Ancient Astronomical Calendar Discovered in Scotland Predates Stonehenge by 6,000 Years

A wintertime rising gibbous Moon. (Image credit: Art Explosion).

A team from the University of Birmingham recently announced an astronomical discovery in Scotland marking the beginnings of recorded time.

Announced last month in the Journal of Internet Archaeology, the Mesolithic monument consists of a series of pits near Aberdeenshire, Scotland. Estimated to date from 8,000 B.C., this 10,000 year old structure would pre-date calendars discovered in the Fertile Crescent region of the Middle East by over 5,000 years.

But this is no ordinary wall calendar.

Originally unearthed by the National Trust for Scotland in 2004, the site is designated as Warren Field near the town of Crathes. It consists of 12 pits in an arc 54 metres long that seem to correspond with 12 lunar months, plus an added correction to bring the calendar back into sync with the solar year on the date of the winter solstice.

Diagram...
A diagram of the Warren Field site, showing the 12 pits (below) and the alignment with the phases of the Moon plus the rising of the winter solstice Sun. Note: the scale should read “0-10  metres.” (Credit: The University of Birmingham).

“The evidence suggests that hunter-gatherer societies in Scotland had both the need and sophistication to track time across the years, to correct for seasonal drift of the lunar year” said team leader and professor of Landscape Archaeology at the University of Birmingham Vince Gaffney.

We talked last week about the necessity of timekeeping as cultures moved from a hunter-gatherer to agrarian lifestyle. Such abilities as marking the passage of the lunar cycles or the heliacal rising of the star Sirius gave cultures the edge needed to dominate in their day.

For context, the pyramids on the plains of Giza date from around 2500 B.C., The Ice Man on display in Bolzano Italy dates from 3,300 B.C., and the end of the last Ice Age was around 20,000 to 10,000 years ago, about the time that the calendar was constructed.

“We have been taking photographs of the Scottish landscape for nearly 40 years, recording thousands of archaeological sites that would never have been detected from the ground,” said manager of Aerial projects of the Royal Commission of Aerial Survey Projects Dave Cowley. “It’s remarkable to think that our aerial survey may have helped to find the place where time was invented.”

The site at Warren Field was initially discovered during an aerial survey of the region.

Vince Gaffney professor of Landscape and Archaeology at University of Birmingham in Warren Field, Crathes, Aberdeenshire where the discovery was made.
Vince Gaffney, professor of Landscape and Archaeology at University of Birmingham in Warren Field, Crathes, Aberdeenshire where the discovery was made. (Credit: The University of Birmingham).

The use of such a complex calendar by an ancient society also came as a revelation to researchers. Emeritus Professor of Archaeoastronomy at the University of Leicester Clive Ruggles notes that the site “represents a combination of several different cycles which can be used to track time symbolically and practically.”

The lunar synodic period, or the span of time that it takes for the Moon to return to the same phase (i.e., New-to-New, Full-to-Full, etc) is approximately 29.5 days. Many cultures used a strictly lunar-based calendar composed of 12 synodic months. The Islamic calendar is an example of this sort of timekeeping still in use today.

However, a 12 month lunar calendar also falls out of sync with our modern Gregorian calendar by 11 days (12 on leap years) per year.

The familiar Gregorian calendar is at the other extreme, a calendar that is strictly solar-based.  The Gregorian calendar was introduced in 1582 and is still in use today. This reconciled the 11 minute per year difference between the Julian calendar and the mean solar year, which by the time of Pope Gregory’s reform had already caused the calendar to “drift” by 10 days since the 1st Council of Nicaea 325 AD.

Artist’s conception of the Warren Field site during the winter solstice. (Credit: The University of Birmingham). Credit: The University of Birmingham
Artist’s conception of the Warren Field site during the winter solstice. (Credit: The University of Birmingham). Credit: The University of Birmingham

Surprisingly, the calendar discovered at Warren Field may be of a third and more complex variety, a luni-solar calendar. This employs the use of intercalary periods, also known as embolismic months to bring the lunar and solar calendar back into sync.

The modern Jewish calendar is an example of a luni-solar hybrid, which adds an extra month (known as the 2nd Adar or Adar Sheni) every 2-3 years. This will next occur in March 2014.

The Greek astronomer Meton of Athens noted in 5th century B.C. that 235 synodic periods very nearly add up to 19 years, to within a few hours. Today, this period bears his name, and is known as a metonic cycle. The Babylonian astronomers were aware of this as well, and with the discovery at Warren Field, it seems that ancient astronomers in Scotland may have been moving in this direction of advanced understanding as well.

It’s interesting to note that the site at Warren Field also predates Stonehenge, the most famous ancient structure in the United Kingdom by about 6,000 years. 10,000 years ago would have also seen the Earth’s rotational north celestial pole pointed near the +3.9th magnitude star Rukbalgethi Shemali (Tau Herculis) in the modern day constellation of Hercules. This is due to the 26,000 year wobble of our planet’s axis known as the precession of the equinoxes.

The precession of the north celestial pole over millenia. (Credit: Wikimedia Commons graphic under a Creative Commons Attribution 2.5 Generic license. Author: Tau'olunga).
The precession of the north celestial pole over millennia. (Credit: Wikimedia Commons graphic under a Creative Commons Attribution 2.5 Generic license. Author: Tau’olunga).

The Full Moon nearest the winter solstice also marks the “Long Nights Moon,” when the Full Moon occupies a space where the Sun resides during the summer months and  rides high above the horizon for northern observers all night. The ancients knew of the five degree tilt that our Moon has in relation to the ecliptic and how it can ride exceptionally high in the sky every 18.6 years. We’re currently headed towards a ‘shallow year’ in 2015, where the Moon rides low in relation to the ecliptic. From there, the Moon’s path in the sky will get progressively higher each year, peaking again in 2024.

Who built the Warren Field ruins along the scenic Dee Valley of Scotland? What other surprises are in store as researchers excavate the site? One thing is for certain: the ancients were astute students of the sky. It’s fascinating to realize how much of our own history has yet to be told!

 

 

To The Moon, Jeremy! Canadian Astronaut Thinks Off-Planet Geology During Arctic Trip

Canadian astronaut Jeremy Hansen after rescuing a rover out of the mud in the Arctic's Haughton Crater. Hansen was participating in a geology expedition in July 2013. Credit: Jeremy Hansen/Twitter

It takes gumption to go knee-deep in mud to save a stranded rover. Or to climb up precarious slopes in search of the perfect rock. Oh, and did we mention the location is best accessible by air, with no towns nearby?

Take these challenging conditions, which Canadian astronaut Jeremy Hansen faced in the Arctic this month, and then imagine doing this on the moon. Or an asteroid. Or Mars. Scary, isn’t it? But that’s what he’s thinking of and training for as he does geology work a few times a year.

“It’s important; it provides an opportunity in a somewhat uncomfortable, risky situation when we’re doing real science,” Hansen told Universe Today of his time in Haughton Crater in Canada’s north. In fact, it’s so important to Hansen that he’s gone on similar geology trips with this Western University group three times.

Geology is now part of the package with basic astronaut training. NASA is hoping to get to the moon or an asteroid in the (relatively) near future, and there have been Congressional questions about the agency’s plans for Mars exploration. No one has firm answers yet. The astronauts, still, are preparing themselves as best as they can if the opportunity arises.

There would be vast differences between Earth exploration and heading to another location, however. Some examples:

While the Haughton Crater expedition is an analog for moon or Mars exploration, certain things will be different from the Earth experience. Here, Canadian astronaut Jeremy Hansen gathers water -- a feat that would be way more difficult off-planet. Credit: Jeremy Hansen/Twitter
While the Haughton Crater expedition is an analog for moon or Mars exploration, certain things will be different from the Earth experience. Here, Canadian astronaut Jeremy Hansen gathers water — a feat that would be way more difficult off-planet. Credit: Jeremy Hansen/Twitter
  • Water and supplies. The team Hansen joined had nine people and 29 checked bags for an expedition that lasted just over a week. They could also get water on site at a spot not too far from their camp, reducing the load of that heavy but important substance. NASA’s long-range planning, meanwhile, envisions scenarios such as a month on the moon, Hansen said. Supplies would be an interesting and heavy challenge in that situation. “The next time we’ll go back, what we’ll really be looking to do is travel much greater distances over a longer period of time,” he said. “We’ll be living in a rover for a month, covering 100 kilometers [62 miles] or more, looking for these important outcrops that tell us the story.”
  • Geology. The Earth is an erosive force on geology: wind, rain, glaciation, water, volcanic activity and more alters the landscape. “Sometimes the rocks look very similar” even when they are different, Hansen pointed out. Other places may have different erosion processes (think micrometeroids), making the rocks look strange to Earth-trained eyes.
  • Location. The landscape itself could be challenging for collecting samples. The moon, for example, has “stuff strewn everywhere and pounded into sand”, Hansen said, meaning that astronauts might have to travel much further to see something besides regolith or moon soil. Where Hansen was in the Arctic, by contrast, the group could get to more than a dozen different outcrops in a day of walking.
  • Gravity. The moon has a sixth of the Earth’s gravity. Mars is at about 38% Earth gravity. This means that the machines would need to be designed to work in that environment. For astronauts, it’s riskier to go up slopes or do heavy work in those conditions because their center of gravity is unfamiliar. As this Apollo 17 clip shows, astronauts sometimes fell over on the moon when doing something as simple as picking up as sample bag.
This stain in the rock showed evidence of hot water flowing for million of years after the impact that created Haughton Crater, said Canadian astronaut Jeremy Hansen. "Could support life? Could crater on Mars? Research may answer," he tweeted. Credit: Jeremy Hansen/Twitter
This stain in the rock showed evidence of hot water flowing for million of years after the impact that created the Arctic’s Haughton Crater, said Canadian astronaut Jeremy Hansen. “Could support life? Could crater on Mars? Research may answer,” he tweeted. Credit: Jeremy Hansen/Twitter

Hansen’s work in Haughton Crater did turn up some similarities to work at off-Earth locations, though. His crew had to work in a compressed time situation, learning how to find representative rocks from a 14-mile (23-kilometer) wide crater. That’s the same challenge you’d find during a moon or asteroid or Mars expedition.

“We explored not the entire crater — it’s a lot of ground to cover — but we explored some key areas,” Hansen said. “What’s important for someone like me, at my stage of geologist eyes, is to see the key aspects of the crater, those being what types of rocks that are formed and where do they end up in the crater.”

When a big rock slams into the Earth, it excavates material that is normally inaccessible to a surface visitor. Hansen was encouraged to seek the oldest or genesis rocks when on his expedition because, as in other locations, they provide clues about how the solar system was formed. The hard evidence firms up our theories on what happened.

"Explored rocks, learned origins of Earth. Want to do this on Mars someday like @MarsCuriosity but with a return ticket," tweeted Canadian astronaut Jeremy Hansen, making a joking reference to the Mars One expedition. Credit: Jeremy Hansen/Twitter
“Explored rocks, learned origins of Earth. Want to do this on Mars someday like @MarsCuriosity but with a return ticket,” tweeted Canadian astronaut Jeremy Hansen, making a joking reference to the Mars One expedition. Credit: Jeremy Hansen/Twitter

It’s not only work in the field that is important, but work in the lab. In past years with Gordon Osinski‘s group at Western, Hansen has gone back to the university to talk with those looking at the rock samples. He asks if the samples were representative, easy to analyze. His goal is to do better with each expedition.

“It’s kind of like learning a fourth lagnguage,” said Hansen, who as a Canadian Space Agency astronaut is expected to speak English, French and Russian at a minimum.

“It’s one of those things — you can cram it all in, but you don’t retain a lot unless you use it repeatedly and continue to practice it. My elegant solution is I spend one, maybe two weeks total a year, working on this. It’s a good use of my time. I keep bringing it back, keep reviewing it and keep going a little further.”

Hansen has a busy summer ahead of him. He’s taking off soon for CF-18 training with the Royal Canadian Air Force, where he got his career start. (Funny enough, in his past career he used to survey the Arctic from the air during Canadian sovereignty operations.)

In September, Hansen is spending about a week underground in Sardinia, Italy as part of the European Space Agency’s ongoing CAVES expedition series. Besides geology, this also provides training in unfamiliar and dangerous environments.

Hansen has not been assigned to a flight yet, but continues to work in the International Space Station operations branch in Houston and to represent the Astronaut Office in operational meetings. Also in training is his colleague David Saint-Jacques. Both astronauts were selected in 2009.

The next Canadian spaceflight is expected to happen around 2018, but could be earlier depending on ongoing negotiations by the Canadian Space Agency.

Timelapse: Super Moon Rising Over the Rocky Mountians

A series of photos combined to show the rise of the July 22, 2013 ‘super’ full moon over the Rocky Mountains, shot near Vail, Colorado, at 10,000ft above sea level in the White River National Forest. Moon images are approximately 200 seconds apart. Credit and copyright: Cory Schmitz

Astrophotographer Cory Schmitz braved a brown bear in order to capture some wonderful images of the full Moon rise on July 22, 2013. This composite shows a series of images of the moonrise, and below is a beautiful timelapse.

This perigee Moon, a.k.a “Super Moon” was the third and final of the big full Moons for 2013. However, as astrophysicist Neil DeGrasse Tyson mentioned on Twitter, it is “Okay to call tonight’s Full Moon “super” but only if you would call a 13-inch pizza “super” compared with a 12-inch pizza.”

You can catch more of Cory with Fraser on the Virtual Star Parties on Sunday nights. Below are a couple of more great scenes from Cory’s full Moon experience:

A bear sits right on the spot where Cory Schmitz wanted to set up his photography equipment. Image courtesy Cory Schmitz.
A bear sits right on the spot where Cory Schmitz wanted to set up his photography equipment. Image courtesy Cory Schmitz.
The full-moon illuminated landcape, overlooking Interstate 70, near Vail, Colorado. Credit and copyright: Cory Schmitz.
The full-moon illuminated landcape, overlooking Interstate 70, near Vail, Colorado. Credit and copyright: Cory Schmitz.

