Moon Phases and Dates for 2014

How the phases of the Moon work. Credit: NASA/Bill Dunford

[moon_app]

Here is the schedule for all the Moon phases for 2014. If you’re going to go skywatching, remember that the best time to see the night sky is when you have a new Moon. When there’s a full Moon, the dimmer skies are washed out. Please note that all the times listed are in Universal Time, also known as Greenwich Mean Time.

Moon Phases and Dates for 2014

Moon Phases, January 2014
New Moon – January 1, 11:14
First Quarter – January 8, 3:39
Full Moon – January 16, 4:52
Last Quarter – January 24, 5:20
New Moon – January 30, 21:38

Moon Phases, February 2014
First Quarter – February 6, 19:22
Full Moon – February 14, 23:53
Last Quarter – February 22, 17:15

Moon Phases, March 2014
New Moon – March 1, 8:00
First Quarter – March 8, 13:27
Full Moon – March 16, 17:08
Last Quarter – March 24, 1:46
New Moon – March 30, 18:45

Moon Phases, April 2014
First Quarter – April 7, 8:31
Full Moon – April 15, 7:42
Last Quarter – April 22, 7:52
New Moon – April 29, 6:14

Moon Phases, May 2014
First Quarter – May 7, 3:15
Full Moon – May 14, 19:16
Last Quarter – May 21, 12:59
New Moon – May 28, 18:40

Moon Phases, June 2014
First Quarter – June 5, 20:39
Full Moon – June 13, 4:11
Last Quarter – June 19, 18:39
New Moon – June 27, 8:08

Moon Phases, July 2014
First Quarter – July 5, 11:59
Full Moon – July 12, 11:25
Last Quarter – July 19, 2:08
New Moon – July 26, 22:42

Moon Phases, August 2014
First Quarter – August 4, 0:50
Full Moon – August 10, 18:09
Last Quarter – August 17, 12:26
New Moon – August 25, 14:13

Moon Phases, September 2014
First Quarter – September 2, 11:11
Full Moon – September 9, 1:38
Last Quarter – September 16, 2:05
New Moon – September 24, 6:14

Moon Phases, October 2014
First Quarter – October 1, 19:32
Full Moon – October 8, 10:51
Last Quarter – October 15, 19:12
New Moon – October 23, 21:57
First Quarter – October 31, 2:48

Moon Phases, November 2014
Full Moon – November 6, 22:23
Last Quarter – November 14, 15:15
New Moon – November 22, 12:32
First Quarter – November 29, 10:06

Moon Phases, December 2014
Full Moon – December 6, 12:27
Last Quarter – December 14, 12:51
New Moon – December 22, 1:36
First Quarter – December 28, 18:31

You can listen to a very interesting podcast about the formation of the Moon from Astronomy Cast, Episode 17: Where Did the Moon Come From?

Reference:
http://aa.usno.navy.mil/cgi-bin/aa_moonphases.pl?year=2013&ZZZ=END

China’s Lunar Lander Spotted by Orbiting Spacecraft

Image of Chang'e-3 (top arrow) and Yutu rover captured by NASA's Lunar Reconnaissance Orbiter on Dec. 25 UTC

Not much on the Moon escapes the eyes of NASA’s Lunar Reconnaissance Orbiter, and China’s Chang’e-3 lander and Yutu rover are no exception! The pair touched down on the lunar surface on Dec. 14, and just over a week later on Dec. 25 LRO acquired the image above, showing the lander and the 120-kg (265-lb) “Jade Rabbit” rover at their location near the Moon’s Sinus Iridum region.

The width of the narrow-angle camera image is 576 meters; north is up. LRO was about 150 km (93 miles) from the Chang’e-3 site when the image was acquired.

So how can we be so sure that those bright little specks are actually human-made robots and not just a couple of basaltic boulders? Find out below:

According to School of Earth and Space Exploration professor Mark Robinson’s description on Arizona State University’s LROC blog:

The rover is only about 150 cm wide, yet it shows up in the NAC images for two reasons: the solar panels are very effective at reflecting light so the rover shows up as two bright pixels, and the Sun is setting thus the rover casts a distinct shadow (as does the lander). Since the rover is close to the size of a pixel, how can we be sure we are seeing the rover and not a comparably sized boulder? Fortuitously, the NAC acquired a “before” image of the landing site, with nearly identical lighting, on 30 June 2013. By comparing the before and after landing site images, the LROC team confirmed the position of the lander and rover, and derived accurate map coordinates for the lander (44.1214°N, 340.4884°E, -2640 meters elevation).

Before-and-after LROC images of Chang'e-3's landing site
Before-and-after LROC images of Chang’e-3’s landing site: June 30 vs. Dec. 25, 2013

LRO circles the Moon in a polar orbit at an average altitude of 50 km (31 miles). The LROC instrument contains two narrow-angle camera heads (NACs) providing 0.5-meter/pixel panchromatic images over a 5-km swath, a wide-angle camera head (WAC) providing images at a scale of 100 meters in seven-color bands.

Both the Chang’e-3 lander and Yutu rover are reported to be in good health and performing well. The solar-powered rover went into sleep mode on Dec. 26 to wait out the 14-day lunar night, during which time the temperatures on the lunar surface can drop to -180ºC (-292ºF). Yutu’s radioisotope heat source will keep it from freezing, but it won’t be able to generate power from its solar arrays. (Source)

Read more on ASU’s LROC website, and check out Ken Kremer’s article featuring a video of Yutu’s rollout here.

Image credits: NASA/GSFC/Arizona State University

Yutu Flexes Robot Arm then Enters Hibernation During Long Lunar Night

Portion of 1st panorama around Chang’e-3 landing site showing China’s Yutu rover leaving tracks in the lunar soil as it drives across the Moon’s surface on Dec. 15, 2013. Images taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer

1st Chang’e-3 Lunar Panorama
Portion of 1st panorama around Chang’e-3 landing site showing China’s Yutu rover leaving tracks in the lunar soil as it drives across the Moon’s surface on Dec. 15, 2013. Images taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic.
Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer
See below robotic arm screenshots – – Story updated [/caption]

As night fell on the Earth’s Moon, China’s Yutu rover and mothership lander have both entered a state of hibernation determined to survive the frigidly harsh lunar night upon the magnificently desolate gray plains.

Yutu went to sleep at 5:23 a.m. Dec. 26, Beijing time, upon a command sent by mission control at the Beijing Aerospace Control Center (BACC), according to China’s State Administration of Science, Technology and Industry for National Defence (SASTIND).

The Chang’e-3 lander began its long nap hours earlier at 11:00 a.m. Beijing time on Christmas Day, Dec. 25.

The vehicles must now endure the lunar night, which spans 14 Earth days in length, as well as the utterly low temperatures which plunge to below minus 180 degrees Celsius.

Yutu rover points mast with cameras and high gain antenna to inspect lunar soil around landing site in this photo taken by Chang’e-3 lander. Credit: CNSA
Yutu rover points mast with cameras and high gain antenna downwards to inspect lunar soil around landing site in this photo taken by Chang’e-3 lander. Credit: CNSA

Scientists completed a series of engineering tests on the probes to ensure they were ready to withstand the steep temperature drop, said Wu Fenglei of the Beijing Aerospace Control Center, to the Xinhua state news agency.

Since there is no sunlight, the solar panels can’t provide any power and have been folded back.

So they face a massive engineering challenge to endure the extremely cold lunar night.

Therefore in order to survive the frigid lunar environment, a radioisotopic heat source is onboard to provide heat to safeguard the rovers and landers delicate computer and electronics subsystems via the thermal control system.

They are situated inside a warmed box below the deck that must be maintained at a minimum temperature of about minus 40 degrees Celsius to prevent debilitating damage.

Yutu prepares to flex robotic arm in this screen shot from a  CCTV video animation. Credit: CNSA/CCTV/screenshot by R. Mackelenbergh/K. Kremer/M. Di Lorenzo
Yutu prepares to flex robotic arm in this screen shot from a CCTV video animation. Credit: CNSA/CCTV/screenshot by R. Mackelenbergh/K. Kremer/M. Di Lorenzo

So the two spacecraft still have to prove they can hibernate and eventually emerge intact from the unforgiving lunar night.

Just prior to going to sleep, the 140 kg Yutu rover flexed its robotic arm and Chinese space engineers at BACC completed an initial assessment testing its joints and control mechanisms.

The short robotic arm appears similar in form and function to the one on NASA’s famous Spirit and Opportunity Mars rovers.

It is equipped with an alpha particle X-ray instrument (APXS) – on the terminus – to determine the composition of lunar rocks and soil.

Yutu flexes robotic arm with APXS spectrometer towards rock in this screen shot from a  CCTV video animation. Credit: CNSA/CCTV/screenshot by R. Mackelenbergh/K. Kremer/M. Di Lorenzo
Yutu flexes robotic arm with APXS spectrometer towards rock in this screen shot from a CCTV video animation. Credit: CNSA/CCTV/screenshot by R. Mackelenbergh/K. Kremer/M. Di Lorenzo

The robotic pair of spacecraft safely soft landed on the Moon on Dec. 14 at Mare Imbrium, nearby the Bay of Rainbows, or Sinus Iridum region. It is located in the upper left portion of the moon as seen from Earth. You can easily see the landing site with your own eyes.

Barely seven hours after the history making touchdown, ‘Yutu’ was painstakingly lowered from its perch atop the lander and then successfully drove all six wheels onto the moon’s surface on Dec. 15.

Yutu left noticeable tracks behind, several centimeters deep, as the wheels cut into the loose lunar regolith.

The Chang’e-3 lander and rover then conducted an initial survey of the stark lunar landing site, pockmarked with craters and small boulders.

They took an initial pair of portraits of one another. Read my earlier report – here.

The four legged lunar lander also snapped the missions first panoramic view of the touchdown spot at Mare Imbrium using three panoramic cameras (Pancams) pointing in different directions. Read my earlier report – here.

See the eerie panoramic view of the landing site showing Yutu’s first moments on the alien lunar surface in our screenshot mosaic above – and here.

See the dramatic video with an astronauts eye view of the lunar descent and touchdown in my prior story – here.

Yutu, which translates as ‘Jade Rabbit’, was then directed to travel in a semicircular path around the right side of the lander and is heading to the south.

Its currently napping about 40 meters to the south.

China’s 1st Moon rover ‘Yutu’ embarks on thrilling adventure marking humanity’s first lunar surface visit in nearly four decades. Yutu portrait taken by the Chang’e-3 lander.  Credit: CNSA/CCTV
China’s 1st Moon rover ‘Yutu’ embarks on thrilling adventure marking humanity’s first lunar surface visit in nearly four decades. Yutu portrait taken by the Chang’e-3 lander. Credit: CNSA/CCTV

‘Jade Rabbit’ will resume the lunar trek upon awakening, along with the stationary lander, from their extended two week slumber around Jan 12, 2014.

Yutu will depart the Chang’e-3 landing zone forever and rove the moon’s surface for investigations expected to last at least 3 months – and perhaps longer depending on its robustness in the unforgiving space environment.

The robotic rover will use its suite of four science instruments to survey the moon’s geological structure and composition to locate the moon’s natural resources for use by potential future Chinese astronauts, perhaps a decade from now.

NASA’s Lunar Reconnaissance Orbiter (LRO) imaged the Chang’e-3 landing site in western Mare Imbrium around Christmas time on 24 and 25 December with its high resolution LROC camera and we’ll feature them here when available.

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

The best is surely yet to come!

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken Kremer

101 Astronomical Events for 2014

An early Draconid meteor caught by astrophotographer Cory Schmitz. (Used with permission?)

It’s here!

As 2013 draws to a close, we once again cast our thoughts to all things astronomical for the coming year. For the past five years, I’ve been constructing this list of all things astronomical for the coming year, lovingly distilling the events transpiring worldwide down to a 101 “best events of the year”. This is the first year this list has been featured on Universe Today, so we’ll lay out our ground rules and reasoning a bit as to selection criteria.

Events selected run the gamut from conjunctions and eclipses that are visible worldwide or over a good swath of the planet, to asteroid occultations of stars that are only visible along a thin path along the surface of the Earth. Geocentric conjunction times for occultations are quoted. Generally, only conjunctions involving bright stars, planets & the Moon are noted. The intent of this list is to bridge the gap between the often meager “10 Best Astronomy Events of 2014” listicles that make their rounds this time of year and the more tedious laundry lists of Moon phases and wide conjunctions.

As always, we look at the coming year with an eye out for the astronomically curious and the bizarre. Times are quoted in Universal Time (UT) using a 24-hour clock, which is identical to Greenwich Mean Time (GMT) and Zulu for those in the military.

Some caveats as to how selections were made:

-To make the cut, asteroid occultations must have a rank of 99 or greater, and occult a star brighter than +8th magnitude.

– We only selected major annual meteor showers with a Zenithal Hourly Rate (ZHR) projected to be 20 or greater.

– Only lunar occultations of planets and bright stars are listed.

– Solstice seasons where the International Space Station reaches full illumination are approximate; the ISS gets boosted periodically, and therefore it’s impossible to project its precise orbit months in advance.

– Comets come and go. The comets included on this list are some of the “best bets” that are forcasted to reach binocular visibility for 2014. A big bright one could come up and steal the show at any time!

This list was meant to “whet the appetite” for what’s coming to skies worldwide in 2014 with a succinct rapid fire listing by month. Where an online resource exists that expands on the event, we linked to ‘em. A full resource list, both paper and cyber, is given at the end of the post. Print these events, post it on your refrigerator and/or observatory wall, and expect us to feature many these fine events on Universe Today in the coming year!

Some notes on 2014:

2014 sees Mars reach opposition in early April, which is sure to be a highlight as we head towards an exceptionally close opposition in 2018.

The month of February is also missing a New Moon, which last occurred in 1995 and won’t happen again until 2033. February is the only calendar month which can be missing the same moon phase twice!

We’re also coming off a profoundly weak solar maximum in 2014, though as always, the Sun may have some surprises in store for solar observers and aurora watchers worldwide.

The motion of the Moon in 2014 is headed towards a “shallow” year in 2015 relative to the ecliptic; it will then begin to slowly open back up and ride high around 2025.

2014 also contains the minimum number of eclipses that can occur in one year, 2 solar and 2 lunar. And while there are no total solar eclipses in 2014, there are two fine total lunar eclipses, both visible from North America.

And here’s the month by month rundown:

Moon Jan 1
The view looking west from the US east coast at 6 PM on January 1st from latitude 30 degrees north. (Created in Stellarium).

January

01- The extremely thin crescent 12-15 hour old Moon will present a challenge for North American viewers low to the west at dusk.

03- Quadrantid meteors peak with a ZHR=120 at ~05:00 UT, best seen from the Atlantic region. Favorable in 2014, with the Moon a 2 day old waxing crescent.

04- Earth reaches perihelion at 12:00 UT, 147.1 million kilometres from the Sun.

04- Mars passes 1.3’ from the +11.5th magnitude galaxy NGC 4684.

05- Jupiter reaches opposition for 2014 and shines at magnitude -2.7.

10- A Possible meteor shower due to dust from the Comet (formerly known as) ISON over the next few days?

11- Venus reaches inferior conjunction between the Sun and the Earth, shining at -4th magnitude. It may be just possible to spot it five degrees north of the solar limb from high northern latitudes.

13- Moon reaches its farthest northern declination for 2014 a 19.4 degrees.

16- The most distant Full Moon, and visually smallest Full Moon of 2014 occurs, with the Moon reaching Full within two hours of apogee. MiniMoon!

25- The Moon occults Saturn for the South Pacific at ~13:58 UT.

27- The Moon reaches its farthest southern declination for 2014, at -19.3 degrees.

30- A Black Moon occurs, as reckoned as the second New Moon in a month with two.

31- Mercury reaches a favorable elongation, shining at magnitude -0.9, 18.4 degrees east of the Sun.

Venus occultation footprint for
Venus occultation footprint for February 26th. (Created using Occult v4.1.0).

February

06- Two shadows transit the cloud tops of Jupiter from 10:20 UT-12:44 UT, favoring western North America.

21- The Moon occults Saturn for the Indian Ocean at ~22:18 UT.

26- The 14% waning crescent Moon occults Venus for central Africa at ~5:23 UT.

March

07- Asteroid 9 Metis occults a +7.9 magnitude star for Europe ~3:14 UT.

10- The 70% illuminated waxing gibbous Moon occults the +3.6 magnitude star Lambda Geminorum for North America in the evening sky.

14- Mercury reaches greatest morning elongation at 27.5 degrees west of the Sun shining at magnitude +0.1. Mercury’s best morning apparition in 2014 for southern hemisphere observers.

16- A double shadow transit of Jupiter’s moons occurs from 22:20 to 00:35 UT, visible from Atlantic Canada after sunset.

20- The Northward Equinox occurs at 16:57 UT.

20- GEO satellite eclipse season occurs, as geostationary satellites enter Earth’s shadow near the equinox.

20- Regulus is occulted by asteroid 163 Erigone for the NE United States and Canada at ~6:07 UT, The brightest star occulted by an asteroid in 2014.

21- The Moon occults Saturn for the South Atlantic at ~3:18 UT.

24- A double shadow transit of Jupiter’s moons occurs from 2:08 to 2:28 UT, favoring eastern North America.

24- Asteroid 172 Baucis occults a +6.7 magnitude star for South America at ~9:27 UT.

22- Venus reaches greatest morning elongation, at 47 degrees west of the Sun.

28- Asteroid 51 Nemausa occults a +7.7 magnitude star for Africa at 20:02 UT.

30- A Black Moon occurs, as reckoned as the second New Moon in one month.

The viewing prospects for the April 15th Total Lunar Eclipse. (Credit: NASA/GSFC/
The viewing prospects for the April 15th Total Lunar Eclipse. (Credit: NASA/GSFC/Espenak/Meeus).

April

08- Mars reaches opposition for 2014, shining at magnitude -1.5.

12- A close conjunction of Venus and Neptune occurs, with the planets just 0.7 degrees apart at 2:00 UT.

15- A Total Lunar Eclipse occurs, visible from the Americas and centered on 7:47 UT.

17- The Moon occults Saturn for South America at ~7:19 UT.

29- An Annular Solar Eclipse visible from Australia and the southern Indian Ocean occurs, centered on 6:05 UT. This is a unique, non-central antumbral eclipse!

May

03- Asteroid 105 Artemis occults a +7.7 magnitude star for NW Brazil and Peru at ~9:17 UT.

04- Asteroid 34 Circe occults a +7.4 magnitude star for Peru and Ecuador at ~10:12 UT.

06- The closest lunar apogee of 2014 occurs at 404,318 km distant at 10:23 UT.

07- Eta Aquariid meteors peak, with a ZHR=55 at 4:00 UT. Best observed from the Atlantic Region. Favorable in 2014, with the 7-day old Moon at waxing gibbous.

07- Asteroid 206 Hersilia occults a +7.5 magnitude star for Australia and Indonesia at ~17:49 UT.

10- Saturn reaches opposition for 2014, shining at magnitude +0.1. Saturn’s rings are tipped open a maximum of 23 degrees to our line of sight on February 11th, and widening overall in 2014.

13- A double shadow transit of Jupiter’s moons occurs from 9:20-9:32 UT favoring NW North America.

14- The Moon occults Saturn for Australia and New Zealand at ~12:18 UT.

24- A meteor shower outburst may be in the offing, courtesy of Comet 209P LINEAR. Will the “Camelopardalids” perform?

24- Asteroid 33 Polyhymnia occults a +5.5 magnitude star for South America at ~8:30 UT.

25- Mercury reaches maximum dusk elongation, 22.7 degrees east of the Sun. Mercury’s best evening apparition for 2014 for northern hemisphere viewers.

The triple shadow transit of June 3rd, as seen at 18:00 UT. (Created by the author using Starry Night).
The triple shadow transit of June 3rd, as seen at 19:00 UT. (Created by the author using Starry Night).

 June

3- A triple Jovian shadow transit occurs from 18:05-19:44 UT, favoring eastern Europe and Africa. This is the only triple shadow transit for 2014.

10- The Moon occults Saturn for the southern Indian Ocean at ~18:48 UT.

21- The Northward Solstice occurs at ~10:51 UT.

22- The International Space Station enters a period of full illumination near the June solstice, favoring multiple views for northern hemisphere viewers.

24- The waning crescent Moon passes within a degree of Venus, a great time for spotting the planet in the daytime.

26- The Moon occults Mercury just 20 hours prior to New… a tough catch, but may visible from the SE US and Venezuela just before sunrise.

27- The June Boötid meteors peak, with a ZHR variable from 0-100 at ~15:00 UT, favoring the Central Pacific. Optimal in 2014, as the Moon is at New phase.

July

04- Earth reaches aphelion at 2:00 UT, at 152,098,232 kilometres from the Sun.

04- Pluto reaches opposition at 3:00 UT.

05– 1 Ceres passes just 10’ from 4 Vesta in the constellation Virgo.

06– The Moon occults Mars for South America at ~01:21 UT

08– The Moon occults Saturn for Argentina & Chile at ~2:25 UT.

12- Mercury reaches its maximum elongation of 20.9 degrees west of the Sun, shining at magnitude +0.4 in the dawn.

12– The first Full Proxigean “Super” Moon (1 of 3) for 2014 occurs at 11:27 UT. The Moon reaches Full 21 hours prior to perigee.

30– The Southern Delta Aquarids peak, with a ZHR=20. Time variable, favorable in 2014 with the waxing crescent Moon 4 days past New.

20– Asteroid 451 Patientia occults a +7.1 magnitude star for South Africa at ~17:15 UT.

28- The farthest lunar apogee of 2014 occurs, with the Moon 406,568 kilometres distant at 3:28 UT.

30– Asteroid 103 Hera occults a +6.1 magnitude star for west Africa and central South America at ~1:11 UT.

A tri-conjunction of the Moon, Venus & Jupiter- A "Skewed Smiley face" conjunction!" Credit:  Stellarium
A tri-conjunction of the Moon, Venus & Jupiter on the morning of August 23rd- A “Skewed Smiley face” conjunction!” Credit: Stellarium).

August

02– A close conjunction of Mercury and Jupiter occurs, with the planets just 0.9 degrees apart at 19:00 UT. Visible in SOHO’s LASCO C3 camera.

04- The Moon occults Saturn for Australia at ~10:31 UT.

10– The closest lunar perigee of 2014 occurs, with the Moon 356,896 kilometres distant at 17:44 UT.

10- The Closest Full Moon of the year & “Super” Moon (2 of 3) for 2014 occurs, with Full Moon occurring just 27 minutes after perigee.

13– The Perseid meteors peak, with a ZHR=100 at ~04:00 UT favoring The Atlantic region. Unfavorable in 2014, with the 17 day old Moon at waning gibbous.

18- A conjunction of Venus and Jupiter occurs 5:00 UT, the closest conjunction of two naked eye planets in 2014, with the two just 15’ apart.

29- Neptune reaches opposition at 14:00 UT, shining at +7.8 magnitude.

31– The Moon occults Saturn for Africa and the eastern US (in the daytime) at ~18:59.

September

05- Venus passes 0.7 degrees from the bright star Regulus.

09– The final Full “Super” Moon (3 of 3) for 2014 occurs at 1:39 UT, just 22 hours after perigee.

15– Comet C/2013 V5 Oukaimeden may reach +5.5th magnitude for southern hemisphere observers.

20– Mercury passes 0.5 degrees south of the bright star Spica at 21:00 UT.

21- Mercury reaches its greatest elongation of 26.4 degrees east of the Sun shining at magnitude +0.0 in the dawn sky. Mercury’s best sunset apparition for 2014 for southern hemisphere observers.

23- The Southward Equinox occurs at 2:29 UT.

23- GEO satellite eclipse season occurs, as geostationary satellites enter Earth’s shadow near the equinox.

28– The Moon occults Saturn for the northern Pacific at ~4:25 UT. The Moon also occults 1 Ceres and 4 Vesta on the same day!

The path of Comet C/2013 A1 Siding Springs versus the planet Mars through October, 2014. (Created by the author using Stellarium).
The path of Comet C/2013 A1 Siding Springs versus the planet Mars through October, 2014. (Created by the author using Starry Night).

 October

04- 1 Ceres passes just 30’ north of Saturn.

06- Possible Draconid meteor shower, highly variable in terms of rates and timing, but unfavorable in 2014, with the Moon just two days from Full.

08- A Total Lunar Eclipse visible from the Pacific Rim region occurs, centered on 10:56 UT. The planet Uranus will also lie less than a degree away from the eclipsed Moon!

14- Comet C/2012 K1 PanSTARRS may reach +5th magnitude for southern hemisphere viewers.

13– The Moon reaches it shallowest northern declination for 2014 at +18.5 degrees.

19- Comet C/2013 A1 Siding Spring passes just 7’ from the planet Mars. Globular cluster NGC 6401 also lies nearby.

22– The Orionid meteor shower peaks at ~05:00 UT, with a predicted ZHR=25 favoring the Americas. Optimal in 2014, with the Moon at waning crescent.

22– The Moon occults Mercury for Australia just 24 hours prior to New as seen from Australia.

23- A Partial Solar Eclipse visible from western North America occurs centered on 21:46 UT.

25- The Moon occults Saturn for the northern Atlantic at ~15:43 UT.

25- The Moon reaches its shallowest southern point for 2014, at a declination of -18.6 degrees.

The partial solar eclipse of October 23rd, 2014. (Credit: NASA/GSFC/Fred Espenak).
The partial solar eclipse of October 23rd, 2014. (Credit: NASA/GSFC/Fred Espenak).

 November

01- Mercury reaches its greatest elongation 18.7 degrees west of the Sun, shining at magnitude -0.5. The best morning apparition of Mercury for 2014 as seen from the northern hemisphere.

18– Leonid meteors peak at 05:00 UT with a ZHR=20 favoring the Atlantic region. Optimal in 2014, with the 25 day old Moon at waning crescent phase.

20- Asteroid 3 Juno occults a +7.4 magnitude star for the US NE and eastern Canada.

27- The farthest lunar perigee of 2014 occurs with the Moon 369,824 km distant at 23:12 UT.

December

09- A double shadow transit of Jupiter’s moons occurs from 4:18 to 4:27 UT favoring eastern North America.

12- A double shadow transit of Jupiter’s moons occurs from 16:19 to 16:44 UT favoring NW North America.

13- The Geminid meteors peak with a ZHR=120 at ~01:00 UT, favoring the Middle East & Eastern Europe. Unfavorable in 2014, with the 20 day old  Moon at waning gibbous.

18- Asteroid 702 Alauda occults a +6.2 magnitude star at 14:12 UT for eastern Australia.

21- The Southward Solstice occurs at 23:03 UT.

21- The International Space Station enters period of full illumination around the solstice, with multiple nightly views favoring the southern hemisphere.

21- A double shadow transit of Jupiter’s moons occurs from 14:17 to 15:55 UT, favoring the Far East and Australia.

Don’t see your favorite or most anticipated event of 2014 on the list? Drop us a line and let us know!

Links & Resources Used:

-The American Meteor Society list of 2014 showers

-NASA’s Eclipse Website

-The United States Naval Observatory’s Astronomical Almanac Online

-Guy Ottewell’s 2014 Astronomical Calendar

-The Royal Astronomical Society of Canada’s 2014 Observer’s Calendar

-Steve Preston’s list of asteroid occultation events for 2014

Stellarium

Starry Nite

-Seiichi Yoshida’s Comet website

-Fourmilab’s Lunar Apogee and Perigee calculator

Heavens-Above

-The International Occultation Timing Association’s list of lunar occultations for 2014.

