A “MiniMoon” Seen Around the World

A 99% illuminated Moon within 24 hours of Full. Image Credit: Stephen Rahn.

So, did last night’s Full Wolf Moon seem a bit tinier than usual? It was no illusion, as avid readers of Universe Today know. As we wrote earlier this week, last night’s Full Moon was the most distant for 2014, occurring just a little under three hours after apogee.

The Full Moon, a "Moon Dog" halo, and a rare parhelic (or do you say Palunic?) arc as seen from North Slope Borough County, Alaska. Credit-Jason Ahrns.
The Full Moon, a “Moon Dog” halo, and a rare parhelic (or do you say Palunic?) arc as seen from North Slope Borough County, Alaska. Credit-Jason Ahrns.

Sure, the Moon reaches apogee every lunation, at a distance nearly as far.  In fact, the Moon at apogee can be as far as 406,700 kilometres distant, and last night’s apogee, at 406,536 kilometres, is only the second farthest for 2014. The most distant apogee for 2014 falls on July 28th at 3:28 Universal Time (UT) at just 32 kilometres farther away from our fair planet at 406,568 kilometres distant.

A 20 image composite shot using a Canon 60Da camera and a a 10" Newtonian telescope. Credit-Stephen Rahn.
A 20 image composite shot using a Canon 60Da camera and a a 10″ Newtonian telescope. Credit-Stephen Rahn.

What made last night’s MiniMoon special was its close proximity in time to the instant of Full phase. The July 2014 apogee, for example, will occur just a day and four hours from New phase.

The 2014 MiniMoon rising behind clouds from Hudson, Florida. Photo by author.
The 2014 MiniMoon rising behind clouds from Hudson, Florida. Photo by author.

Of course, it isn’t the Moon that’s doing the shrinking, though you’d be surprised the stuff we’ve seen around ye ole Web even on reputable news sites over the past week. The variation of the apparent size of the Full Moon does make for an interesting study in perception. The Moon varies in size from apogee to perigee from about 29.3’ across to 34.1’. This is variation amounts to 14% in apparent diameter.

The Full MiniMoon, clouds, and Jupiter. Credit- Shaun Reynolds, Bungay UK.
The Full MiniMoon, clouds, and Jupiter. Credit– Shaun Reynolds (@shaunreylec), Bungay UK.

Here’s an interesting challenge that you can do for a one year period, requiring just a working set of eyes: observe the Full Moon for 12 successive lunations. Can you judge which one was the “SuperMoon” and which one was the “MiniMoon” without prior knowledge?

A "MiniMoon Nebula..." The Full Moon illuminating foreground clouds. The HDR visualization of the Moon was added for context. Taken with a tripod mounted Nikon P90 Bridge camera. Credit: Giuseppe Petricca of Sulmona, Abruzzo, Italy.
A “MiniMoon Nebula…” The Full Moon illuminating foreground clouds. The HDR visualization of the Moon was added for context. Taken with a tripod mounted Nikon P90 Bridge camera. Credit: Giuseppe Petricca of Sulmona, Abruzzo, Italy.

And as you can see, we also got plenty of pictures here at Universe Today from readers of the Mini-Moon from worldwide.

The MiniMoon shot using a mobile phone held up to the eyepeice of a telescope. Credit-Andrew Millarkie (@Millarkie)
The MiniMoon shot using a mobile phone held up to the eyepiece of a telescope. Credit-Andrew Millarkie (@Millarkie) Glasgow, Scotland.

The rare occurrence of an “Extreme-MiniMoon” — or do you say “Ultra?” — also sparked a lively discussion about the motion of the Moon, how rare this event is, and when it was last and will next be surpassed. A fun online tool to play with is Fourmilab’s Lunar Apogee and Perigee Calculator. Keep in mind, the motion of the Moon is complex, and accuracy for most planetarium programs tends to subside a bit as you look back or forward in time. The distances used in Fourmilab’s calculations are also geocentric, accounting for the center-to-center distance of the Earth-Moon system.

The MiniMoon versus streetlights as seen from Nueva Casarapa, Venezulua. Credit: Jose Mauricio Rozada (@jmrozada)
The MiniMoon versus streetlights as seen from Nueva Casarapa, Venezuela. Credit: Jose Mauricio Rozada (@jmrozada)

Suffice to say, this year’s Full MiniMoon was the most distant for several decades before 2014 or after.

Anthony Cook of the Griffith Observatory notes that JPL’s Horizons web interface gives a max distance for the Moon of 406,533 kilometres at 1:35 UT earlier today, 3 hours and 19 minutes prior to Full.

The Full MiniMoon glimpsed between clouds as seen from central Illinois. Credit-Matt Comerford, (@kb9uwu)
The Full MiniMoon glimpsed between clouds as seen from central Illinois. Credit-Matt Comerford, (@kb9uwu)

The next closest spread of apogee versus perigee occurs on November 18th, 1994 at 1 hour and 51 minutes apart, and 2014’s Mini-Moon won’t be surpassed in this regard until May 13th, 2052. Looking at the distances for the Moon on these dates using Starry Night, however, we get an slightly closer occurrence of 406,345 kilometres for 1994 and 406,246 kilometres for 2052.

The Full MiniMoon rising behind a stand of trees. Credit- Sculptor Lil.
The Full MiniMoon rising behind a stand of trees. Credit– Sculptor Lil.

And to top it off, the 1994 Mini-Moon was during a partial penumbral eclipse as well… we’ll leave that as a homework assignment for the astute readers of Universe Today to calculate how often THAT occurs. It should be fairly frequent over the span of a century, as the Moon has to be at Full phase for a total lunar eclipse to occur.

The MiniMoon as captured by Manish Agarwal from Rajasthan, India.
The MiniMoon as captured by Manish Agarwal (@iManishAgarwal) from Rajasthan, India.

Looking over a larger span of time, @blobrana notes on Twitter that closer occurrences of apogee versus Full Moon with the same approximate circumstances as 2014 also occurred on October 29th 817 AD (with a 1 hour and 38 minute difference) and won’t occur again until December 20th, 2154. If research can prove or disprove that these events were even more distant, then the 2014 Extreme MiniMoon was a millennial rarity indeed…

Perhaps this won’t be the last we’ve heard on the subject!

China considers Manned Moon Landing following breakthrough Chang’e-3 mission success

Comparison of China’s Chang’e-3 unmanned lunar lander of 2013 vs. NASA’s Apollo manned lunar landing spacecraft of the 1960?s and 1970?s

Comparison of China’s Chang’e-3 unmanned lunar lander of 2013 vs. NASA’s Apollo manned lunar landing spacecraft of the 1960’s and 1970’s
Story updated[/caption]

Is China’s Chang’e-3 unmanned lunar lander the opening salvo in an ambitious plan by China to land people on the Moon a decade or so hence?

Will China land humans on the Moon before America returns?

It would seem so based on a new report in the People’s Daily- the official paper of the Communist Party of China – as well as the express science goals following on the heels of the enormous breakthrough for Chinese technology demonstrated by the history making Chang’e-3 Mission.

The People’s Daily reports that “Chinese aerospace researchers are working on setting up a lunar base,” based on a recent speech by Zhang Yuhua, deputy general director and deputy general designer of the Chang’e-3 probe system.

No humans have set foot on the moon’s surface since the last US lunar landing mission when Apollo 17 astronauts Gene Cernan and Harrison ‘Jack’ Schmitt departed 41 years ago on Dec. 14, 1972.

For context, the landing gear span of Chang’e-3 is approximately 4.7 meters vs. 9.07 meters for NASA’s Apollo Lunar Module (LM).

Photo of Chang'e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013. Credit: CNSA
Photo of Chang’e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013. Credit: CNSA
When will the US flag return?

Right now China is actively at work on the critical technology required to conduct a manned landing on the Moon, perhaps by the mid-2020’s or later, and scoping out what it would accomplish.

“In addition to manned lunar landing technology, we are also working on the construction of a lunar base, which will be used for new energy development and living space expansion,” said Zhang at a speech at the Shanghai Science Communication Forum. Her speech dealt with what’s next in China’s lunar exploration program.

China’s Yutu lunar rover, deployed by the Chang’e-3 lander, is equipped with a suite of science instruments and a ground penetrating radar aimed at surveying the moon’s geological structure and composition to locate the moon’s natural resources for use by potential future Chinese astronauts.

Portrait photo of Yutu moon rover taken by camera on the Chang'e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface.  Credit: Chinese Academy of Sciences
Portrait photo of Yutu moon rover taken by camera on the Chang’e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface. Credit: Chinese Academy of Sciences

But the Chinese government hasn’t yet made a firm final decision on sending people to the Moon’s surface.

“The manned lunar landing has not yet secured approval from the national level authorities, but the research and development work is going on,” said Zhang.

Meanwhile the US has absolutely no active plans for a manned lunar landing any time soon.

President Obama cancelled NASA’s manned Constellation “Return to the Moon” program shortly after he assumed office.

And during the 2012 US Presidential campaign, the Republican presidential candidate Mitt Romney famously declared “You’re fired” to anyone who would propose a US manned lunar base.

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com

All that remains of Constellation is the Orion crew module – which was expressly designed to send US astronauts to the Moon and other deep space destinations such as Asteroids and Mars.

NASA hopes to launch a manned Orion capsule atop the new SLS booster on a flight to circle the moon as part of its first crewed mission around 2021 – depending on the budget.

The first Orion capsule will launch on an unmanned Earth orbiting test flight dubbed EFT-1 in mid-September 2014.

However, given the near total lack of reaction from the US political establishment to China’s extremely impressive Chang’e-3 feat and the continuing slashes to NASA’s budget, the outlook for a change in official US Moon policy is certainly not promising.

China and its political leadership – in stark contrast – are clearly thinking long term and has some very practical goals for the proposed lunar base.

“After the future establishment of the lunar base, mankind will conduct energy reconnaissance on the moon, set up industrial and agricultural production bases, make use of the vacuum environment to produce medicines,” Zhang explained according to the People’s Daily.

“I believe that in 100 years, humans will actually be able to live on another planet,” said Zhang.

China also seems interested in international cooperation based on another recent story in the People Daily.

“We are willing to cooperate with all the countries in the world, including the United States and developing countries,” said Xu Dazhe, the new chief of China’s space industry and newly promoted to head the China National Space Administration.

Xu made his remarks at the International Space Exploration Forum held at the US State Department.

However, since 2011, NASA has been banned by official US law from cooperating with China on space projects.

China is wisely taking a step by step approach in its Lunar Exploration programs leading up to the potential manned lunar landing.

With China’s lunar landing architecture now proven by the outstanding success of Chang’e-3, a production line can and has already been set up that will include upgrades potentially leading to the manned mission.

The already approved Chang’e-5 lunar sample return mission is due to liftoff in 2017 and retrieve up to 2 kilograms of pristine rocks and soil from the Moon.

After the completion of the Chang’e-5 mission, the lunar exploration program and the manned space program will be combined to realize a manned lunar landing, Zhang explained according to the People’s Daily.

Meanwhile China is forging ahead with their manned space program. And no one should doubt their resolve.

In 2013 they launched a three person crew to China’s Tiangong-1 space station, reaping valuable technological experience pertinent to manned spaceflight including lunar missions.

By contrast, the US has been forced to rely 100% on the Russian’s to launch American astronauts to the ISS since the forced shutdown of NASA’s space shuttle orbiters in 2011.

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Stay tuned here for Ken’s continuing Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Astrophoto: Jupiter Meets Moon Halo

Gorgeous shot of the Moon-Jupiter conjunction on January 14, 2014 and a beautiful lunar halo, as seen from Ankara, Turkey. Credit and copyright: M. Ra?id Tu?ral

Last night, the Moon and Jupiter snuggled up together in the evening sky, passing within 4°51′ of each other. Folks in Ankara, Turkey got an added benefit to the conjunction, a gorgeous lunar halo. This shot by M. Rasid Tugral is just lovely. The duo stayed together through the night, and you MUST see below for another awesome view of the conjunction at dawn as seen from Pennsylvania in the US:

The morning's setting Moon and Jupiter, on January 15th, 2014. Photo taken near White Haven, Pennsylvania.  Credit and copyright: Tom Wildoner.
The morning’s setting Moon and Jupiter, on January 15th, 2014. Photo taken near White Haven, Pennsylvania. Credit and copyright: Tom Wildoner.

So many things make this such a great photo: the conjunction, of course, but the colors, the shadow of the photographer, and the landscape all combine for a simply stunning image.

Thanks to both of our photographers for sharing, and you can always see more great astrophotos at our Flickr page.

If you’re looking for more conjunctions with the Moon, there are a couple coming up: On Wednesday, Jan 22, 2014 mars will be near the Moon, and on Saturday January 25, 2014 the Moon will meet up with Saturn. Find out more at In-The-Sky.org.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

China’s Historic Moon Robot Duo Awaken from 1st Long Frigid Night and Resume Science Operations

Photo of Chang'e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013. Credit: CNSA

Chinese Moon Robots Wake up
Photo of Chang’e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013. Credit: CNSA
Story updated[/caption]

Chinese Moon Robots Wake up!

China’s history making moon robots – the Chang’e-3 lander and Yutu rover – have just awoken from the forced slumber of survival during their first, long frigid lunar night and have now resumed full operations – marking a major milestone in the mission.

This landmark achievement offers a realistic prognosis that the best is yet to come for this new dynamic duo of robots dispatched from Earth!

The stationary lander and six wheeled rover were autonomously revived from their dormant mode this weekend.

Both were then placed back into full working science mode in response to commands issued by Chinese space engineers at the Beijing Aerospace Control Center (BACC), according to CCTV, China’s official government broadcast network.

Portrait photo of Yutu moon rover taken by camera on the Chang'e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface.  Credit: Chinese Academy of Sciences
Portrait photo of Yutu moon rover taken by camera on the Chang’e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface. Credit: Chinese Academy of Sciences

Yutu woke up first on Saturday, Jan. 11, at 5:09 a.m. Beijing local time.

The Chang’e-3 lander was awoken on Sunday, Jan. 12, at 8:21 a.m. Beijing local time, according to a BACC statement.

Both vehicles depend on their life giving solar panels to produce power in order to function and accomplish their scientific tasks.

They went to sleep to conserve energy since there is no sunlight to generate power with the solar arrays during the lunar night.

During the nocturnal hiatus they were kept alive by a radioisotopic heat source that kept their delicate computer and electronics subsystems warmed inside a box below the deck. It was maintained at a temperature of about minus 40 degrees Celsius to prevent debilitating damage

The simple fact that both spacecraft survived half a month through the extremely harsh lunar night time environment when temperatures plunged to below minus 180 degrees Celsius, or minus 292 degrees Fahrenheit, and then restarted intact, proves the resiliency and robustness of China’s space technology.

“During the lunar night, the lander and the rover were in a power-off condition and the communication with Earth was also cut off,” said Zhou Jianliang, chief engineer of the BACC, to CCTV.

The "Yutu" rover and the Chang’e-3 lander began functioning again on Jan 11 & 12, 2014 in this artists concept. Both had become dormant to ride out the harsh conditions on the moon. Credit: CNSA/CCTV
The “Yutu” rover and the Chang’e-3 lander began functioning again on Jan 11 & 12, 2014 in this artists concept. Both had become dormant to ride out the harsh conditions on the moon. Credit: CNSA/CCTV

“When the night ends, they will be started up with the power provided by sunlight and resume operation and communication according to preset programs,” Zhou said.

As night fell on the Earth’s Moon at Christmas time 2013, Yutu and the mother ship lander both entered a state of hibernation – determined to survive the utterly harsh lunar darkness upon the magnificently desolate gray plains.

The mother ship began her nap first on Christmas Day, Dec. 25. Yutu went to sleep on Dec. 26 obeying commands sent by mission control at BACC, according to China’s State Administration of Science, Technology and Industry for National Defence (SASTIND).

Just prior to hibernating, the lander snapped the first image of the Earth taken from the Moon’s surface in some four decades. See below.

The Earth from the Moon – by Chang’e-3 on Christmas Day Lander camera snapped this image on Christmas Day 2013. Credit: Chinese Academy of Sciences
The Earth from the Moon – by Chang’e-3 on Christmas Day
Lander camera snapped this image on Christmas Day 2013. Credit: Chinese Academy of Sciences

Now with the dawn of daylight the solar panels were unfurled and the instruments activated on both robots.

Yutu has already resumed roving towards pristine, unexplored lunar terrain surrounding the touchdown zone at Mare Imbrium, nearby the Bay of Rainbows, or Sinus Iridum region.

After driving in a semicircular path around the right side of the stationary lander, and snapping portraits of one another at 5 preselected locations, Yutu parked some 40 meters south of the mother ship – after touchdown and prior to the start of lunar night.

Yutu, which translates as ‘Jade Rabbit’, is departing the landing zone forever, trekking southwards for surface investigations expected to last at least 3 months – and perhaps longer depending on its robustness in the unforgiving space environment.

The Chang’e-3 lander should survive at least a year.

“They will begin to conduct scientific explorations of the geography and geomorphology of the landing spot and nearby areas, and materials like minerals and elements there,” noted Wu Weiren, chief designer of China Lunar Probe Program.

“We will also explore areas 30 meters and 100 meters beneath the lunar soil. The exploration will continue longer than we planned, because all the instruments and equipments are working very well.”

‘Jade Rabbit’ and the lander will use their suites of science instruments including cameras, telescopes, spectrometers and ground penetrating radar to survey the moon’s geological structure and composition to locate the moon’s natural resources for use by potential future Chinese astronauts.

The robotic pair safely soft landed on the Moon on Dec. 14 at Mare Imbrium, located in the upper left portion of the moon as seen from Earth. Seven hour later on Dec. 15, Yutu rolled all 6 wheels onto the moon’s surface, leaving tracks behind as it cut into the loose regolith.

Presumably they will continue exploring for about the next 14 days – the entire time span of their 2nd Lunar Day, unless they need to take a break from the high daylight temperatures.

Thereafter Yutu and Chang’e-3 will function in alternating cycles of 2 weeks on and 2 weeks off for the duration of their independent working lifetimes.

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Stay tuned here for Ken’s continuing Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

See the Smallest Full Moon of 2014: It’s the “Return of the Mini-Moon”

Last month's rising "Mini-Moon" of 2013. (Photo by Author)

 Last month, (and last year) we wrote about the visually smallest Full Moon of 2013. Now, in a followup  act, our natural satellite gives  us an even more dramatic lesson in celestial mechanics with an encore performance just one lunation later with the smallest Full Moon of 2014.

We’ve noted the advent of the yearly Mini-Moon, a bizzaro twin to the often over-hyped “SuperMoon,” or Proxigean Full Moon. Occurring approximately six months apart, you can always expect lunar apogee to roughly coincide with the instant of a Full Moon about half a year after it coincides with perigee. In fact, the familiar synodic period that it takes the Moon to return to like phase (such as Full back to Full) of 29.5 days has a lesser known relative known as the anomalistic month, which is the period of time it takes the Moon to return to perigee at 27.55 days.

But the circumstances for “Mini-Moon 2014” are exceptional. The first Full Moon of the year occurs on the night of January 15th at 11:52 PM EST/4:52 Universal Time (on January 16th). This is just 2 hours and 59 minutes after the Moon reaches apogee at 406,536 kilometres distant at 8:53 PM EST/1:53 UT. This isn’t the farthest apogee that occurs in 2014, but it’s close: the Moon is just 32 kilometres more distant on July 28th, 2014. Apogee can vary from 404,000 to 406,700 kilometres, and this month’s apogee falls just 164 kilometres short of the maximum value.

As you can see, this year’s Mini-Moon falls extremely close to apogee… in fact, you have to go all the way back to the Full Moon of November 18th, 1994 to find a closer occurrence, and this year’s won’t be topped until May 13th, 2052! The Moon will appear only 29’ 23” in size on Wednesday night at moonrise, very close to its minimum possible value of 29’ 18”. This is also almost 5 arc minutes smaller than the largest “Super-Moon” possible.

Cool factoid: you actually move closer to the Moon as it rises, until it transits your local meridian and you begin moving away from it, all due to the Earth’s rotation. You can thus gain and lose a maximum of one Earth radii distance from the Moon in the span one night.

We also just passed the most northern Moon of 2014, as it reached a declination of 19 degrees 24’ north this morning at 8:00 UT/3:00 AM EST. This is a far cry from the maximum that can occur, at just over 28 degrees north. This is because we’re headed towards a “shallow year” as the Moon’s motion bottoms out relative to the ecliptic in 2015 and once again begins to widen out in its 18+ year cycle to its maximum in 2024-25.

The position of the Moon Monday night on January 13th in Orion. Credit: Stellarium
The position of the Moon Monday night on January 13th in Orion. Credit: Stellarium

This week’s Moon also visits some interesting celestial targets as well. The waxing gibbous Moon sits just 5.1 degrees south of the open cluster M35 tonight. Notice something odd about the Moon’s position Monday night? That’s because it is passing through Orion the Hunter, one of the six non-zodiacal constellations that it can be found in. Can you name the other five? Hint: one was the “13th sign of the zodiac that created a non-traversy a few years back.

On Tuesday evening, the Moon passes six degrees from the planet Jupiter. This presents a fine time to try and spot the planet in the daytime to the Moon’s upper left, just a few hours prior to sunset.

The Moon will also occult the +3.6 magnitude star Lambda Geminorum on January 15th for observers in northwestern North America. In fact, viewers along a line crossing central British Columbia will witness a spectacular graze along the lunar limb as the star winks out behind lunar mountains and pops into view as it shines through lunar valleys along the edge of the Moon. This can make for an amazing video capture, we’re just throwing that out there…

The occultation footprint for Lambda Geminorum for January 15th. (Created using Occult 4.01 software)
The occultation footprint for Lambda Geminorum for January 15th. (Created using Occult 4.10.11 software)

In addition to being this year’s Mini-Moon, the January Full Moon is also known as the Wolf Moon in the tradition of the Algonquin Native Americans, as January was a time of the mid-winter season when starving wolf packs would howl through the long cold night. The January Full Moon is also sometimes referred to as “The Moon after Yule,” marking the first Full Moon after Christmas.

And just when is the next Super Moon, you might ask? Well, 2014 has three Full Moons occurring within 24 hours of perigee starting on July 15th and finishing up on September 8th. But the most notable is on August 10th, when the Moon passes perigee just 27 minutes from Full. Expect it to be preceded by the usual lunacy that surrounds each annual “Super Moon” as we once again bravely battle the forces of woo and describe just exactly what a perigee Full Moon isn’t capable of. Yes, we still prefer the quixotic term “Proxigean Moon,” but there you go.

Also, be sure to wave a China’s Chang’e-3 lander and rover in the Bay of Rainbows (Sinus Iridum) as you check out this week’s Full Moon, as it just experienced its first lunar sunrise this past week.

Be sure to send those Mini-Moon pics and more in to Universe Today, and let’s get this week’s #MiniMoon trending on Twitter!

Private Cygnus Freighter Berths at Space Station with Huge Science Cargo and Ant Colony

Orbital Sciences' Cygnus cargo spacecraft, with the moon seen in the background, is moved into installation position by astronauts using a robotic arm aboard the International Space Station Jan. 12. Credit: NASA

With the Moon as a spectacular backdrop, an Orbital Sciences’ Cygnus cargo spacecraft speeding at 17500 MPH on a landmark flight and loaded with a huge treasure trove of science, belated Christmas presents and colonies of ants rendezvoued at the space station early this Sunday morning (Jan. 12), captured and then deftly parked by astronauts guiding it with the Canadian robotic arm.

Cygnus is a commercially developed resupply freighter stocked with 1.5 tons of vital research experiments, crew provisions and student science projects that serves as an indispensible “lifeline” to keep the massive orbiting outpost alive and humming with the science for which it was designed.

Following a two day orbital chase that started with the spectacular blastoff on Jan. 9 atop Orbital’s private Antares booster from NASA Wallops Flight Facility, Va., Cygnus fired its on board thrusters multiple times to approach in close proximity to the million pound International Space Station (ISS) by 3 a.m. Sunday.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV

When Cygnus had moved further to within 30 feet (10 meters) NASA Astronaut and station crew member Mike Hopkins – working inside the Cupola – then successfully grappled the ship with the stations 57 foot long Canadarm2 at 6:08 a.m. EST to complete the first phase of today’s operations.

“Capture confirmed,” radioed Hopkins as the complex was flying 258 miles over the Indian Ocean and Madagascar.

“Congratulations to Orbital and the Orbital-1 team and the family of C. Gordon Fullerton,” he added. The ship is named in honor of NASA shuttle astronaut G. Gordon Fullerton who passed away in 2013.

“Capturing a free flyer is one of the most critical operations on the ISS,” explained NASA astronaut and ISS alum Cady Coleman during live NASA TV coverage.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV

Koichi Wakata of the Japan Aerospace Exploration Agency then took command of the robotic arm and maneuvered Cygnus to berth it at the Earth-facing (nadir) port on the station’s Harmony Node at 8:05 a.m while soaring over Australia.

16 bolts will be driven home and 4 latches tightly hooked to firmly join the two spacecraft together and insure no leaks.

The Orbital -1 spaceship is conducting the first of 8 operational cargo logistics flights scheduled under Orbital Sciences’ multi-year $1.9 Billion Commercial Resupply Services contract (CRS) with NASA that runs through 2016.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

The purpose of the unmanned, private Cygnus spaceship – and the SpaceX Dragon – is to restore America’s cargo to orbit capability that was terminated following the shutdown of NASA’s space shuttles.

Cygnus and Dragon will each deliver 20,000 kg (44,000 pounds) of cargo to the station according to the NASA CRS contracts.

“This cargo operation is the lifeline of the station,” said Coleman.

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12
Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com

The six person crew of Expedition 38 serving aboard the ISS is due to open the hatch to Cygnus tomorrow, Monday, and begin unloading the 2,780 pounds (1,261 kilograms) of supplies packed inside.

“Our first mission under the CRS contract with NASA was flawlessly executed by our Antares and Cygnus operations team, from the picture-perfect launch from NASA’s Wallops Flight Facility to the rendezvous, capture and berthing at the space station this morning,” said Mr. David W. Thompson, Orbital’s President and Chief Executive Officer, in a statement from Orbital.

“From the men and women involved in the design, integration and test, to those who launched the Antares and operated the Cygnus, our whole team has performed at a very high level for our NASA customer and I am very proud of their extraordinary efforts.”

Up-close view of Orbital Sciences Cygnus service module outfitted with propulsion, power generating solar arrays and guidance during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. Service module gets attached to pressurized cargo module and flies Cygnus vehicle to ISS. Credit: Ken Kremer – kenkremer.com
Up-close view of Orbital Sciences Cygnus service module outfitted with propulsion, power generating solar arrays and guidance during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. Service module gets attached to pressurized cargo module and flies Cygnus vehicle to ISS. Credit: Ken Kremer – kenkremer.com

Science experiments weighing 1000 pounds account for nearly 1/3 of the cargo load.

Among those are 23 student designed experiments representing over 8700 K-12 students involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

The students are part of the Student SpaceFlight Experiments Program (SSEP) sponsored by the National Center for Earth and Space Science Education (NCESSE).

Student Space Flight team  at NASA Wallops from Washington, DC discusses their microencapsulation science experiment selected to fly aboard the Cygnus spacecraft with Ken Kremer/Universe Today.  23 student experiments launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP) and have arrived at the station.  Credit: Ken Kremer - kenkremer.com
Student Space Flight team at NASA Wallops from Washington, DC discusses their microencapsulation science experiment selected to fly aboard the Cygnus spacecraft with Ken Kremer/Universe Today. 23 student experiments launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP) and have arrived at the station. Credit: Ken Kremer – kenkremer.com

Ant colonies from three US states are also aboard, living inside 8 habitats. The “ants in space” experiment will be among the first to be unloaded from Cygnus to insure the critters are well fed for their expedition on how they fare and adapt in zero gravity.

33 cubesats are also aboard that will be deployed from the Japanese Experiment Module airlock.

“One newly arrived investigation will study the decreased effectiveness of antibiotics during spaceflight. Another will examine how different fuel samples burn in microgravity, which could inform future design for spacecraft materials,” said NASA in a statement.

Cygnus is currently scheduled to remain berthed at the ISS for 37 days until February 18.

The crew will reload it with all manner of no longer need trash and then send it off to a fiery and destructive atmospheric reentry so it will burn up high over the Pacific Ocean on Feb. 19.

Cygnus departure is required to make way for the next cargo freighter – the SpaceX Dragon, slated to blast off from Cape Canaveral, Florida on Feb. 22 atop the company’s upgraded Falcon 9.

Watch for my ongoing Antares/Cygnus reports.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

Cygnus berthed at Harmony node on ISS. Credit: NASA TV
Cygnus berthed at Harmony node on ISS. Credit: NASA TV

China’s Yutu Moon Rover and Chang’e-3 Lander – Gallery of New Images & 1st Earth Portrait

The Earth from the Moon – by Chang’e-3 on Christmas Day Lander camera snapped this image on Christmas Day 2013. Credit: Chinese Academy of Sciences

The Earth from the Moon – by Chang’e-3 on Christmas Day
Lander camera snapped this image on Christmas Day 2013. Credit: Chinese Academy of Sciences[/caption]

Nearly a month after the stunningly successful soft landing on the Moon by China’s first lunar mission on Dec. 14, 2013, the Chinese Academy of Sciences has at last released far higher quality digital imagery snapped by the Chang’e-3 lander and Yutu moon rover.

This release of improved images is long overdue.

And perhaps the best news of all involves a belated Christmas present to humanity – the publication of never before seen and absolutely stunning images of the Earth from the Moon captured by the lander on Christmas Day 2013.

We haven’t seen the Earth from the Moon’s surface in 4 decades – not since the 1970’s.

Photo taken by the extreme ultraviolet camera on Dec. 16, 2013 shows the observation of the Earth's plasmasphere by the Chang’e-3 lander. Credit: Chinese Academy of Sciences
Photo taken by the extreme ultraviolet camera on Dec. 16, 2013 shows the observation of the Earth’s plasmasphere by the Chang’e-3 lander. Credit: Chinese Academy of Sciences

Until now, most of the Chang’e-3 mission images we’ve seen have essentially been rather low resolution pictures of pictures – that is screenshots or photos taken of the imagery that has been flashed onto large projection screens at the Beijing Aerospace Control Center, and then distributed by Chinese government media outlets.

So they have been degraded several times over.

Portrait photo of Yutu moon rover taken by camera on the Chang'e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface.  Credit: Chinese Academy of Sciences
Portrait photo of Yutu moon rover taken by camera on the Chang’e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface. Credit: Chinese Academy of Sciences

I’ve collected a gallery of the new Chang’e-3 lunar photos here for all to enjoy – see above and below.

The gallery includes photos taken during the final moments of the descent and landing on Dec. 14, 2013, as well as portraits and 360 degree moonscape panoramas taken by both spacecraft after Yutu rolled its wheels onto the loose lunar soil 7 hours later on Dec. 15, and the fabulous new images of Earth in visible and UV light.

Yutu moon rover imaged by camera on the Chang'e-3 moon lander on Dec. 16, 2013. Credit: Chinese Academy of Sciences
Yutu moon rover imaged by camera on the Chang’e-3 moon lander on Dec. 16, 2013. Credit: Chinese Academy of Sciences

Yutu and the lander are about to awaken from their self induced slumber which began at Christmas time to coincide with the dawn of the the utterly frigid two week long lunar night.

Temperatures plunged to below minus 180 degrees Celsius.

They went to sleep to conserve energy since there is no sunlight to generate power with the solar arrays.

Yutu portrait taken by the Chang’e-3 lander on Dec. 22, 2013.  China’s 1st Moon rover ‘Yutu’ embarks on thrilling adventure marking humanity’s first lunar surface visit in nearly four decades.  Credit: Chinese Academy of Sciences
Yutu portrait taken by the Chang’e-3 lander on Dec. 22, 2013. China’s 1st Moon rover ‘Yutu’ embarks on thrilling adventure marking humanity’s first lunar surface visit in nearly four decades. Credit: Chinese Academy of Sciences

After driving off the lander, Yutu – which means ‘Jade Rabbit’ – drove in a semicircle around the lander and headed south.

Jade Rabbit stopped at 5 designated places.

The pair of Chinese spacecraft then snapped images of one another at each location. Some of those images were included in this new batch.

So you can see the lander from 3 different perspectives collected here:

1st Photo of Chang'e-3 moon lander taken by the panoramic camera on the Yutu moon rover after it drove all 6 wheels onto the lunar surface on Dec. 15, 2013. Credit: CNSA
1st Photo of Chang’e-3 moon lander taken by the panoramic camera on the Yutu moon rover after it drove all 6 wheels onto the lunar surface on Dec. 15, 2013. Credit: Chinese Academy of Sciences
Side view Chang'e-3 moon lander in this image taken by the panoramic camera on the Yutu moon rover as it drove in a semicircle around the lander heading south. Credit: Chinese Academy of Sciences
Side view Chang’e-3 moon lander in this image taken by the panoramic camera on the Yutu moon rover as it drove in a semicircle around the lander heading south. Credit: Chinese Academy of Sciences
Photo of Chang'e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013. Credit: CNSA
Photo of Chang’e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013 during 5th and final stop as it drove in a semicircle around the lander heading south. Yutu is looking north, lander looking south. Credit: Chinese Academy of Sciences

Here’s a pair of very cool 360 degree panoramas – taken by each spacecraft and showing the other.

This digitally-combined polar panorama shows a 360 degree color view of the moonscape around the Chang’e-3 lander after the Yutu moon rover drove onto the lunar surface leaving visible tracks behind.  Images were taken from Dec. 17 to Dec. 18, 2013.  Credit: Chinese Academy of Sciences
This digitally-combined polar panorama shows a 360 degree color view of the moonscape around the Chang’e-3 lander after the Yutu moon rover drove onto the lunar surface leaving visible tracks behind. Images were taken from Dec. 17 to Dec. 18, 2013. Credit: Chinese Academy of Sciences
This digitally-combined polar panorama shows a 360 degree black and white view of the moonscape around the Yutu moon rover after it drove off the Chang’e-3 lander at top and left visible tracks behind.  Images were taken on Dec. 23, 2013.  Credit: Chinese Academy of Sciences
This digitally-combined polar panorama shows a 360 degree black and white view of the moonscape around the Yutu moon rover after it drove off the Chang’e-3 lander at top and left visible tracks behind. Images were taken on Dec. 23, 2013. Credit: Chinese Academy of Sciences
1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer
1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer

Finally here’s imagery taken during the landing sequence by the descent imager in the final minutes before touchdown at Mare Imbrium, nearby the Bay of Rainbows, or Sinus Iridum region.

It is located in the upper left portion of the moon as seen from Earth. You can easily see the landing site with your own eyes.

And be sure to check my earlier story with an eye popping astronauts eye view video combining all the descent imagery – here.

Photo taken by the descent imaging camera on Dec. 14, 2013 shows lunar landscape during Chang'e-3 lunar probe's landing at an altitude of 99 meters.  Credit: Chinese Academy of Sciences
Photo taken by the descent imaging camera on Dec. 14, 2013 shows lunar landscape during Chang’e-3 lunar probe’s landing at an altitude of 99 meters. Credit: Chinese Academy of Sciences
Photo taken by the descent imaging camera on Dec. 14, 2013 shows lunar landscape during Chang'e-3 lunar probe's landing at an altitude of 7.9 kilometers.  Credit: Chinese Academy of Sciences
Photo taken by the descent imaging camera on Dec. 14, 2013 shows lunar landscape during Chang’e-3 lunar probe’s landing at an altitude of 7.9 meters. Credit: Chinese Academy of Sciences

The landmark Chang’e-3 mission marks the first time that China has sent a spacecraft to touchdown on the surface of an extraterrestrial body.

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Stay tuned here for Ken’s continuing Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Ultra-Thin “Young” Crescent Moon Sighted from U.S. Southwest

Can you spot the razor thin crescent Moon? Image credit: Rob Sparks.

 Earlier this week, Universe Today challenged North American readers to spot the slender, exceptionally “young” crescent Moon on the evening of New Year’s Day.

Three visual athletes based in Arizona took up the challenge on Wednesday evening, with amazing results. Mike Weasner, Rob Sparks and Jim Cadien managed to spot the razor thin crescent Moon just 13 hours and 48 minutes after it passed New phase earlier on January 1st. The sighting was made using binoculars, and they even managed to image the wisp of a crescent hanging against the desert sky.

This is a difficult feat, even under the best of conditions. Weasner and Sparks observed from Mike’s Cassiopeia observatory based just outside of Oracle, Arizona.

Credit: Mike Weasner/Cassiopeia observatory
A thin crescent Moon (arrowed) Credit: Mike Weasner/Cassiopeia observatory

Concerning the feat, Weasner wrote on his observing blog:

“At 1800 Mountain Standard Time (MST), Rob reported that he had located the young Moon using his 8×42 binoculars. At 18:02 MST, I picked it up in the 12×70 binoculars. With the New Moon occurring at 11:14 Universal Time (UT), my observation occurred with the Moon only 13 hours and 48 minutes old. A new record for me (and Rob and Jim as well). Our DSLRs were clicking away!”

We can personally attest to just how hard it is to pick out the uber-thin crescent Moon against the twilight sky. Low contrast is your enemy, making it tough to spot and even tougher to photograph. Add to that a changing twilight sky that alters hue from moment to moment.

Though this isn’t a world record, its close to within about two hours. The youngest confirmed Moon spotting using binoculars stands at 11 hours and 40 minutes accomplished by Mohsen G. Mirsaeed in Iran back in September 7th, 2002, and the youngest Moon sighted with the unaided eye goes to Steven James O’Meara in May 1990, who spotted a 15 hour 32 minute old crescent.

Mike Cadien (left) and Rob Sparks (right) setting up to catch the crescent Moon. Credit- Mike Weasner.
Jim Cadien (left) and Rob Sparks (right) setting up to catch the crescent Moon. Credit– Mike Weasner.

And of course, you can see the Moon at the moment of New during a a solar eclipse. Unfortunately, no total solar eclipses occur in 2014, just an usual non-central annular eclipse brushing Australia and Antarctica on April 29th  and a deep 81% partial eclipse crossing North America on October 23rd.

Weasner also noted that a bright Venus aided them in their quest. It’s strange to think that Venus, though visually tiny, is actually intrinsically brighter than the limb of the Moon, owing to its higher albedo. In fact, some great pictures have also been pouring in to Universe Today of Venus as it heads towards inferior conjunction this month on January 11th. And don’t forget, that quoted magnitude of the lunar crescent (about magnitude -3.4) was also scattered along the lunar disk which was only 0.4% illuminated, and subject to atmospheric extinction to boot!

Our own modest attempt to catch the waning crescent Moon 29 hours prior to New back in August 2012. Photo by author.
Our own modest attempt to catch the waning crescent Moon 29 hours prior to New back in August 2012. Photo by author.

And yes, it is possible to catch the Moon photographically during a non-eclipse at the moment of New phase. The Moon can wander up to 5 degrees – about ten times its average apparent diameter as seen from the Earth – above or below the ecliptic and appear a corresponding distance from the limb of the Sun. Unlike many moons in the solar system, Earth’s moon has a fixed inclination to our orbit (as traced out by the ecliptic,) not our rotational axis. Thierry Legault accomplished this challenging photographic feat last year. Of course, this should only be attempted by seasoned astrophotographers, as aiming a camera near the Sun is not advised.

The January 2nd 2014, waxing crescent Moon plus "Earthshine" as captured by Ron Cottrell from Oro Valley, Arizona. Ron also notes that this illumination of the night time side of the the Moon is also known as "da Vinci's glow".
The January 2nd 2014 waxing crescent Moon plus “Earthshine” as captured by Ron Cottrell from Oro Valley, Arizona. Ron also notes that this illumination of the nighttime side of the the Moon is also known as the “da Vinci” glow. Credit-Ron Cottrell.

Why attempt to spot the razor thin New Moon? What’s the benefit? Well, several lunar based dating systems, such as the Islamic calendar, rely on the spotting of the new crescent Moon to mark the beginning of a new month. Being strictly lunar-based, the Islamic calendar moves an average of -11 days out of sync each year versus the modern day Gregorian calendar. On some years, there can even be a bit of ambiguity as to exactly when key months such as Ramadan will begin based on when the Moon is first sighted.

Also, such a feat demonstrates what the human eye is capable of when pushed to its physiological limits. In fact, French astrophysicist Andre Danjon theorized that the lunar crescent is formed at about 5 degrees elongation from the Sun, a point beyond which a lunar crescent can be sighted — usually quoted at about 7 degrees elongation from the Sun — and has become known as the Danjon Limit. Danjon also gave his namesake to the characterization of total lunar eclipses by color and hue, known as the Danjon Number. Accounting for the motion of the Moon, this places the theoretical limit that the forming crescent can be sighted with optical assistance at just over 11 hours.

Optimal sighting locations through the end of September 2014.
Optimal sighting locations through the end of September 2014. Positions are marked for where the Moon is visible at local sunset and becomes visible with optical assistance around 14 hours after New. Prospects for a “first sighting” get better westward of each location on the dates noted. Note that the March 1st event offers decent prospects for the US northeast and the Canadian Maritimes. Graphic created by author.

And you don’t have to wait until the Moon passes New… a similar attempt can be made in the dawn skies as the waning crescent Moon slides towards the Sun at the end of each lunation.

But perhaps the true reward is simply catching a glimpse of the ethereal for yourself, a delicate and airy Moon clinging briefly on the horizon. Kudos to Mike and Rob on a great catch!

Follow the further adventures of Mike Weasner and Rob Sparks on Twitter as @mweasner & @halfastro.

Wonder what the sighting opportunities are for the next waxing crescent Moon are worldwide? Two great online resources are the HM Nautical Office’s Einstein Moonwatch Project and Moonsighting.com.

The South African Astronomical Observatory also maintains a site with predictions worldwide.

Gorgeous Astrophoto: Twin Crescents of the Moon and Venus at Sunset

The Moon and Venus, both in crescent phase, as seen from Sulmona, Abruzzo, Italy on January 2, 2014. Credit and copyright: Giuseppe Petricca.

