reflected Earthlight visible on the Moon’s night side.
See some great crescent Moon and Earthshine images below!
This image comes from one of our “regulars,” John Chumack, who says, “If you have clear skies, go out again tonight (03-03-2014) and look West between 7:00pm and 8:00pm EST, you will see the crescent Moon with Earthshine!”
Also, just another note from John: between 7:00 pm and 8:00 pm the Planet Uranus is 7.5 degrees below the Crescent Moon just after Sunset, but you will not see Uranus until it gets dark enough. You will need a telescope or binoculars to easily view Uranus at Magnitude 5.9, shortly after 8:15pm Uranus will set in the west and then the Moon follows shortly after that.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Hard to believe the decades fly by so fast. It was 45 years ago today that the crew of Apollo 9 took off from the Kennedy Space Center en route to a big test of the lunar module. Being March 1969, history shows that it was only about four months later when men touched the moon for the first time ever.
Getting to the moon, however, required making sure that the lunar landing craft was in tip-top shape. This was the first test of the lunar module in space. Apollo 9 astronauts Jim McDivitt, Rusty Schweickart and Dave Scott spent several days shaking out the spacecraft in the relative safety of Earth orbit.
The mission is perhaps best remembered for the first docking of “Spider” (the lunar module) and “Gumdrop” (the command module), but plenty happened during their March 3-13, 1969 mission. You can relive some of the most memorable moments of training and the mission in the gallery below. More information on the mission is available at NASA.
Neil Armstrong — the first man on the moon, who died in 2012 — will now be the namesake of one of NASA’s research centers. A new law designated the Armstrong Flight Research Center took effect March 1, replacing the old name since 1976, the Dryden Flight Research Center.
Former NASA deputy administrator Hugh L. Dryden will still see his name in the area, however, as the center’s 12,000-square-mile (31,000-square-kilometer) Western Aeronautical Test Range is now called Dryden Aeronautical Test Range.
“I cannot think of a more appropriate way to honor these two leaders who broadened our understanding of aeronautics and space exploration,” stated NASA administrator Charles Bolden.
“Both Dryden and Armstrong are pioneers whose contributions to NASA and our nation still resonate today. Armstrong was the first person to walk on the moon. Dryden’s expertise at the National Advisory Committee for Aeronautics and then at NASA established America’s leadership in aerospace, and his vision paved the way for Armstrong to take those first steps.”
At the center, Armstrong is probably best remembered for his flights in the X-15, a rocket-powered aircraft that set several altitude and speed records in the 1960s. At what was then the NACA High-Speed Flight Station, he flew seven times in that particular experimental aircraft, along with 41 other kinds of aircraft, between 1955 and 1962. Armstrong was also involved with development of a predecessor to a lunar landing training vehicle used in the Apollo missions (which almost killed Armstrong in a practice run for Apollo 11).
Armstrong’s connection with the research center continued after he left the astronaut corps, when he was NASA’s deputy associate administrator for aeronautics. In this capacity, NASA wrote, he was “overseeing aeronautical research programs being conducted at the center, particularly its pioneering work on developing digital electronic flight control systems.”
The center is located on California’s Edwards Air Force Base. Renaming was directed in legislation authored by Rep. Kevin McCarthy (R) of California’s 22nd district (and also the house majority whip), NASA stated. After the bill passed the U.S. House of Representatives in 2013 and the Senate in January, President Barack Obama signed the name into law Jan. 16. A renaming ceremony is expected in the spring.
Armstrong is the second astronaut to have a center named after him. The Lewis Research Center in Cleveland was renamed Glenn Research Center after Sen. John Glenn (D) in 1999. Glenn flew twice in space. In 1962, Glenn became the first American to orbit the Earth. He then returned to space in 1998 at the age of 77, becoming the oldest person to fly in space to date.
Did you see it? Earlier this week, we wrote about the spectacular conjunction of the planet Venus and the waning crescent Moon this week, which culminated in a fine occultation of the planet by our large natural satellite on Wednesday morning. The footprint of the occultation crossed northern Africa in the predawn hours to greet daytime observers across southern Asia. And although the pass was a near miss for many, viewers worldwide were treated to a fine photogenic pairing of Venus and the Moon.
This was a highlight event of the 2014 dawn apparition of Venus, and some great pics have been pouring in to us here at Universe Today via Twitter, Google+ and our Flickr pool. We also learned a new word this week while immersed in astronomical research: a decrescent Moon. We first thought this was a typo when we came across it, but discovered that it stands for a waning crescent Moon going from Last Quarter phase to New. Hey, it’s got a great ring to it, and its less characters than “waning crescent” and thus comes ready Tweet-able.
Some great video sequences have emerged as well, including this fine grazing sequence of a daytime crescent Venus brushing past the crescent Moon taken by Shahrin Ahmad:
Shahrin journeyed to the northern tip of Peninsular Malaysia to the town of Perlis near near the Thai border to capture the graze. “It was a really close event,” he noted. “Today, the clouds began to appear and posed some real tense moments during the occultation.”
And although many weren’t fortunate enough to be in the path of the occultation, many observers worldwide captured some very photogenic scenes of the conjunction between the Moon and Venus as the pair rose this morning, including this great video sequence from Ryan Durnall:
And clear skies greeted a series of early morning astronomers worldwide, who shared these amazing images with us:
John Chumack was also up early this morning and was able to capture this fine image of the pair rising above the University of Dayton’s PAC Center:
“All I had available was a point and shoot camera (not even mine!)” Chumack told Universe Today. “I’m surprised it came out okay, considering all the ambient light on Campus!!!” Chumack used a Fujifilm Finepix S1000 point and shoot camera, and went sans tripod, doing a 2″ exposure with the camera perched atop a trash can. The results of this ad hoc setup look great!
Astrophotographer Giuseppe Petricca based in Pisa, Italy north of the occultation path also grabbed this outstanding closeup image of the crescent pair:
“This morning was awesome!” Petricca told Universe Today. “The weather forecast showed a compact high layer of clouds, but there were enough gaps between them that allowed me to see the conjunction in a lot of different moments.”
You can compare and contrast the twin crescents of Venus and the Moon evident in the above image. “You can easily see the phase of the Planet Venus and a lot of details on the lunar surface, despite the high clouds that partially blocked the view sometimes!” Petricca noted.
And finally, I give you our own humble entry, a conjunction over suburbia snapped pre-caffeination:
We think its great that you can sometimes catch a memorable glimpse of the celestial even from your own doorstep.
And when is the next occultation of a planet by the Moon? That would be next month, when Saturn is occulted by the waxing gibbous Moon for South Africa and Brazil after sunset on March 21st, 2014. We’re in the midst of a cycle of occultations of the ringed planet by the Moon, occurring every lunation through the final one this year on October 25th.
The next occultation of Venus occurs on October 23rd 2014, but is only one degree from the Sun and is unobservable. The next observable event occurs on July 19th 2015 for northern Australia in the daytime, and for a remote stretch of the South Pacific at dusk.
And its still not too late to spy Venus in the daytime today, using the nearby Moon as a guide. Here’s a handy simulation to aid you in your quest generated for mid-noon, February 26th:
And finally here’s handy chart of maps of occultations of Venus by the Moon for the current decade, just click to enlarge: