China’s Chang’e-3 Lander and Yutu Moon Rover – from Above and Below

Chang’e-3 lander and Yutu rover – from Above And Below Composite view shows China’s Chang’e-3 lander and Yutu rover from Above And Below (orbit and surface) – lander color panorama (top) and orbital view from NASA’s LRO orbiter (bottom). Chang’e-3 lander color panorama shows Yutu rover after it drove down the ramp to the moon’s surface and began driving around the landers right side to the south. Yellow lines connect craters seen in the lander panorama and the LROC image from LRO (taken at a later date after the rover had moved), red lines indicate approximate field of view of the lander panorama. Credit: CNSA/NASA/Ken Kremer/Marco Di Lorenzo/Mark Robinson

Chang’e-3 lander and Yutu rover – from Above And Below
Composite view shows China’s Chang’e-3 lander and Yutu rover from Above And Below (orbit and surface) – lander color panorama (top) and orbital view from NASA’s LRO orbiter (bottom). Chang’e-3 lander color panorama shows Yutu rover after it drove down the ramp to the moon’s surface and began driving around the landers right side to the south. Yellow lines connect craters seen in the lander panorama and the LROC image from LRO (taken at a later date after the rover had moved), red lines indicate approximate field of view of the lander panorama. Credit: CNSA/NASA/Ken Kremer/Marco Di Lorenzo/Mark Robinson
See further composite and panorama views below
Story updated
See our Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.html[/caption]

China’s Chang’e-3 lander and Yutu moon rover have been imaged from above and below – in one of those rare, astounding circumstances when space probes from Earth are exploring an extraterrestrial body both from orbit and the surface. And it’s even more amazing when these otherworldly endeavors just happen to overlap and involve actual work in progress to expand human knowledge of the unknown.

And it’s even rarer, when those images stem from active space probes built by two different countries on Earth.

Well by combining imagery from America’s space agency, NASA, and China’s space agency, CNSA, we are pleased to present some breathtaking views of ‘Chang’e-3 and the Yutu rover from Above and Below.’

Check out our composite mosaic (above) combining the view from the Moon’s orbit snapped by the hi res camera aboard NASA’s Lunar Reconnaissance Orbiter (LRO) with our new color panoramas from the Moon’s surface, compiling imagery from the landing site of China’s Chang’e-3 lander – with Yutu in transit in mid-Dec. 2013 soon after the successful touchdown.

See below an earlier composite mosaic using the first black and white panorama from the Chang’e-3 Moon lander.

Chang’e-3 lander and Yutu rover – from Above And Below  Composite view shows China’s Chang'e-3 lander and Yutu rover from Above And Below (orbit and surface) - lander panorama (top) and orbital view from NASA’s LRO orbiter (bottom).  Chang'e-3 lander B/W panorama from camera shows Yutu rover after it drove down the ramp to the moon’s surface and began driving around the landers right side to the south. Yellow lines connect craters seen in the lander panorama and the LROC image from LRO (taken at a later date after the rover had moved), red lines indicate approximate field of view of the lander panorama.    Credit: CNSA/NASA/Mark Robinson/Marco Di Lorenzo/Ken Kremer
Chang’e-3 lander and Yutu rover – from Above And Below
Composite view shows China’s Chang’e-3 lander and Yutu rover from Above And Below (orbit and surface) – lander panorama (top) and orbital view from NASA’s LRO orbiter (bottom). Chang’e-3 lander B/W panorama from camera shows Yutu rover after it drove down the ramp to the moon’s surface and began driving around the landers right side to the south. Yellow lines connect craters seen in the lander panorama and the LROC image from LRO (taken at a later date after the rover had moved), red lines indicate approximate field of view of the lander panorama. Credit: CNSA/NASA/Mark Robinson/Marco Di Lorenzo/Ken Kremer – kenkremer.com

The composite mosaic combines the efforts of Mark Robinson, Principal Investigator for the LRO camera, and the imaging team of Ken Kremer and Marco Di Lorenzo.

On Christmas eve, Dec. 24, 2013, NASA’s LRO captured it’s first images of China’s Chang’e-3 lander and Yutu moon rover – barely 10 days after the history making touchdown on Mare Imbrium (Sea of Rains) and just 60 meters east of the rim of a 450 meter diameter impact crater.

LRO was orbiting about 150 kilometers above Chang’e-3 and Yutu when the highest resolution orbital image was taken on 24 December 22:52:49 EST (25 December 03:52:49 UT).

Image of Chang'e-3 (top arrow) and Yutu rover captured by NASA's Lunar Reconnaissance Orbiter on Dec. 25 UTC
Image of Chang’e-3 (top arrow) and Yutu rover captured by NASA’s Lunar Reconnaissance Orbiter on Dec. 24, 2013

The orbital imagery was taken by the LRO orbiters high resolution Lunar Reconnaissance Orbiter Camera (LROC) – specifically the narrow angle camera (NAC).

See below my pre-launch cleanroom photo of LRO and the LROC cameras and other science instruments.

The Chang’e-3 lander color panorama shows the Yutu rover after it drove down the ramp to the moon’s surface and began driving a significant distance around the landers right side on its journey heading southwards.

1st 360 Degree Color Panorama from China’s Chang’e-3 Lunar Lander. This 1st color panorama from Chang’e-3 lander shows the view all around the landing site after the ‘Yutu’ lunar rover left impressive tracks behind when it initially rolled all six wheels onto the pockmarked and gray lunar terrain on Dec. 15, 2013. Mosaic Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com
1st 360 Degree Color Panorama from China’s Chang’e-3 Lunar Lander
This 1st color panorama from Chang’e-3 lander shows the view all around the landing site after the ‘Yutu’ lunar rover left impressive tracks behind when it initially rolled all six wheels onto the pockmarked and gray lunar terrain on Dec. 15, 2013. Mosaic Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com

Yellow lines connect craters seen in the lander panorama to those seen in the LROC hi res NAC image from LRO, in the composite view.

Robinson identified the lunar craters and determined the field of view on the LROC image.

The LRO image was taken at a later date (on Christmas eve) after the rover had already moved. Red lines on the orbital image indicate the approximate field of view of what is seen in the Chang’e-3 lander panorama.

Although Yutu is only about 150 cm wide – which is the same as the pixel size – it shows up in the NAC images for two reasons.

“The solar panels are very effective at reflecting light so the rover shows up as two bright pixels, and the Sun is setting thus the rover casts a distinct shadow (as does the lander),” says NASA in a statement.

In a historic first for China, the Chang’e-3 spacecraft safely touched down on the Moon at Mare Imbrium near the Bay of Rainbows nearly seven weeks ago on Dec. 14, 2013.

Seven hours later, the piggybacked 140 kg Yutu robot drove off a pair of ramps, onto the Moon and into the history books.

Yutu was about 10 meters away from the 1200 kg stationary lander when the lander panoramic images were taken.

The lander and Yutu were just completing their 1st Lunar Day of explorations when the LROC images were taken, and entered their first period of hibernation soon thereafter on Dec. 25 (Christmas Day) and Dec 26 respectively coinciding with the start of their 1st Lunar Night.

Both spacecraft awoke and functioned well during their 2nd Lunar Day, which just ended.

However, Yutu’s future mission is now in jeopardy following a serious mechanical anomaly this past weekend as both vehicles entered their 2nd hibernation period.

Apparently one of the solar panels did not fold back properly – perhaps due to dust accumulation – and its instruments may not survive.

Read my full story for complete details – here.

Yutu’s fate will remain unknown until the 3rd Lunar Day starts around Feb. 8 or 9.

So, What’s the terrain like at the Mare Imbrium landing site?

Chang’e-3 landed on a thick deposit of volcanic material.

“A large scale wrinkle ridge (~100 km long, 10 km wide) cuts across the area and was formed as tectonic stress caused the volcanic layers to buckle and break along faults. Wrinkle ridges are common on the Moon, Mercury and Mars,” says Robinson.

“The landing site is on a blue mare (higher titanium) thought to be about 3.0 billion years old.”

Older red mare about from 3.5 billion years is only 10 km to the north, he notes.

See our Chang’e-3 color panoramas now featured at NBC News and Space.com

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Stay tuned here for Ken’s continuing Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

LRO LROC Wide angle camera (WAC) color (689 nm, 415 nm, 321 nm) overlain on WAC sunset BW image. Note the proximity of the landing site to a contact between red and blue maria.  Credit: NASA/GSFC/Arizona State University
NASA’s Lunar Reconnaissance Orbiter (LRO) LROC Wide angle camera (WAC) color (689 nm, 415 nm, 321 nm) overlain on WAC sunset BW image. Note the proximity of the landing site to a contact between red and blue maria. Credit: NASA/GSFC/Arizona State University
LRO spacecraft (top) protected by gray colored blankets is equipped with 7 science instruments located at upper right side of spacecraft. Payload fairing in background protects the spacecraft during launch and ascent. Credit: Ken Kremer
NASA’s LRO spacecraft (top) protected by gray colored blankets is equipped with 7 science instruments located at upper right side of spacecraft. LRO is piggybacked atop NASA’s LCROSS spacecraft. Payload fairing in background protects the spacecraft during launch and ascent on Atlas V rocket. Credit: Ken Kremer

How to See Planet Mercury at its Best in 2014

Looking west on January 31st 30 minutes after sunset. (Created using Stellarium).

 There’s an often told anecdote that astronomer Nicolaus Copernicus never spied Mercury. And while this tale is almost certainly apocryphal, it does speak to just how elusive the innermost planet of our solar system really is.

Never seen Mercury for yourself? This final week of January offers a good time to try, as Mercury reaches greatest elongation east of the Sun on Friday, January 31st.

This will offer northern hemisphere viewers one on the best chances to spot the fleeting world low to the west immediately after local sunset. And although we get on average six apparitions of Mercury per year – three each in the dawn and dusk – all apparitions aren’t created equal.

The approximate moment of greatest elongation occurs on January 31st at 10:00 UT / 5:00 AM EST, when Mercury is 18.4 degrees east of the Sun. This is only 0.5 degrees shy of the smallest elongation for Mercury that can occur, as the planet reaches perihelion just three days later on February 3rd at 0.3075 Astronomical Units (AUs) from the Sun. The last time this was surpassed was the evening elongation of February 16th, 2013th, and the next time it’ll be topped is October 16th, 2015 at just 18.1 degrees from the Sun.

Path of Mercury from January 27th to February 12th. (Created using Starry Night).
Path of Mercury from January 27th to February 12th as seen from latitude 30 degrees north. (Created using Starry Night Education Software).

And though this elongation is closer than usual, this also works in the Mercury-spotter’s favor. At greatest elongation, Mercury will present a 50% illuminated 7 arc second disk, readily apparent in a small telescope. But a also means that Mercury will appear almost a full magnitude brighter than it does when it reaches greatest elongation near aphelion, as it last did on March 31st of last year, and will do again on March 14th of this year.

Mercury will shine at magnitude -0.4 low towards the west into this coming weekend. We managed to pick up Mercury with binoculars on January 16th and have since managed to start tracking the planet unaided since January 18th.

Mercury also has another factor going for it, in terms of the angle of the evening ecliptic. Following ahead of the Sun, Mercury occupies a space that the Sun will trace up its apparent path along the ecliptic as it begins its long slow crawl northward towards the Vernal Equinox on March 20th. This means that Mercury is almost perpendicular above the western horizon at dusk and is currently getting a maximum boost above the atmospheric murk.

Mercury also gets joined by a razor thin waxing crescent Moon just over 24 hours past New sliding by it on the evening of Friday, January 31st. Look for the Moon five degrees to the right of Mercury on the 31st. The Moon will be a much easier catch on the February 1st when its 10 degrees above Mercury. And can you spy the +1 magnitude star Fomalhaut in the constellation Piscis Austrinus just 20 degrees to the south of Mercury?

Stellarium
The orientation of the Moon and Mercury on the evening of February 1st. Credit: Stellarium.

And speaking of the Moon, this week’s New Moon is the second of the month, a feat that repeats in March 2014 and leaves the month of February “New Moon-less…” such an occurrence in either instance is informally known as a Black Moon.

Orbiting the Sun once every 88 days, Mercury completes about 4.15 circuits of the Sun for every Earth year. From our Earthbound vantage point, however, Mercury seems to only orbit the Sun 3.15 times a year. Thus 6 elongations (3 in the dusk and 3 in the dawn) will occur every year, through 7 can occur, as last happened in 2011 and will occur again next year in 2015.

August 15th, 2012.
Mercury (to the lower left) and the Moon on August 15th, 2012. (Photo by author).

After this weekend, Mercury will resume its plunge towards the horizon through early February. Mercury will begin retrograde (westward) apparent motion against the starry background on February 6th before resuming direct (eastward motion) on February 27th. And although astrologers may  find that “Mercury in retrograde” is a convenient “blame magnet,” they’re also falling prey to a logical fallacy known as retrofitting, as Mercury spends a longer fraction of time than any other planet “in retrograde” at about 20%!

From there, Mercury heads towards inferior conjunction between the Earth and the Sun on Saturday, February 15th, passing just 3.7 degrees north of the solar disk. You can catch Mercury entering into the field of view of the Solar Heliospheric Observatory’s (SOHO) LASCO C3 camera from February 12th to February 18th.

And although Mercury misses this time, we’re not that far away from the next transit of Mercury across the face of the Sun on May 9th, 2016.

Up for more? An even tougher challenge is to attempt to spot Mercury… in the daytime. We’ve noted this possibility before as Mercury reaches maximum elongation from the Sun while still in the negative magnitude range. Of course, you want to physically block the Sun out of view, and don’t even try sweeping the sky near the Sun visually with binoculars or a telescope! You’ll need a clear, blue sky for maximum contrast and a polarizing filter may help in your quest… but this should be possible under exceptional conditions.

Good luck, and be sure to send those Mercury pics in to Universe Today!

Yutu rover Suffers Significant Setback at Start of 2nd Lunar Night

This composite view shows China’s Yutu rover heading south and away forever from the Chang’e-3 landing site about a week after the Dec. 14, 2013 touchdown at Mare Imbrium. This cropped view was taken from the 360-degree panorama. See complete 360 degree landing site panorama herein. Chang’e-3 landers extreme ultraviolet (EUV) camera is at right, antenna at left. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com. See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm


China’s
maiden moon rover ‘Yutu’ has just suffered a significant mechanical setback right at the start of her 2nd lunar night, according to an official announcement from Chinese space officials made public this weekend.

The six wheeled Yutu rover, which means ‘Jade Rabbit’, has “experienced a mechanical control abnormality” in a new report by China’s official government newspaper, The People’s Daily.

‘Jade Rabbit’ was traversing southwards from the landing site as the incident occurred just days ago – about six weeks into its planned 3 month moon roving expedition.

However very few details have emerged or been released by the Chinese government about Yutu’s condition or fate.

“Scientists are organizing repairs,” wrote the People’s Daily.

The abnormality occurred due to the “complicated lunar surface environment,” said the State Administration of Science, Technology and Industry for National Defence (SASTIND) in a brief statement, without giving further details, according to the paper.

This situation is very serious because the “abnormality” took place just prior to the beginning of the 2nd lunar night and unavoidable ‘dormancy’ for both ‘Jade Rabbit’ and the Chang’e-3 mothership.

So it’s not clear at this time if Chinese space engineers were able to take any concrete actions to rectify the unspecified problem before both spacecraft entered their next two week long night time slumber.

Based on unofficial accounts, it appears that one of the solar panels did not fold back properly over Yutu’s mast after it was lowered to the required horizontal position into a warmed box to shield and protect it from the extremely frigid lunar night time temperatures.

That could potentially spell doom for the mast mounted instruments and electronic systems, including the color and navigation cameras and the high gain antenna, if true.

Portrait photo of Yutu moon rover taken by camera on the Chang'e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface.  Credit: Chinese Academy of Sciences
Portrait photo of Yutu moon rover taken by camera on the Chang’e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface. Credit: Chinese Academy of Sciences

The now world famous rover entered its second hibernation period at dawn on Saturday, Jan. 25, as the lunar night fell, according to the SASTIND statement.

The mothership “fell asleep” a day earlier on Friday, Jan 24.

Each ship had just completed their 2nd Lunar Day of operations and had apparently been functioning normally and taking planned scientific measurements and imagery.

The research program during Lunar Day 2 included optical telescope observations of the sky, extreme ultraviolent (EUV) observations of the Earth’s plasmasphere, subsurface radar measurements, and spectroscopic measurements with Yutu’s robotic arm.

Both vehicles depend on their life giving solar panels to produce power in order to function and accomplish their scientific tasks during each Lunar day which lasts approximately 14 days.

Likewise, each Lunar night also lasts approximately 14 Earth days.

In order to survive into the next Lunar day, they must each endure the utterly harsh and unforgiving lunar environment when the Moon’s temperatures plunge dramatically to below minus 180 Celsius, or minus 292 degrees Fahrenheit.

So they must enter a sleep mode to conserve energy since there is no sunlight to generate power with the solar arrays during the lunar night.

360-degree time-lapse color panorama from China’s Chang’e-3 lander This 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at three different positions during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com
360-degree time-lapse color panorama from China’s Chang’e-3 lander
This 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at three different positions during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com

During the nocturnal hiatus they are kept alive by a radioisotopic heat source that keeps their delicate computer and electronics subsystems warmed inside a box below the deck. It must be maintained at a temperature of about minus 40 degrees Celsius to prevent debilitating damage.

In a historic first for China, the Chang’e-3 spacecraft safely touched down on the Moon at Mare Imbrium near the Bay of Rainbows some six weeks ago on Dec. 14, 2013.

Seven hours later, the piggybacked 140 kg Yutu robot drove off a pair of ramps, onto the Moon and into the history books.

Is it Farewell Forever Yutu ??

We don’t know yet.

And since there is no communication possible during sleep mode, no one will know until the resumption of daylight some two weeks from now – around Feb. 8 to 9.

Traverse Path of Yutu rover from Dec. 14 landing to Dec. 21. Landscape textured with Chang'e 3 imagery from space and ground.  Credit: CNSA/BACC
Traverse Path of Yutu rover from Dec. 14 landing to Dec. 21. Landscape textured with Chang’e 3 imagery from space and ground. Credit: CNSA/BACC

Whatever happens, China can be proud of their magnificent accomplishment with the Yutu rover and the 1200 kg stationary Change’-3 lander which has reinvigorated lunar surface exploration after a nearly 40 year gap.

And we wish China’s scientists and engineers well !

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Meanwhile as we await the fate of China’s Yutu rover trundling across pitted moonscapes, NASA’s Opportunity rover is in the midst of Martian mountaineering at the start of Decade 2 on the Red Planet and younger sister Curiosity is speeding towards the sedimentary layers of Mount Sharp.

Stay tuned here for Ken’s continuing Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Now is Your Last Chance to Visit Inside NASA’s Iconic Vehicle Assembly Building – and maybe see an Orion

NASA’s iconic Vehicle Assembly Building (VAB) and Launch Control Center (LCC) at the Kennedy Space Center, Florida. Public access tours inside the VAB will end on Feb. 11, 2014. NASA's Apollo Saturn V Moon rockets and Space Shuttles were assembled inside. Credit: Ken Kremer - kenkremer.com

NASA’s iconic Vehicle Assembly Building (VAB) and Launch Control Center (LCC) at the Kennedy Space Center, Florida. Public access tours inside the VAB will end on Feb. 11, 2014. NASA’s Apollo Saturn V Moon rockets and Space Shuttles were assembled inside.
Credit: Ken Kremer – kenkremer.com
Story updated- Last chance to visit VAB extended to Feb. 23[/caption]

If you have ever wanted to take a personal trip inside NASA’s world famous Vehicle Assembly Building (VAB) at Kennedy Space Center in Florida, now is the time.

In fact this is your last chance. Because access to the hugely popular public tours will end very soon. And perhaps you’ll see an Orion test capsule too.

Indeed you only have until Feb. 11 [Update: now extended to Feb. 23] to enjoy the KSC “Up-Close Tour” inside the 52 story tall VAB, according to an announcement by the privately run Kennedy Space Center Visitor Complex, which organizes the VAB tours.

The VAB is an iconic world wide symbol of America’s space program.

And it’s home to many of NASA’s finest and most historic exploration achievements – including all the manned Apollo Moon landings and the three decade long Space Shuttle program that launched the Hubble Space Telescope and the International Space Station (ISS) to orbit.

Why are the interior public tours being halted, barely 2 years after they started?

Because after a bit of a lull following the termination of NASA’s Space Shuttle program, space launch activities are ramping up once again and the agency must complete much needed building renovations to prepare for the next step in human exploration of the cosmos – SLS, Orion and commercial ‘space taxis’.

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com

The agency needs unfettered use of the VAB to prepare for assembly, lifting and stacking of the new Orion crew capsule and it’s new monster booster rocket – the Space Launch System (SLS) – slated for its maiden blastoff in 2017.

You can always see the 525 foot tall VAB from the outside, gleaming proudly from miles away.

And it’s a must see from up close outside glimpses aboard tour buses driving by all day long – resplendent with a mammoth red, white and blue American flag painted on its side.

But nothing compares to being an eyewitness to history and seeing it from the inside with your own eyes, especially if you are a space enthusiast!

The VAB is one of the largest and most voluminous buildings in the world.

Since 1978, the VAB interior had been off limits to public visitors for more than 30 years during the shuttle era. It was too hazardous to visit because of the presence of the giant shuttle solid rocket boosters loaded with fuel.

Orion Ground Test Article (GTA) recently displayed on the floor inside the Vehicle Assembly Building (VAB).    Credit: Ken Kremer - kenkremer.com
Orion Ground Test Article (GTA) recently displayed on the floor inside the Vehicle Assembly Building (VAB). Credit: Ken Kremer – kenkremer.com

Inside access was finally restored to guests at Kennedy Space Center Visitor Complex in November 2011, following the retirement of the space shuttles.

Visitors could again “see firsthand where monstrous vehicles were assembled for launch, from the very first Saturn V rocket in the late 1960s to the very last space shuttle, STS-135 Atlantis, in 2011.”

Although the shuttles are now gone, there is a possibility that maybe you’ll be lucky enough to see an Orion test capsule that’s been used in real ground testing to help NASA prepare for upcoming missions.

Since the layout is constantly changing, there is no guarantee on seeing the Orion.

Possibly either an Orion boilerplate test article or the Ground Test Article (GTA) which was the first flight worthy Orion capsule to be built. The GTA is the path finding prototype for the Orion EFT-1 capsule currently in final assembly and slated to launch this Fall 2014.

Perhaps you’ll be lucky enough to snap a shot like one of mine of the Orion GTA on the floor of the main working area of the VAB – known as the transfer aisle.

You will definitely get the feel for the greatest hits in space history inside the place where the moon rockets and space shuttles were lifted, stacked and assembled for flight and then rolled out to either Launch Pad 39 A or 39 B.

Atlantis approaches the VAB for the final time. Credit: Ken Kremer
Atlantis approaches the VAB for the final time during preparations for the STS-135 flight in 2011. Credit: Ken Kremer – kenkremer.com

“Kennedy Space Center Visitor Complex has been honored to give our guests rare access to the VAB for the past two years, yet we knew that the day would come when preparations for the SLS would take precedent,” said Therrin Protze, chief operating officer for the Visitor Complex, in a statement.

“Kennedy Space Center is an operating space program facility, and preparations for the next chapter in space exploration are the utmost priority, and we are very excited about the future.”

Starting in 2017, America will again launch a mighty rocket – the SLS that will blast Americans to deep space after an unbelievable 50 year gap.

Full belly view of Space Shuttle Discovery coated with thousands of protective heat shield tiles in the transfer aisle of the VAB where it was processed for final launch on STS-133 mission.  Note two rectangular attach points holding left and right side main separation bolts. Credit: Ken Kremer - kenkremer.com
Full belly view of Space Shuttle Discovery coated with thousands of protective heat shield tiles in the transfer aisle of the VAB where it was processed for final launch on STS-133 mission. Note two rectangular attach points holding left and right side main separation bolts. Credit: Ken Kremer – kenkremer.com

So for only about the next two weeks, you can see one of the greatest treasures of America’s space program and appreciate the cavernous interior from where our astronauts once set off for the Moon as part of the “Mega Tour”.

The “Mega Tour”, which also included visits to Launch Pad 39 A and the Launch Control Center (LCC) ends on Feb. 11, the visitor complex announced.

However the visitor complex is still offering a modified “Up-Close” tour to Pad 39A and the Launch Control Center (LCC) – at this time. But that’s subject to change at any moment depending on NASA’s priorities.

View of NASA’s 52 story tall Vehicle Assembly Building (VAB) as seen from the top of Launch Pad 39 A.    Credit: Ken Kremer - kenkremer.com
View of NASA’s 52 story tall Vehicle Assembly Building (VAB) as seen from the very top of Launch Pad 39 A gantry. Credit: Ken Kremer – kenkremer.com

And don’t forget that you can also see NASA’s genuine Space Shuttle Atlantis in its new permanent exhibition hall at the Kennedy Space Center Visitor Complex.

Please check the visitor center website for complete details and admission pricing on “Up-Close” tours and everything else – www.kennedyspacecenter.com

There is one thing I can guarantee – if you don’t go you will see nothing!

Catch it if you can. It’s NOT coming back any time soon!

Stay tuned here for Ken’s continuing Orion, Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Space Shuttle Atlantis permanent display at Kennedy Space Center Visitor Complex, Florida. Credit: Ken Kremer - kenkremer.com
Space Shuttle Atlantis permanent display at Kennedy Space Center Visitor Complex, Florida. Credit: Ken Kremer – kenkremer.com
View of the Vehicle Assembly Building (VAB) and the Turn Basin adjacent to the Kennedy Space Center Press Center and the countdown clock. Credit: Ken Kremer – kenkremer.com
View of the Vehicle Assembly Building (VAB) and the Turn Basin adjacent to the Kennedy Space Center Press Center and the countdown clock. Credit: Ken Kremer – kenkremer.com

NASA Pressing Towards Fall 2014 Orion Test Flight – Service Module Complete

Engineers prepare Orion’s service module for installation of the fairings that will protect it during launch this fall when Orion launches on its first mission. The service module, along with its fairings, is now complete. Credit: NASA

Engineers prepare Orion’s service module for installation of the fairings that will protect it during launch this fall when Orion launches on its first mission. The service module, along with its fairings, is now complete. Credit: NASA
Story Updated[/caption]

2014 is the Year of Orion.

Orion is NASA’s next human spaceflight vehicle destined for astronaut voyages beyond Earth and will launch for the first time later this year on its inaugural test flight from Cape Canaveral, Florida.

The space agency is rapidly pressing forward with efforts to finish building the Orion crew module slated for lift off this Fall on the unmanned Exploration Flight Test – 1 (EFT-1) mission.

NASA announced today that construction of the service module section is now complete.

NASA Administrator Charles Bolden and science chief Astronaut John Grunsfeld discusses NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden and science chief Astronaut John Grunsfeld discuss NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

The Orion module stack is comprised of three main elements – the Launch Abort System (LAS) on top, the crew module (CM) in the middle and the service module (SM) on the bottom.

With the completion of the service module, two thirds of the Orion EFT-1 mission stack are now compete.

LAS assembly was finalized in December.

The crew module is in the final stages of construction and completion is due by early spring.

Orion is being manufactured at NASA’s Kennedy Space Center (KSC) inside a specially renovated high bay in the Operations and Checkout Building (O&C).

“We are making steady progress towards the launch in the fall,” said NASA Administrator Charles Bolden at a media briefing back dropped by the Orion service module inside the O&C facility.

“It’s very exciting because it signals we are almost there getting back to deep space and going much more distant than where we are operating in low Earth orbit at the ISS.”

“And I’m very excited for the young people who will have an opportunity to fly Orion,” Bolden told me in the O&C.

Lockheed Martin is the prime contractor for Orion under terms of a contract from NASA.

Orion is NASA’s first spaceship designed to carry human crews on long duration flights to deep space destinations beyond low Earth orbit, such as asteroids, the Moon, Mars and beyond.

The inaugural flight of Orion on the unmanned Exploration Flight Test – 1 (EFT-1) mission is on schedule to blast off from the Florida Space Coast in mid September 2014 atop a Delta 4 Heavy booster, Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told Universe Today during a recent interview at KSC.

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Service Module at bottom. Credit: Ken Kremer/kenkremer.com

Orion is currently under development as NASA’s next generation human rated vehicle to replace the now retired space shuttle.

Concurrently, NASA’s commercial crew initiative is fostering the development of commercial space taxi’s to ferry US astronauts to low Earth orbit and the International Space Station (ISS).

Get the details in my interview with SpaceX CEO Elon Musk about his firm’s Dragon ‘space taxi’ launching aboard the SpaceX upgraded Falcon 9 boosterhere.

The two-orbit, four- hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

The crew module rests atop the service module, similar to the Apollo Moon landing program architecture.

Orion service module assembly in the Operations and Checkout facility at Kennedy Space Center.   Credit: Ken Kremer/kenkremer.com
Orion service module assembly in the Operations and Checkout facility at Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

The SM provides in-space power, propulsion capability, attitude control, thermal control, water and air for the astronauts.

For the EFT-1 flight, the SM is not fully outfitted. It is a structural representation simulating the exact size and mass.

In a significant difference from Apollo, Orion is equipped with a trio of massive fairings that encase the SM and support half the weight of the crew module and the launch abort system during launch and ascent. The purpose is to improve performance by saving weight from the service module, thus maximizing the vehicles size and capability in space.

All three fairings are jettisoned at an altitude of 100 miles up when they are no longer need to support the stack.

The fairings that will protect it during launch are added to Orion’s service module at the Operations and Checkout facility at Kennedy Space Center.  Credit: NASA
The fairings that will protect it during launch are added to Orion’s service module at the Operations and Checkout facility at Kennedy Space Center. Credit: NASA

On the next Orion flight in 2017, the service module will be manufactured built by the European Space Agency (ESA).

“When we go to deep space we are not going alone. It will be a true international effort including the European Space Agency to build the service module,” said Bolden.

The new SM will be based on components from ESA’s Automated Transfer Vehicle (ATV) which is an unmanned resupply spacecraft used to deliver cargo to the ISS.

A key upcoming activity for the CM is installation of the thermal protection system, including the heat shield.

The heat shield is the largest one ever built. It arrived at KSC last month loaded inside NASA’s Super Guppy aircraft while I observed. Read my story – here.

The 2014 EFT-1 test flight was only enabled by the extremely busy and productive year of work in 2013 by the Orion EFT-1 team.

“There were many significant Orion assembly events ongoing on 2013” said Larry Price, Orion deputy program manager at Lockheed Martin, in an interview with Universe Today at Lockheed Martin Space Systems in Denver.

“This includes the heat shield construction and attachment, power on, installing the plumbing for the environmental and reaction control system, completely outfitting the crew module, attached the tiles and building the service module which finally leads to mating the crew and service modules (CM & SM) in early 2014,” Price told me.

Orion was originally planned to send American astronauts back to Moon – until Project Constellation was cancelled by the Obama Administration.

Now with Orion moving forward and China’s Yutu rover trundling spectacularly across the Moon, one question is which country will next land humans on the Moon – America or China?

Read my story about China’s manned Moon landing plans – here.

Stay tuned here for Ken’s continuing Orion, Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Orion schematic. Credit: NASA
Orion schematic. Credit: NASA
NASA Administrator Charles Bolden meets the media including Ken Kremer/Universe Today to discuss NASA’s human spaceflight initiatives and Orion crew capsule being assembled at the Kennedy Space Center. Credit: Urijan Poerink
NASA Administrator Charles Bolden meets the media including Ken Kremer/Universe Today to discuss NASA’s human spaceflight initiatives and Orion crew capsule being assembled at the Kennedy Space Center. Credit: Urijan Poerink

China’s Yutu rover trundles across the Moon in Time-lapse Panorama

This time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at two different positions during its trek over the Moon’s surface at its landing site from Dec. 15-18, 2013. This view was taken from the 360-degree panorama. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo. See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm

This time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at two different positions during its trek over the Moon’s surface at its landing site from Dec. 15-18, 2013. This view was taken from a 360-degree panorama – see below.
Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo
Story updated
This mosaic was selected as Astronomy Picture of the Day (APOD) on Feb. 3, 2014
http://apod.nasa.gov/apod/ap140203.html[/caption]

A new time-lapse photomosaic shows China’s Yutu rover dramatically trundling across the Moon’s stark gray terrain in the first week after she rolled all six wheels onto the desolate lunar plains.

Our complete time-lapse mosaic (see below) shows Yutu at three different positions trekking around the landing site, and gives a real sense of how it is maneuvering around – on the 1st Lunar Day.

The 360-degree panoramic mosaic was created from images captured by the color camera aboard China’s Chang’e-3 lander, the country’s first spacecraft to successfully soft land on the Moon.

The time-lapse mosaic was stitched together by the imaging team of scientists Ken Kremer and Marco Di Lorenzo using images just released on a Chinese language website.

We integrated the wide screen panorama with additional images of Yutu taken by the lander as she roved around the right side of the mothership during her 1st Lunar Day – to create the new time-lapse panorama.

To me the moonscape is rather reminiscent of the scenery from NASA’s manned Apollo lunar landing missions which took place over 4 decades ago – from 1969 to 1972.

360-degree time-lapse color panorama from China’s Chang’e-3 lander This 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at three different positions during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com
360-degree time-lapse color panorama from China’s Chang’e-3 lander This 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at three different positions during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com

Our time-lapse Yutu mosaic was initially featured at NBC News by Alan Boyle – here.

Here’s the original 360 degree panorama:

1st 360 Degree Color Panorama from China’s Chang’e-3 Lunar Lander. This 1st color panorama from Chang’e-3 lander shows the view all around the landing site after the ‘Yutu’ lunar rover left impressive tracks behind when it initially rolled all six wheels onto the pockmarked and gray lunar terrain on Dec. 15, 2013. Mosaic Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com
1st 360 Degree Color Panorama from China’s Chang’e-3 Lunar Lander. This 1st color panorama from Chang’e-3 lander shows the view all around the landing site after the ‘Yutu’ lunar rover left impressive tracks behind when it initially rolled all six wheels onto the pockmarked and gray lunar terrain on Dec. 15, 2013. Mosaic Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com

The first portrait of Yutu was taken shortly after it first drove off the 1200 kg Chang’e-3 lander on Dec. 15. The last Yutu position shows her heading off to the south and departing the landing site forever.

She’s not ever coming back to see the stationary lander again, according to China’s Chang’e-3 mission team.

Yutu, which translates as ‘Jade Rabbit’, is on her own from now on.

This composite view shows China’s Yutu rover heading south and away forever from the Chang’e-3 landing site about a week after the Dec. 14, 2013 touchdown at Mare Imbrium. This cropped view was taken from the 360-degree panorama. See complete 360 degree landing site panorama below. Chang’e-3 landers extreme ultraviolet (EUV) camera is at right, antenna at left. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com
This composite view shows China’s Yutu rover heading south and away forever from the Chang’e-3 landing site about a week after the Dec. 14, 2013 touchdown at Mare Imbrium. This cropped view was taken from the 360-degree panorama. See complete 360 degree landing site panorama herein. Chang’e-3 landers extreme ultraviolet (EUV) camera is at right, antenna at left. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com

Chang’e-3 safely touched down on the Moon at Mare Imbrium near the Bay of Rainbows on Dec. 14, 2013.

Seven hours later, the piggybacked 140 kg Yutu robot drove off a pair of ramps, onto the Moon and into the history books.

Here is the initial black and white panoramic version from the Chang’e-3 navigation camera – which we assembled from screenshots taken as it was twirling about in a CCTV news video report.

1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer
1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer

The Chang’e-3 mothership and Yutu rover are now working during their 2nd Lunar Day, having survived the harsh extremes of their 1st Lunar Night when temperatures plummeted to below minus 180 degrees Celsius, or minus 292 degrees Fahrenheit.

They have resumed full operation and are conducting research investigations. Each is equipped with four science instruments.

All the equipment is functioning well except alas for the color camera used to snap the images for the photomosaics herein.

Photo of Chang'e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013. Credit: CNSA
Photo of Chang’e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013. Credit: CNSA

China’s official Xinhua new agency reports that the instruments aboard the lander and rover have each collected a large amount of data about the Moon, Earth and celestial objects.

Scientists have created a star atlas around the constellation Draco and used the ground penetrating radar to survey the moon’s subsurface and soil structure to depths of 10 to 140 meters.

Meanwhile as China’s Yutu rover trundles across pitted moonscapes, NASA’s Opportunity rover is in the midst of Martian mountaineering at the start of Decade 2 on the Red Planet and younger sister Curiosity is speeding towards the sedimentary layers of Mount Sharp.

Stay tuned here for Ken’s continuing Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Traverse Path of Yutu rover from Dec. 14 landing to Dec. 21. Landscape textured with Chang'e 3 imagery from space and ground.  Credit: CNSA/BACC
Traverse Path of Yutu rover from Dec. 14 landing to Dec. 21. Landscape textured with Chang’e 3 imagery from space and ground. Credit: CNSA/BACC

The Moon Occults Saturn in the Dawn this Weekend

Saturn and the waning crescent Moon rising to the SE at about 4 AM local on January 25th, 2014. Created using Stellarium

 Mark your calendars: the first in a series of interesting occultations of Saturn by the Moon for 2014 starts this weekend.

The year 2014 features 11 occultations of the planet Saturn by the Moon, and there are 23 total for 2014 of every planet except Neptune and Jupiter.

An occultation occurs when one foreground celestial object completely obscures another. Technically, a total solar eclipse is an occultation of the Sun by the Moon, although it’s never referred to as such. The term finds modern usage mainly for the blocking of stars and planets by the Moon. Very occasionally, an asteroid or planet can occult a distant star as well.

And yes, the modern astronomical term “occultation” traces its hoary roots back to the days when astronomy was intertwined with the pseudoscience of astrology.  To this day, the term still makes some folks wonder if astronomers are secretly casting horoscopes. Trust us, you’re still on a solid astronomical footing to use the term “occultation.”

Unfortunately, the January 25th occultation of Saturn by the Moon will only grace part of Antarctica, southern Argentina and Chile, and the Falkland Islands post-sunrise. The rest of us still will see a very photogenic pass of Saturn near the waning crescent Moon on the morning of Saturday, January 25th. The Moon will pass just about a degree — two times its apparent width — south of Saturn for northern hemisphere observers.

The footprint for the January 25th occultation of Saturn by the Moon. dashed lines indicate where the events occurs in the daytime sky. (Created using Occult 4.0.11 software)
The footprint for the January 25th occultation of Saturn by the Moon. dashed lines indicate where the events occurs in the daytime sky. (Created using Occult 4.0.11 software)

Both the Moon and Saturn will reside in the astronomical constellation of Libra this weekend during closest passage. The pair will rise around 2 AM local. After their brief tryst, the Moon will head towards New on January 30th while Saturn will continue to rise successively earlier as its heads towards opposition and the start of evening Saturn observing season on May 10th, 2014.

January 2014 is also notable for having two New Moons, an occurrence informally known as a Black Moon. This occurs again this year in March, and February 2014 is devoid of a New Moon. February is the only month that can be “missing a Moon phase” as it’s the only one shorter the synodic period of 29.5 days, in which the Moon returns to like phase.

Saturn as imaged by the author in 2012.
Saturn as imaged by the author in 2012.

In the telescope, Saturn will present a +0.8 magnitude disk 16” across (38” with rings from tip-to-tip). Saturn’s rings are tipped open to our line of sight by about 22 degrees in 2014, and are widening towards a maximum of 27 degrees in 2016 through 2017. If you have an equatorial telescope with tracking capability, it may be possible this weekend to follow Saturn up into the daytime sky. Though Saturn isn’t quite bright enough to see in the daytime unaided, it might just be possible to spy using binoculars on the 25th using the nearby crescent Moon as a guide.  Saturn is a tough daytime target to be sure, but it’s not impossible to acquire with a little skill and patience.

The current cycle of occultations of Saturn began on December 1st, 2013 and ends on November 22nd, 2014. The cycle will move progressively northward through the year.

The Moon and Saturn put on a repeat performance over almost the same exact location (this time in darkness) on April 17th, 2014, and the best event in the cycle for North America will be the August 31st daytime occultation of Saturn by the waxing crescent Moon.

Now for the wow factor of what you’re seeing. On Saturday morning, the Moon is just over 371,000 kilometres distant, or a little over a light second away. Saturn is over four thousand times more remote at just over 10.1 astronomical units (AUs) distant, which works out to 1.5 billion kilometres, or over 83 light minutes away.  And although the Moon is over a 112 times larger in apparent diameter than Saturn as seen from the Earth, the globe of Saturn is actually over 34 times bigger.

Saturn and the Moon crossing the local meridian shortly after sunset on January 25th. Created using Starry Night Education Software.
Saturn and the Moon crossing the local meridian shortly after sunset on January 25th. Created using Starry Night Education Software.

And though we’ve been to the Moon lots since the dawn of the Space Age, only two spacecraft (Voyagers 1 and 2) have made brief flybys of the ringed world, and only one – Cassini – has orbited it. Note that China’s Chang’e-3 lander and rover are about to experience their second sunset this weekend as well from the lunar surface since landing on the Moon last month.

And although lots of planets get occulted by the Moon in 2014, no stars brighter than +1st magnitude lie in its path. In fact, the next cycle of bright star occultations by the Moon doesn’t resume until the Moon meets Aldebaran in January 29th, 2015.

There are, however, over a 100 lesser events involving the Moon occulting naked eye stars worldwide in 2014. Two such events occur this week as well, when the 48% illuminated Moon occults the +4.5th magnitude star Lambda Virginis for west-central South America on the morning of January 24th, and the occultation of the +2.8th magnitude star Alpha Librae  (Zubenelgenubi) for central Asia on January 25th.

Don’t miss these celestial events, and be sure to send those pics in to Universe Today… there’s something for everyone happening in the sky this week worldwide!

1st 360 Degree Color Panorama from China’s Chang’e-3 Lunar Lander

1st 360 Degree Color Panorama from China’s Chang’e-3 Lunar Lander. Portion of 1st color panorama from Chang’e-3 lander focuses on the ‘Yutu’ lunar rover and the impressive tracks it left behind after initially rolling all six wheels onto the pockmarked and gray lunar terrain on Dec. 15, 2013. Mosaic Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo

1st 360 Degree Color Panorama from China’s Chang’e-3 Lunar Lander
Portion of 1st color panorama from Chang’e-3 lander focuses on the ‘Yutu’ lunar rover and the impressive tracks it left behind after initially rolling all six wheels onto the pockmarked and gray lunar terrain on Dec. 15, 2013. Mosaic Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo
See below – the complete panoramic version as well as a 360 degree interactive version
Will humans follow?[/caption]

Chinese space officials have at last released much higher quality versions of the 1st color imagery captured by China’s first spacecraft to soft land on the surface of the Earth’s Moon; Chang’e-3.

For the enjoyment of space enthusiasts worldwide, we have assembled the newly released imagery to create the ‘1st 360 Degree Color Panorama from China’s Chang’e-3 Lunar Lander.’ See above and below two versions in full resolution, as well as an interactive version – showing the fabulous view on the 1st Lunar Day.

The moonscape panorama shows the magnificent desolation of the pockmarked gray lunar plains at the mission’s touchdown site at Mare Imbrium. It is starkly reminiscent of NASA’s manned Apollo lunar landing missions which took place over 4 decades ago – from 1969 to 1972.

And this spectacular view may well be a harbinger of what’s coming next – as China’s leaders consider a manned lunar landing perhaps a decade hence, details here.

See above a cropped portion – focusing on the piggybacked ‘Yutu’ lunar rover and the impressive tracks it left behind after it initially rolled all six wheels onto the surface; and which cut several centimeters deep into the loose lunar regolith on Dec. 15, 2013.

The beautiful imagery snapped by China’s history making Chang’e-3 lunar lander on 17 and 18 December 2013 – during its 1st Lunar day – was released in six separate pieces on the Chinese language version of the Chinanews website, over the weekend.

See below the compete version of the 360 degree panorama stitched together by the imaging team of scientists Ken Kremer and Marco Di Lorenzo.

1st 360 Degree Color Panorama from China’s Chang’e-3 Lunar Lander. This 1st color panorama from Chang’e-3 lander shows the view all around the landing site after the ‘Yutu’ lunar rover left impressive tracks behind when it initially rolled all six wheels onto the pockmarked and gray lunar terrain on Dec. 15, 2013. Mosaic Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com
1st 360 Degree Color Panorama from China’s Chang’e-3 Lunar Lander
This 1st color panorama from Chang’e-3 lander shows the moonscape view all around the landing site after the ‘Yutu’ lunar rover left impressive tracks behind when it initially rolled all six wheels onto the pockmarked and gray lunar terrain on Dec. 15, 2013. Mosaic Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com

We have also enhanced the imagery to improve contrast, lighting and uniformity to visibly reveal further details.

For comparison, below is the initial black and white panoramic version seen by the landers navigation camera – which we assembled from screenshots taken as it was twirling about in a CCTV news video report.

1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer
1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer

Alas, one bit of sad news is that it appears the 1200 kg lander’s color camera apparently did not survive the 1st frigid night since it reportedly wasn’t protected by a heater.

For a collection of new and higher quality Chang’e-3 mission photos – including the 1st portraits of the Earth taken from the Moon’s surface in some 40 years – please check my recent article; here.

Check this link – to view a 360 degree interactive version of the first Chang’e-3 color panorama – created by space enthusiast Andrew Bodrov. He has added in a separate image of the Earth snapped by the lander.

China’s action to release higher quality imagery is long overdue and something I have urged the Chinese government to do on several occasions here so that everyone can marvel at the magnitude of China’s momentous space feat.

We applaud the China National Space Administration (CNSA) for this new release and hope they will publish the higher resolution digital versions of all the imagery taken by the Chang’e-3 mothership and the Yutu rover and place everything onto a dedicated mission website – just as NASA does.

Here’s the pair of polar views of the 360 degree lunar landing site panoramas (released last week) – taken by each spacecraft and showing portraits of each other.

This digitally-combined polar panorama shows a 360 degree color view of the moonscape around the Chang’e-3 lander after the Yutu moon rover drove onto the lunar surface leaving visible tracks behind.  Images were taken from Dec. 17 to Dec. 18, 2013.  Credit: Chinese Academy of Sciences
This digitally-combined polar panorama shows a 360 degree color view of the moonscape around the Chang’e-3 lander after the Yutu moon rover drove onto the lunar surface leaving visible tracks behind. Images were taken from Dec. 17 to Dec. 18, 2013. Credit: Chinese Academy of Sciences
This digitally-combined polar panorama shows a 360 degree black and white view of the moonscape around the Yutu moon rover after it drove off the Chang’e-3 lander at top and left visible tracks behind.  Images were taken on Dec. 23, 2013.  Credit: Chinese Academy of Sciences
This digitally-combined polar panorama shows a 360 degree black and white view of the moonscape around the Yutu moon rover after it drove off the Chang’e-3 lander at top and left visible tracks behind. Images were taken on Dec. 23, 2013. Credit: Chinese Academy of Sciences

China’s history making moon robots – the Chang’e-3 lander and Yutu rover – are now working during their 2nd Lunar Day. They have resumed full operation – marking a major milestone in the new mission.

It’s remarkable to consider that although they were just awoken last weekend on Jan. 11 and Jan. 12 from the forced slumber of survival during their long frigid 1st lunar night, they are now already half way through Lunar Day 2 – since each day and night period on the Moon lasts two weeks.

Photo of Chang'e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013. Credit: CNSA
Photo of Chang’e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013. Credit: CNSA

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Meanwhile as China’s Yutu rover trundles across pitted moonscapes, NASA’s Opportunity rover is in the midst of Martian mountaineering at the start of Decade 2 on the Red Planet and younger sister Curiosity is speeding towards the sedimentary layers of Mount Sharp.

Stay tuned here for Ken’s continuing Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Chang’e 3 Lander Beams Back New Lunar Panorama Photos

AfricaCredit: Chinanews.com

Little by little we’re getting sharper, clearer pictures from the Chinese Chang’e 3 moon mission. Yesterday the lander beamed back a series of new photos taken with its panoramic camera. Stitched together, they give us a more detailed and colorful look of the rover’s surroundings in northern Mare Imbrium. I’ve ordered the images starting with a nice crisp view of the Yutu rover; from there we turn by degree to the right across the five frames. The final mosaic unfortunately doesn’t have the resolution yet of the other images. Perhaps one will be published soon.

The lander's solar panels stand out in the foreground with a smattering of small craters nearby. Credit: Chinanews.com
The lander’s solar panels stand out in the foreground with a smattering of small craters nearby. Credit: Chinanews.com
Right of the rover we see more panels and a radio communications dish. Credit: Chinanews.com
Right of the rover we see more panels and a radio communications dish. Credit: Chinanews.com
A larger crater surrounded by what appears to be excavated impact ejecta is visible near the horizon at upper right. Credit: Chinanews.com
A larger crater surrounded by what appears to be excavated impact ejecta is visible near the horizon at upper right. Credit: Chinanews.com
Yutu's tracks stand out in this final image. Credit: Chinanews.com
Yutu’s tracks and another crater with ejecta stand out in this final image. Credit: Chinanews.com

 

Complete, if small, panorama stitched from the single images. Credit: Chinanews.com
Complete, if small, panorama stitched from the single images. Credit: Chinanews.com

 

One thing that stands out to my eye when looking at the photos is the brown color of the lunar surface soil or regolith. Color images of the moon’s surface by the Apollo astronauts along with  their verbal descriptions indicate a uniform gray color punctuated in rare spots by patches of more colorful soils.

Apollo 15 astronauts salutes next to the American flag in 1971. The moon's regolith or soil appears a variety of shades of gray. Credit: NASA
Apollo 15 astronauts salutes next to the American flag in 1971. The moon’s regolith or soil appears a variety of shades of gray. Credit: NASA

The famous orange soil scooped up by Apollo 17 astronaut Eugene Cernan comes to mind. Because Apollo visited six different moonscapes – all essentially gray – it makes me wonder if the color balance in the Chinese images might be off. Or did Chang’e 3 just happen to land on browner soils?

The orange soil found by Apollo 17 astronauts really stands out against a uniform gray moonscape. Credit: NASA
The orange soil found by Apollo 17 astronauts really stands out against a uniform gray moonscape. Credit: NASA

 

Extend ISS to 2050 as Stepping Stone to Future Deep Space Voyages – Orbital VP/Astronaut tells Universe Today

The International Space Station as seen from the crew of STS-119. Credit: NASA

The International Space Station could potentially function far beyond its new extension to 2024. Perhaps out to 2050. The ISS as seen from the crew of STS-119. Credit: NASA
Story updated[/caption]

WALLOPS ISLAND, VA – Just days ago, the Obama Administration approved NASA’s request to extend the lifetime of the International Space Station (ISS) to at least 2024. Ultimately this will serve as a stepping stone to exciting deep space voyages in future decades.

“I think this is a tremendous announcement for us here in the space station world,” said Bill Gerstenmaier, associate administrator for NASA’s Human Exploration and Operations Mission Directorate, at a press briefing on Jan. 8.

But there’s really “no reason to stop it there”, said Frank Culbertson, VP at Orbital Sciences and former NASA astronaut and shuttle commander, to Universe Today when I asked him for his response to NASA’s station extension announcement.

“It’s fantastic!” Culbertson told me, shortly after we witnessed the picture perfect blastoff of Orbital’s Antares/Cygnus rocket on Jan. 9 from NASA’s Wallops launch facility in Virginia, bound for the ISS.

“In my opinion, if it were up to me, we would fly it [the station] to 2050!” Culbertson added with a smile. “Of course, Congress would have to agree to that.”

Gerstenmaier emphasized that the extension will allow both the research and business communities to plan for the longer term and future utilization, be innovative and realize a much greater return on their investments in scientific research and capital outlays.

“The station is really our stepping stone,” Robert Lightfoot, NASA Associate Administrator, told me at Wallops following Antares launch.

The Alpha Magnetic Spectrometer (AMS) – which is searching for elusive dark matter – was one of the key science experiments that Gerstenmaier cited as benefitting greatly from the ISS extension to 2024. The AMS is the largest research instrument on the ISS.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port on Jan. 12, 2014. Credit: NASA TV

The extension will enable NASA, the academic community and commercial industry to plan much farther in the future and consider ideas not even possible if the station was de-orbited in 2020 according to the existing timetable.

Both the Antares rocket and Cygnus cargo freighter are private space vehicles developed and built by Orbital Sciences with seed money from NASA in a public-private partnership to keep the station stocked with essential supplies and research experiments and to foster commercial spaceflight.

So I asked Culbertson and Lightfoot to elaborate on the benefits of the ISS extension to NASA, scientific researchers and commercial company’s like Orbital Sciences.

“First I think it’s fantastic that the Administration has committed to extending the station, said Culbertson. “They have to work with the ISS partners and there is a lot to be done yet. It’s a move in the right direction.”

“There is really no reason to stop operations on the space station until it is completely no longer usable. And I think it will be usable for a very long time because it is very built and very well maintained.”

“If it were up to me, we would fly it to 2050!”

“NASA and the engineers understand the station very well. I think they are operating it superbly.”

Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments. Credit: Ken Kremer – kenkremer
Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments.
Credit: Ken Kremer – kenkremer

“The best thing about the station is it’s now a research center. And it is really starting to ramp up. It’s not there yet. But it is now finished [the assembly] as a station and a laboratory.”

“The research capability is just starting to move in the right direction.”

The Cygnus Orbital 1 cargo vehicle launched on Jan. 9 was loaded with approximately 2,780 pounds/1,261 kilograms of cargo for the ISS crew for NASA including vital science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

The research investigations alone accounted for over 1/3 of the total cargo mass. It included a batch of 23 student designed experiments representing over 8700 students sponsored by the National Center for Earth and Space Science Education (NCESSE).

“So extending it [ISS] gives not only commercial companies but also researchers the idea that ‘Yes I can do long term research on the station because it will be there for another 10 years. And I can get some significant data.”

“I think that’s really important for them [the researchers] to understand, that it will be backed for that long time and that they won’t be cut off short in the middle of preparing an experiment or flying it.”

Robert Lightfoot; NASA Associate Administrator, and Frank Culbertson; executive vice president and general manager of Orbital's advanced spaceflight programs group and former Space Shuttle commander, at NASA Wallops Flight Facility, VA discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff bound for the station loaded with science experiments.  Credit: Ken Kremer – kenkremer.com
Robert Lightfoot; NASA Associate Administrator, and Frank Culbertson; executive vice president and general manager of Orbital’s advanced spaceflight programs group and former Space Shuttle commander, at NASA Wallops Flight Facility, VA discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff bound for the station loaded with science experiments. Credit: Ken Kremer – kenkremer.com

“So I think that first of all it demonstrates the commitment of the government to continue with NASA. But also it presents a number of opportunities for a number of people.”

What does the ISS extension mean for Orbital?

The purpose for NASA and Orbital Sciences in building Antares and Cygnus was to restore America’s ability to launch cargo to the ISS – following the shutdown of NASA’s space shuttles – by using commercial companies and their business know how to thereby significantly reduce the cost of launching cargo to low Earth orbit.

“As far as what it [the ISS extension] means for Orbital and other commercial companies – Yes, it does allow us to plan long term for what we might be able to do in providing a service for NASA in the future,” Culbertson replied.

“It also gives us the chance to be innovative and maybe invest in some improvements in how we can do this [cargo service] – to make it more cost effective, more efficient, turnaround time quicker, go more often, go a lot more often!”

“So it allows us the chance to think long term and make sure we can get a return on our investment.”

What does the ISS extension mean for NASA?

“The station is really our stepping stone,” Robert Lightfoot, NASA Associate Administrator, told Universe Today. “If you use that analogy of stepping stones and the next stone. We need to use this stone to know what the next stone looks like. So we can get ready. Whether that’s research or whether that things about the human body. You don’t want to jump off that platform before you are ready.”

“We are learning every day how to live and operate in space. Fortunately on the ISS we are close to home. So if something comes up we can get [the astronauts] home.”

The ISS extension is also the pathway to future exciting journey’s beyond Earth and into deep space, Culbertson and Lightfoot told Universe Today.

“It actually also presents a business opportunity that can be expanded not just to the station but to other uses in spaceflight, such as exploration to Asteroids, Mars and wherever we are going,” said Culbertson.

And we hope it will extend to other civilian uses in space also. Maybe other stations in space will follow this one and we’ll be able to participate in that.”

Lightfoot described the benefits for astronaut crews.

“The further out we go, the more we need to know about how to operate in space, what kind of protection we need, what kind of research we need for the astronauts,” said Lightfoot.

“Orbital is putting systems up there that allow us to test more and more. Get more time. Because when we get further away, we can’t get home as quick. So those are the kinds of things we can do.

“So with this extension I can make those investments as an Agency. And not just us, but also our academic research partners, our industry partners, and the launch market too is part of this.”

He emphasized the benefits for students, like those who flew experiments on Cygnus, and how that would inspire the next generation of explorers!

“You saw the excitement we had today with the students at the viewing area. For example with those little cubesats, 4 inches by 4 inches, that they worked on, and got launched today!”

“That’s pretty cool! And that’s exactly what we need to be doing!

Student Space Flight teams at NASA Wallops Science experiments from these students representing six schools across  America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
These are among the students benefiting from ISS extension
Science experiments from these students representing six schools across America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

“So eventually they can take our jobs. And as long as they know that station will be there for awhile, the extension gives them the chance to get the training and learning and do the research we need to take people further out in space.”

“The station is the stepping stone.”

“And it really is important to have this station extension,” Lightfoot explained to me.

The Jan. 9 launch of the Orbital-1 mission is the first of eight operational Antares/Cygnus flights to the space station scheduled through 2016 by Orbital Sciences under its $1.9 Billion Commercial Resupply Services (CRS) contract with NASA to deliver 20,000 kg of cargo to orbit.

Orbital Sciences and SpaceX – NASA’s other cargo provider – will compete for follow on ISS cargo delivery contracts.

The next Antares/Cygnus flight is slated for about May 1 from NASA Wallops.

In an upcoming story, I’ll describe Orbital Sciences’ plans to upgrade both Antares and Cygnus to meet the challenges of the ISS today and tomorrow.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12 Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
Frank Culbertson; executive vice president and general manager of Orbital's advanced spaceflight programs group and former Space Shuttle commander, and Ken Kremer; Universe Today, at NASA Wallops Flight Facility, VA, discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff.  Credit: Ken Kremer – kenkremer.com
Frank Culbertson; executive vice president and general manager of Orbital’s advanced spaceflight programs group and former Space Shuttle commander, and Ken Kremer; Universe Today, at NASA Wallops Flight Facility, VA, discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff. Credit: Ken Kremer – kenkremer.com