And finally, thanks to all of those too numerous to name who provided discussions/diatribes/input via Twitter/G+/message boards/etc to make this listing possible… let another exciting year of astronomy begin!

 

 

 

 

Yutu Moon Rover Sets Sail for Breathtaking New Adventures

China’s 1st Moon rover ‘Yutu’ embarks on thrilling adventure marking humanity’s first lunar surface visit in nearly four decades. Yutu portrait taken by the Chang’e-3 lander. Credit: CNSA/CCTV

China’s 1st Moon rover ‘Yutu’ embarks on thrilling adventure marking humanity’s first lunar surface visit in nearly four decades. Yutu portrait taken by the Chang’e-3 lander. Credit: CNSA/CCTV
See below Yutu’s departing portrait of Chang’e-3 lander emblazoned with Chinese national flag
Story updated[/caption]

China’s now famous ‘Yutu’ moon rover has set sail for what promises to be breathtaking new adventures on Earth’s nearest neighbor, after completing a final joint portrait session with the Chang’e-3 lander that safely deposited her on the lunar surface only a week ago.

Yutu’s upcoming journey marks humanity’s first lunar surface visit in nearly four decades since the Soviet Union’s Luna 24 sample return vehicle visited. America’s last lunar landing mission with the Apollo 17 astronauts departed 41 years ago on Dec. 14, 1972.

The Chang’e-3 mothership and Yutu rover have resumed full operations after awakening from a sort of self induced slumber following commands from Mission Control back in Beijing.

The lander and rover finished up their 5th and final dual picture taking session – in living lunar color – on Sunday, Dec. 22, according to CCTV, China’s state run broadcast network.

“Ten pictures have been taken at five spots so far, and all of them are better than we expected,” said Wu Weiren, chief designer of the China Lunar Probe Program, to CCTV.

See the newly released portraits from photo session 5 – above and below.

The rover and lander have taken photos of each other for the fifth and final time. The back side of Chang'e 3 lander as seen by rover Yutu with Chinese national flag at left imaged for the first time.  Credit: CNSA/CCTV
The rover and lander have taken photos of each other for the fifth and final time. The back side of Chang’e 3 lander as seen by rover Yutu with Chinese national flag at left imaged for the first time.
Credit: CNSA/CCTV

After arriving on the moon, Yutu and the lander took an initial pair of portraits of one another. Read my earlier report – here.

Yutu was then directed to travel in a semicircular path around the lander and to the south, making tracks several centimeters deep into the loose lunar regolith.

But within two days of the historic Dec. 14 touchdown, the two spacecraft took a four-day break that lasted from Dec. 16 to Dec. 20, during which China’s space engineers shut down their subsystems, according to China’s State Administration of Science, Technology and Industry for National Defense (SASTIND).

Portion of 1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer See the complete panorama below   Story updated
Portion of 1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer See the complete panorama below

The vehicles took a ‘nap” to deal with direct solar radiation that significantly raised their temperatures. Yutu’s sunny side exceeded 100 degrees centigrade while the shaded side was simultaneously below zero, reported SASTIND.

“The break had been planned to last until Dec. 23, but the scientists decided to restart Yutu now for more research time, based on the recent observations and telemetry parameters,” said Pei Zhaoyu, spokesman for the Chinese lunar program, according to China’s Xinhua state news agency.

Both robots then snapped additional photos of one another during the traverse from each of five specific and preplanned locations.

See accompanying traverse map below – written in Chinese.

Path of Yutu rover from Dec. 14 landing to Dec. 21. Landscape textured with Chang'e 3 imagery from space and ground.  Credit: CNSA/BACC
Path of Yutu rover from Dec. 14 landing to Dec. 21. Landscape textured with Chang’e 3 imagery from space and ground. Credit: CNSA/BACC

These images taken by Yutu were designed to show the 1200 kg Chang’e-3 lander from the front, side and back sides as it drove around the right side – for better illumination – at a distance of about 10 meters.

The final image of the Chang’e-3 lander taken by Yutu also captured China’s national flag emblazoned on the lander for the first time, since this was the first time it was in view of the rover’s camera eyes.

See the accompanying traverse graphic here – written in Chinese.

Yutu and the Chang'e 3 lander are scheduled to take photos of each other soon from locations outlined in this artists concept.  Credit: China Space
Yutu and the Chang’e 3 lander were scheduled to take photos of each other from locations outlined in this artists concept. Credit: China Space

Having fulfilled the last of their joint tasks, the two spacecraft can therefore each begin their own lunar exploration missions, working independently of one another exactly as planned from the outset of China’s inaugural moon landing feat.

Yutu will depart the Chang’e-3 landing zone forever and begin its own lunar trek that’s expected to last at least 3 months – and perhaps longer if it’s delicate electronic components survive the moon’s utterly harsh and unforgiving space environment.

“They will begin to conduct scientific explorations of the geography and geomorphology of the landing spot and nearby areas, and materials like minerals and elements there. We will also explore areas 30 meters and 100 meters beneath the lunar soil. The exploration will continue longer than we planned, because all the instruments and equipments are working very well,” noted Wu Weiren.

The robotic pair of spacecraft safely soft landed on the Moon on Dec. 14 at Mare Imbrium, nearby the Bay of Rainbows, or Sinus Iridum region.

Barely seven hours after the history making touchdown, ‘Yutu’ was painstakingly lowered from its perch atop the lander and then successfully drove all six wheels onto the moon’s surface on Dec. 15.

The Chang’e-3 mothership captured a panoramic view of the stark lunar terrain surrounding the spacecraft after ‘Yutu’ drove some 9 meters away from the lander.

See the eerie panoramic view of the landing site showing Yutu’s first moments on the alien lunar surface in my prior story – here.

See the dramatic video with an astronauts eye view of the lunar descent and touchdown in my prior story – here.

1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer
1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer

The 120 kg Yutu rover is almost the size of a golf cart. It measures about 1.5 m x 1 m on its sides and stands about 1.5 m (nearly 5 feet) tall – virtually human height.

Yutu, which translates as ‘Jade Rabbit’ will use its suite of four science instruments to survey the moon’s geological structure and composition to locate the moon’s natural resources for use by potential future Chinese astronauts, perhaps a decade from now.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken KremerLanding site of Chinese lunar probe Chang'e-3 on Dec. 14, 2013. Landing site of Chinese lunar probe Chang’e-3 on Dec. 14, 2013. [/caption]

China’s 1st Lunar Lander snaps 1st landing site Panorama

Portion of 1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer See the complete panorama below Story updated

Portion of 1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer
See the complete panorama below
Story updated[/caption]

China’s inaugural Chang’e-3 lunar lander has snapped the missions first panoramic view of the touchdown spot at Mare Imbrium.

Chinese space officials have now released the dramatic surface imagery captured by the Chang’e-3 mothership on Dec. 15, via a video news report on CCTV.

To make it easier to see and sense ‘the new view from the Moon’, we have created screen shots from the rather low resolution TV broadcast and assembled them into a photo mosaic of the landing site – see above and below mosaics by Marco Di Lorenzo and Ken Kremer.

The Chang’e-3 mothership imaged the stark lunar terrain surrounding the spacecraft after the ‘Yutu’ rover perched atop successfully drove all six wheels onto the moon’s surface on Dec. 15, barely 7 hours after the momentous landing on Dec. 14.

The individual images were taken by three cameras positioned around the robotic lander.

1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer
1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer

Chinese scientists then pieced them together to form the lander’s first panoramic view of the lunar surface, according to CCTV.

“This picture is made of 60 pictures taken 3 times by the rover. The rover used three angles: vertical, 15 degrees tilted up, and 15 degrees down…so that we get an even farther view,” said Liu Enhai, Designer in Chief, Chang’E-3 Probe System, in a CCTV interview

The panoramic view shows ‘Yutu’ and its wheel tracks cutting a semi circular path at least several centimeters deep into the loose lunar regolith at the landing site at Mare Imbrium, located near the Bay of Rainbows.

After making its soft landing, the Chang’e-3’s lander took pictures around its landing spot. Credit: CCTV
After making its soft landing, the Chang’e-3’s lander took pictures around its landing spot. Credit: CCTV

A significant sized crater, several meters wide, is seen off to the left of Yutu and located only about 10 meters away from the Chang’e-3 lander.

Several more craters are visible in the pockmarked surface around the lander.

Mission leaders purposely equipped the lander with terrain recognition radar and software so that it could steer clear of hazards like craters and large boulders and find a safe spot to land.

Wheel tracks from Yutu moon rover. Credit: CNSA/CCTV
Wheel tracks from Yutu moon rover. Credit: CNSA/CCTV

Indeed just prior to touchdown, the lander actually hovered at an altitude of 100 meters for about 20 seconds to avoid the craters and rock fields which could have doomed the mission in its final moments.

See the dramatic Chang’e-3 landing video in my earlier report – here.

Here is our annotated screen shot from the landing video showing the eventual landing site in the distance:

This screen shot from one photo of many of the moons surface snapped by the on-board descent imaging camera of the Chinese lunar probe Chang’e-3 on Dec. 14, 2013 shows the probe approaching the Montes Recti mountain ridge and approximate location of the landing site. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Credit: Xinhua/CCTV/post processing and annotations Marco Di Lorenzo /Ken Kremer.  See the entire stunning Chang’e-3 lunar landing video – below
This screen shot from one photo of many of the moons surface snapped by the on-board descent imaging camera of the Chinese lunar probe Chang’e-3 on Dec. 14, 2013 shows the probe approaching the Montes Recti mountain ridge and approximate location of the landing site. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Credit: Xinhua/CCTV/post processing and annotations Marco Di Lorenzo /Ken Kremer.

The 140 kilogram Yutu rover then turned around so that the lander and rover could obtain their first portraits of one another.

“The rover reached the point of X after it went down from the lander, then it established contact with the ground. Then it went to point A, where the rover and lander took pictures of each other. Then it reached point B, where it’s standing now.” said Liu Jianjun, Deputy Chief Designer, Chang’E-3 Ground System, to CCTV.

China thus became only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Chinese President Xi Jinping and space agency leaders have hailed the Chang’e-3 mission as a complete success for China.

The Yutu rover, which translates as ‘Jade Rabbit’ will use its science instruments to survey the moon’s geological structure and composition on a minimum three month mission to locate the moon’s natural resources for use by potential future Chinese astronauts.

The lander will conduct in-situ exploration at the landing site for at least one year, say Chinese officials.

Hopefully, China will quickly start releasing full resolution imagery and video taken by the Chang’e-3 lander and Yutu rover at a dedicated mission website, like NASA does, rather than issuing photos of imagery from projection screens and televisions – so that we all can grasp the full beauty of their tremendous lunar feat.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken KremerLanding site of Chinese lunar probe Chang'e-3 on Dec. 14, 2013. Landing site of Chinese lunar probe Chang’e-3 on Dec. 14, 2013. [/caption]

Stunning Chang’e-3 Lunar Landing Video gives Astronauts Eye View of Descent & Touchdown

This screen shot from one photo of many of the moons surface snapped by the on-board descent imaging camera of the Chinese lunar probe Chang’e-3 on Dec. 14, 2013 shows the probe approaching the Montes Recti mountain ridge and approximate location of the landing site. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Credit: Xinhua/CCTV/post processing and annotations Marco Di Lorenzo /Ken Kremer. See the entire stunning Chang’e-3 lunar landing video – below

This screen shot from one photo of many of the moons surface snapped by the on-board descent imaging camera of the Chinese lunar probe Chang’e-3 on Dec. 14, 2013 shows the probe approaching the Montes Recti mountain ridge and approximate location of the landing site in Mare Imbrium. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Image and video rotated 180 degrees.
Credit: Xinhua/CCTV/post processing and annotations Marco Di Lorenzo /Ken Kremer
See the entire stunning Chang’e-3 lunar landing video – below
Story updated

[/caption]

China accomplished a major technological and scientific feat when the country’s ambitious Chang’e-3 robotic spacecraft successfully soft landed on the Moon on Dec. 14 – on their very first attempt to conduct a landing on an extraterrestrial body.

Along the way the descent imaging camera aboard the Chang’e-3 lander was furiously snapping photos during the last minutes of the computer guided descent.

For a firsthand look at all the thrilling action, be sure to check out the stunning landing video, below, which gives an astronauts eye view of the dramatic descent and touchdown by China’s inaugural lunar lander and rover mission.

The video was produced from a compilation of descent camera imagery. The version here has been rotated 180 degrees – so you don’t have to flip yourself over to enjoy the ride.

And it truly harkens back to the glory days of NASA’s manned Apollo lunar landing program of the 1960’s and 1970’s.

Photo taken on Dec. 14, 2013 shows a picture of the moon surface taken by the on-board camera of lunar probe Chang'e-3 on the screen of the Beijing Aer Control Center in Beijing.   This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body.  Credit: Xinhua/CCTV
This is one photo from many of the moons surface snapped by the on-board descent imaging camera of the Chinese lunar probe Chang’e-3 on Dec. 14, 2013. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Credit: Xinhua/CCTV
See the entire stunning Chang’e-3 lunar landing video – herein

The dramatic Chang’e-3 soft landing took place at Mare Imbrium at 8:11 am EST, 9:11 p.m. Beijing local time, 1311 GMT, which is to the east of the announced landing site on the lava filled plains of the Bay of Rainbows, or Sinus Iridum region.

The precise landing coordinates were 44.1260°N and 19.5014°W -located below the Montes Recti mountain ridge and about 40 kilometers south of the 6 kilometer diameter crater known as Laplace F – see image below.

Landing site of Chinese lunar probe Chang'e-3 on Dec. 14, 2013.
Landing site of Chinese lunar probe Chang’e-3 on Dec. 14, 2013.

The video begins as Chang’e-3 is approaching the Montes Recti mountain ridge which is about 90 km in length. Its peaks rise to nearly 2 km.

Chang’e-3 carried out the rocket powered descent to the Moon’s surface by firing the landing thrusters starting at the altitude of 15 km (9 mi) for a soft landing targeted to a preselected area in Mare Imbrium.

The vehicles thrusters then fire to pivot the lander towards the surface at about the 2:40 minute mark when it’s at an altitude of roughly 3 km.

Infographic shows the process of the soft-landing on the moon of China's lunar probe Chang'e-3 on Dec. 14, 2013. Credit: SASTIND/Xinhua /Zheng Yue
Infographic shows the process of the soft-landing on the moon of China’s lunar probe Chang’e-3 on Dec. 14, 2013. Credit: SASTIND/Xinhua /Zheng Yue

The powered descent was autonomous and preprogrammed and controlled by the probe itself, not by mission controllers on Earth stationed at the Beijing Aerospace Control Center (BACC) in Beijing.

Altogether it took about 12 minutes using the variable thrust engine which can continuously vary its thrust power between 1,500 to 7,500 newtons.

The variable thrust engine enabled Chang’e-3 to reduce its deceleration as it approached the moons rugged surface.

Photo taken on Dec. 14, 2013 shows the landing spot of lunar probe Chang'e-3  indicated on the screen of the Beijing Aerospace Control Center in Beijing, capital of China. Credit: Xinhua/Li
Photo taken on Dec. 14, 2013 shows the landing spot of lunar probe Chang’e-3 indicated on the screen of the Beijing Aerospace Control Center in Beijing, capital of China. Credit: Xinhua/Li

The 1200 kg lander was equipped with unprecedented terrain recognition equipment and software to hover above the landing site and confirm it was safe before proceeding.

This enabled the craft to avoid hazardous rock and boulder fields as well as craters in the pockmarked terrain that could spell catastrophe even in the final seconds before touchdown, if the vehicle were to land directly on top of them.

The descent engine continued firing to lower the lander until it was hovering some 100 meters above the lunar surface – at about the 5:10 minute mark.

Chang'e-3 hovered 100m high for 20 seconds before committing to land. This allows the on-board computer to make sure it doesn't land in a crater or an uneven place.  Credit: China Space
Chang’e-3 hovered 100m high for 20 seconds before committing to land. This allows the on-board computer to make sure it doesn’t land in a crater or an uneven place. Credit: China Space

After hovering for about 20 seconds and determining it was safe to proceed, the lander descended further to about 3 meters. The engine then cut off and the lander free fell the remaining distance. The impact was cushioned by shock absorbers.

There is a noticeable dust cloud visible on impact as the Chang’e-3 mothership touched down atop the plains of Mare Imbrium.

Chang'e-3 lander imaged by the rover Yutu on the moon on Dec. 15, 2013.  Note landing ramp at bottom. Credit: CCTV
Chang’e-3 lander imaged by the rover Yutu on the moon on Dec. 15, 2013. Note landing ramp at bottom. Credit: CCTV

Barely 7 hours later, China’s first ever lunar rover ‘Yutu’ rolled majestically down a pair of ramps and onto the Moon’s soil on Sunday, Dec. 15 at 4:35 a.m. Beijing local time.

The six wheeled ‘Yutu’, or Jade Rabbit, rover drove straight off the ramps and sped right into the history books as it left a noticeably deep pair of tire tracks behind in the loose lunar dirt.

China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer
China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer

The stunning feat was broadcast on China’s state run CCTV.

China thus became only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

It’s been nearly four decades since the prior lunar landing was accomplished by the Soviet Union’s Luna 24 sample return spacecraft back in 1976.

America’s last visit to the Moon’s surface occurred with the manned Apollo 17 landing mission – crewed by astronauts Gene Cernan and Harrison ‘Jack’ Schmitt , who coincidentally ascended from the lunar soil on Dec. 14, 1972 – exactly 41 years ago.

China’s Chang’e-3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken KremerMoon map showing landing site of Chinese lunar probe Chang'e-3 on Dec. 14, 2013 below Montes Recti in Mare Imbrium beside Sinus Iridum, or the Bay of Rainbows .  Credit: China Space Moon map showing landing site of Chinese lunar probe Chang’e-3 on Dec. 14, 2013 below Montes Recti in Mare Imbrium beside Sinus Iridum, or the Bay of Rainbows . Credit: China Space[/caption]

Image shows the trajectory of the lunar probe Chang'e-3 approaching the landing site  on Dec. 14.
Image shows the trajectory of the lunar probe Chang’e-3 approaching the landing site on Dec. 14.

The 2013 Super and Mini Moon Together in One Photo

A composition of the nearest and farthest 2013 full moons, with the SuperMoon of June on the left and the MiniMoon of December on the right. Credit and copyright: Giuseppe Petricca.

Astrophotographer Giuseppe Petricca from Pisa, Tuscany, Italy managed to capture two of the very ‘special’ full Moons from 2013 and created a comparative mosaic. Here is both the 2013 “SuperMoon” in June – when the Moon is the closest to Earth in its orbit and visually largest – and the recent December 2013 “MiniMoon” — the most distant and visually smallest Full Moon of the year.

“I was amazed, to say the least, from the actual difference!” Petricca told Universe Today via email. “The motto ‘It’s not that evident until you, by yourself, get to notice it!’ applies perfectly to this situation.

While with naked eye, the full Moon seems about the same size every month, the difference in its visual size is clearly visible via pictures. Of course, the Moon itself doesn’t change size, it’s just how big or small it appears in the sky due to the eccentricities in its orbit around Earth.

The two pictures were both taken at the same focal length, with a simple non reflex camera, a Nikon P90, on tripod, with matching ISO speed and exposure, at ISO 100, f5.0, 1/200″. Both taken from Pisa, Tuscany, Italy.

You can read all about the recent “MiniMoon” here, and find out more about the mechanics of the “SuperMoon” here.

See the Apollo 8 “Earthrise” in a Whole New Way

Earthrise - Apollo 8
Earthrise - as seen from Apollo 8. Credit: NASA.

One of the most famous images from the history of spaceflight is the picture taken by the crew of Apollo 8 of the “Earthrise” — the first color picture of taken of Earth as it became visible as the spacecraft came from behind the farside of the Moon. The photo was taken 45 years ago on December 24, 1968. It’s been called one of the most influential environmental photographs ever taken, and is one of the most-published pictures ever. As the photographer of this photo, astronaut Bill Anders has said, “We came all this way to discover the Moon. And what we really did discover is Earth.”

The NASA Goddard Scientific Visualization Studio has now released a new video that is a re-creation of that first Earthrise. The video is based on detailed analysis of Apollo 8 photography, including vertical stereo photos that were being taken at the same time as the Earthrise photos, combined with recent topographic models from the Lunar Reconnaissance Orbiter.

“In the video,” space historian Andrew Chaikin — who narrates the new video — told Universe Today, “we see the Moon’s surface, generated from LRO data, exactly as it appeared to the astronauts through the different windows of the spacecraft. We also hear the astronauts’ voices as captured by the spacecraft’s onboard voice recorder, synchronized with the visual. The video reveals new details about this historic event and the resulting color photograph, which became an icon of the 20th century.”

Enjoy this wonderful new video, which explains how this historic image was taken. The visualization shows how Apollo 8 Commander Frank Borman and crew members Anders and James Lovell worked together to photograph the stunning scene as their spacecraft orbited the Moon in 1968. The video allows anyone to virtually ride with the astronauts and experience the awe they felt at the vista in front of them.

The “Earthrise” photo is the cover photo of TIME’s Great Images of the 20th Century, and is the central photo on the cover of LIFE’s 100 Photographs That Changed the World.

“Earthrise had a profound impact on our attitudes toward our home planet, quickly becoming an icon of the environmental movement,” said Ernie Wright, who lead the video project with the SVS.

You can read more details of how the video was put together in this NASA press release.

A computer-generated visualization of the Apollo 8 spacecraft in orbit around the moon, with Earth rising over the horizon. Image Credit:  Ernie Wright/NASA Goddard Scientific Visualization Studio
A computer-generated visualization of the Apollo 8 spacecraft in orbit around the moon, with Earth rising over the horizon.
Image Credit:
Ernie Wright/NASA Goddard Scientific Visualization Studio

Visions of Earth through the Yutu Rover’s Eyes

Earth eclipses the sun from Chang'e 3's location in the Sea of Rains on April 15, 2014. At the same time, we'll see a total lunar eclipse from the ground. Stellarium

Last night I used my telescope to eye-hike the volcanic plains of the Sea of Rains (Mare Imbrium) where the Yutu rover and lander sit beneath a blistering sun. With no atmosphere to speak of and days that last two weeks, noontime temperatures can hit 250 degrees Fahrenheit (122 C) . That’s hot enough that mission control at the Beijing Aerospace Command and Control Center has decided to draw the shades and give the rover a nap from science duties until December 23 when things cool down a bit.

While studying the subtle gray hues of the Imbrium lava flows I got to wondering what the sky might look like if I could don a spacesuit and visit the landing site “where the skies are not cloudy all day” (to quote a famous song). With no atmosphere to speak of, stargazing can be done both day and night on the moon though I suspect it’s better at night when there’s less glare from your surroundings. Night, defined as the time from sunset to sunrise (no twilights here), lasts about 14.5 Earth days. Days are equally long.

Lunar landscape photographed by the Chang'e 3 lander on Dec. 15, 2013. Credit: CCTV
Lunar landscape photographed by the Chang’e 3 lander on Dec. 15, 2013. Credit: CCTV

 

From Yutu’s point of view, it’s very nearly lunar noon today (Dec. 19) with the sun halfway up in the southern sky.  Looking at the map of the sky from the lander’s location, you’ll see a few familiar constellations and one very familiar planet – Earth!

Phases of the moon and Earth are complementary. When the moon is full, Earth's a crescent. This map shows the Earth in Capricornus on Dec. 20 as thin blue crescent. Stellarium
Phases of the moon and Earth are complementary. When the moon is full, Earth’s a crescent. This map shows the Earth in Capricornus on Dec. 20 as thin blue crescent. Stellarium

Today Earth appears as a very thin crescent a short distance to the left or east of the sun. Because the moon takes just as long to rotate on its axis as it does to revolve around the Earth, the same face of the moon always faces our planet. Because the two are in synchrony, astronomers call it synchronous rotation.

From the perspective of someone standing on the moon, Earth stands still in one spot of sky throughout the 29.5 day lunar day-night cycle. Well, not perfectly still. Because the moon’s orbit is inclined about 5 degrees to Earth’s orbit and its speed varies along its non-circular orbit, Earth describes a little circle in the lunar sky about 10 degrees in diameter every four weeks.

As the sun slowly moves off to the west, our blue planet remains nearly stationary from Yutu’s perspective and undergoes all the familiar phases we see the moon experience back here on Earth: an evening crescent to start followed by a first quarter Earth, Full Earth last quarter and finally, New Earth. I like the ring of that last one.

The lunar landscape at the rover's location is bathed in pale blue light on Dec. 31, 2013 during "Full Earth". Stellarium
The lunar landscape at the rover’s location is bathed in pale blue light on Dec. 31, 2013 during a Full Earth. Stellarium

Yutu and the lander will see the sun drift to the west while Earth moves east, rises higher in the lunar sky and putting on the pounds phase-wise. Today Earth’s glides across the border of Sagittarius into Capricornus. The next Full Earth happens on New Year’s Eve when the sun is directly opposite the Earth in the lunar sky.

Full Earth always happens around local midnight or about one week before sunrise during the long lunar day. On the moon the sun is up for about  two weeks and then disappears below the horizon for another two weeks before rising again.  At Full Earth time, the sun remains hidden around the lunar backside. When the nights are blackest, the bright ball of Earth spreads a welcome blue glow over the desolate landscape.

Earth covering the sun with a flash of the "diamond ring effect" just before total solar eclipse on April 15 and Oct. 8 next year. Stellarium
Simulated eclipse of the sun by the Earth just before totality on April 15 and Oct. 8 next year. On both dates, we’ll see a  total lunar eclipse from the ground.  Stellarium

Things really get interesting during lunar eclipses when the moon moves behind the Earth into the planet’s shadow. The next one’s on April 15, 2014. Here on the ground we’ll see the moon gradually munched into by Earth’s  shadow until totality, when sunlight from all the sunrises and sunsets around the rim of the planet are refracted by the atmosphere into the shadow, coloring the moon a coppery red.

Two pictures of the ring of sunset-sunrise fire around the Earth as it totally eclipsed the sun from the moon. Credit: NASA
Two pictures of the ring of sunset-sunrise fire around the Earth as it totally eclipsed the sun from the moon. Credit: NASA

Yutu will see just the opposite. Looking back toward the Earth from inside its shadow, the rover will witness a total eclipse of the sun by the Earth. If by some wonder the Chinese are able to photograph the event, we’ll see photos of the black ball of Earth rimmed in red fire from sunset and sunrise light refracted by our atmosphere. My interpretation using sky mapping software only hints at the wonder of the scene. Beijing Aerospace, if you’re reading this, please make it happen.


Earth eclipses the sun filmed by Japan’s Kaguya lunar orbiter. There are really two eclipses here – the Earth eclipsed by the limb of the moon at the video’s start followed by the solar eclipse.

On two other occasions, our robotic emissaries have photographed solar eclipses from Luna. NASA’s Surveyor 3 snapped a couple crude pictures of the April 24, 1967 eclipse from inside a crater in Mare Cognitium, the Sea that has Become Known. Japan’s orbiting Kaguya probe did the job much more eloquently on video during the February 9, 2009 penumbral lunar eclipse. In a penumbral eclipse (seen from Earth) the moon misses Earth’s dark inner shadow called the umbra, passing only through the outer penumbra, but because the Earth is three times larger than the sun (seen from the moon), it easily covered the sun completely in the complementary total solar eclipse.

And the best thing about watching eclipses from the moon? Guaranteed clear skies!