2014 starts out with sunset view of a new Moon and a fading look at Venus, both captured together in this gorgeous image from astrophotographer Giuseppe Petricca.

“A wonderful sunset conjunction this evening from Central Italy,” Giuseppe wrote via email. “The Moon and Venus were both crescent, in an awesome sight! Some clouds entered the scene, and helped me filter the bright light of the ‘evening star’, revealing the little arch of the planet, from our point of view.” He added that this is “the youngest Moon I’ve ever captured, about 2% lit.”

Below is an image with an inset of Venus enlarged for a better view:


The Moon and Venus, both in crescent phase, as seen from Sulmona, Abruzzo, Italy on January 2, 2014. Inset shows Venus enlarged. Credit and copyright: Giuseppe Petricca.
The Moon and Venus, both in crescent phase, as seen from Sulmona, Abruzzo, Italy on January 2, 2014. Inset shows Venus enlarged. Credit and copyright: Giuseppe Petricca.

As our writer Bob King noted in his recent article, catch Venus now while you can, as it is slipping away: “As 2013 gives way to the new year, Venus winds up its evening presentation as it prepares to transition to the morning sky. Catch it while you can. Each passing night sees the planet dropping ever closer to the horizon as its apparent distance from the sun shrinks. On January 11 it will pass through inferior conjunction as it glides between Earth and Sun.”

Giuseppe’s images were taken with a simple non-reflex camera on a tripod, Nikon P90, ISO 100, f5.0, 1/2 exposure, which he says demonstrates “that with a little effort, you don’t need an expensive digicam to take this kind of shot.”

Beautiful!

See the Youngest Moon of Your Life Tonight

A 24-hour-old moon photographed from Duluth, Minn. U.S. on in May 2010. Credit: Bob King

The new year starts out with a bang, offering the chance to spy an exceptionally thin crescent moon shortly after sunset. Here’s how to find it. 

The moon’s age is determined by how many hours or days have passed since new moon phase. New moon occurs once a month when the moon lies in nearly the same direction as the sun in the sky. No one can see a new moon because it stays very close to the sun and lost in the glare of daylight.

To attempt your personal youngest moon yet, find a flat horizon to the southwest and start looking about 10 minutes after sunset. This panel shows the sky from four different locations. The times shown are 20 minute after local sunset and the moon's elevation at those times is also noted. Created with Stellarium
To attempt your personal youngest moon yet, find a flat horizon to the southwest and start looking about 10 minutes after sunset. This panel shows the sky from four different locations. The times and moon’s elevation are shown for 20 minutes after local sunset. The moon’s orientation is approximate. Created with Stellarium

Under favorable circumstances it isn’t too difficult to spot a 1-day-old moon, referred to as a young moon because it’s the first or youngest bit of moon we see after new moon. Young moons are delicate and tucked far down in the twilight glow shortly after sunset. Spotting one fewer than 24 hours old requires planning. You need a flat horizon, haze-free skies and a pair of binoculars. Being on time’s important, too. Be sure to arrive at your observing spot shortly before sundown. Knowing the point on the horizon where the sun sets will guide you to the crescent’s location.

An 18-hour-old crescent moon photographed in a 12-inch telescope on April 22, 2012. Credit and copyright: John Chumack and Maurice Massey
An 18-hour-old crescent moon photographed in a 12-inch telescope on April 22, 2012. Credit and copyright: John Chumack and Maurice Massey

Ready to rock and roll? New moon occurred at 5:14 a.m. (CST) today. For the U.S. Midwest that makes the moon approximately 12 hours old at sunset this evening. Since the moon moves to the east or away from the sun at the rate of one moon-diameter per hour, skywatchers in the western U.S. will have it somewhat easier shot at seeing it. In Denver, the moon will be 13 hours old, while in San Francisco it will have aged to 14 hours. Hawaii residents will have their shot at a 16-hour-old moon, still very young but farther yet from the sun and easier to see. To know exactly when the sun and moon set for your city, click HERE.

Luckily you’ll have more than just the sunset point to help know in which direction to look; Venus, itself a very thin crescent moon at the moment, hovers 7-8 degrees to the upper left of the moon. You should have no problem seeing a crescent Venus in binoculars.

The record for youngest moon spotted with the naked eye goes to writer and amateur astronomer Steven James O’Meara, who nabbed a 15 hour 32 minute crescent in May 1990. The skinniest moon ever seen with optical aid goes to Mohsen G. Mirsaeed of Tehran on September 7, 2002 at just 11 hours 40 minutes past new.

Venus, seen here several years back to the lower right of the moon along with Jupiter, will not only help with focus tonight but will guide toward the thin crescent. Credit: Bob King
Venus, seen here several years back to the lower right of the moon along with Jupiter, will not only help with focusing tonight but will guide skywatchers toward the thin crescent. Credit: Bob King

Based on these facts, it’s likely few will see the faint arc of moon with the naked eye especially in the eastern U.S. where the crescent will be only 11 hours old. Binoculars and telescopes will be required for most of us.  To meet tonight’s challenge, make sure your binoculars are focused at infinity before you start. Again, Venus comes to our aid. Carefully focus the planet until you see its crescent as sharply as possible. You can also focus on any clouds that might be present. Lacking that, aim for the most distant object in the landscape. Focus is critical. If you’re off, the thin moon will soften, spread out and appear even fainter.

I couldn't resist adding this pic of the waning moon taken by one of the International Space Station astronauts as it rose over the limb of the Earth. Credit: NASA
I couldn’t resist adding this fine photo of the waning moon taken by one of the International Space Station astronauts as it rose over the limb of the Earth. Credit: NASA

Start looking for the moon about 10 minutes after sundown in nearly the same direction as the sunset point within a strip of sky as wide as a typical binocular field of view or about 5 degrees. Slowly scan up and down and back and forth over the next 25 minutes looking for a wispy sliver of light against the deepening blue sky. Should you find the moon, you might be surprised at the broken appearance of the arc. These seeming breaks are caused by oblique lighting on crater walls and mountain peaks creating shadows long enough to bite into and hide portions of the moon’s sunlit edge.

I wish you the best in your search tonight for what could be one of the rarest astronomical sightings of your life. It won’t be easy. Whether you succeed or not, please drop us a comment and share your story.