Sneak Peeks of the Earth and Saturn Panorama from Cassini on July 19

The Day the Earth Smiled: Sneak Preview. In this rare image taken on July 19, 2013, the wide-angle camera on NASA's Cassini spacecraft has captured Saturn's rings and our planet Earth and its moon in the same frame. Image Credit: NASA/JPL-Caltech/Space Science Institute

The Day the Earth Smiled: Sneak Preview
In this rare image taken on July 19, 2013, the wide-angle camera on NASA’s Cassini spacecraft has captured Saturn’s rings and our planet Earth and its moon in the same frame. Image Credit: NASA/JPL-Caltech/Space Science Institute
See below our wider context mosaic of the Earth, Saturn and its majestic rings[/caption]

Breathtaking raw images of the Earth and Saturn system snapped by NASA’s Cassini spacecraft on July 19 during the worldwide ‘Wave at Saturn’ campaign are streaming back across 1 billion miles of interplanetary space.

Science team members are now busily processing the images to create individual color composites and a panoramic view of the ‘pale blue dot’ and the entire Saturnian system.

NASA just released the first individual color composite focusing on Earth – see above. And its spectacular!

See below our preliminary mosaic showing the Earth in context with nearly half of Saturn and floating in between its incomparably majestic rings.

Partial context mosaic of the Earth and Saturn taken by NASA’s Cassini orbiter on July 19, 2013.   This mosaic was assembled from five wide angle camera raw images.  Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Partial context mosaic of the Earth and Saturn taken by NASA’s Cassini orbiter on July 19, 2013. This mosaic was assembled from five wide angle camera raw images and offers a sneak peek of the complete panorama. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

To capture all of Saturn and its wide swath of rings, Cassini’s wide angle camera snapped a mosaic of 33 footprints.

“At each footprint, images were taken in different spectral filters for a total of 323 images,” says Carolyn Porco, Cassini Imaging Team leader of the Space Science Institute in Boulder, Colo.

Cassini took the pictures of Earth between 2:27 and 2:42 p.m. PDT on Friday, July 19 from a distance of about 898 million miles (1.44 billion kilometers) away from the home to every human being that has ever lived.

The images show the Earth and the Moon as dots barely about a pixel wide but do reveal the ‘pale blue dot’ that is home to all of humanity and our whitish colored neighbor.

Coincidentally, the first humans (Neil Armstrong and Buzz Aldrin) set foot on the Moon 44 years ago nearly to the day of Cassini’s new images on July 20, 1969.

Distant views of the Earth from our robotic explorers, especially from the outer reaches of our Solar System, are few and far between, and are therefore events for space and astronomy enthusiasts and everyone else to savor.

“One of the most exciting Cassini events in 2013 will be the unusual opportunity on July 19 to image the whole Saturn system as it is backlit by the sun,” explained Linda Spilker, Cassini project scientist of NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

“With Saturn covering the harsh light of the sun, we will be gathering unique ring science and also catching a glimpse of our very own home planet.”

Cassini previously took an absolutely fabulous mosaic of Saturn and Earth back in 2006 that stands as one of the landmark images of the space age.

Besides being picturesque, such mosaics also serve science. For example, the 2006 image “revealed that the dusty E ring, which is fed by the water-ice plume of the moon Enceladus, had unexpectedly large variations in brightness and color around its orbit,” says Spilker.

“We’ll want to see how that looks seven Earth years and a Saturnian season later, giving us clues to the forces at work in the Saturn system. We’ll do this analysis by collecting data from our visual and infrared mapping spectrometer, composite infrared mapping spectrometer and ultraviolet imaging spectrograph in addition to the imaging cameras.”

This simulated view from NASA's Cassini spacecraft shows the expected positions of Saturn and Earth on July 19, 2013, around the time Cassini will take Earth's picture. Cassini will be about 898 million miles (1.44 billion kilometers) away from Earth at the time. That distance is nearly 10 times the distance from the sun to Earth. Image credit: NASA/JPL-Caltech
This simulated view from NASA’s Cassini spacecraft shows the expected positions of Saturn and Earth on July 19, 2013, around the time Cassini will take Earth’s picture. Cassini will be about 898 million miles (1.44 billion kilometers) away from Earth at the time. That distance is nearly 10 times the distance from the sun to Earth. Image credit: NASA/JPL-Caltech

“July 19 marked the first time people on Earth had advance notice their planet’s portrait was being taken from interplanetary distances,” says NASA.

I waved fondly at Saturn and hope you had the chance to wave at Saturn from all across the globe. NASA reports that nearly 20,000 participated in organized events. Countless others waved too.

Cassini was launched in 1997 and achieved orbit at Saturn in 2004. The mission is scheduled to continue until 2017 when it will commit a suicide death dive into the gas giant.

“We can’t see individual continents or people in this portrait of Earth, but this pale blue dot is a succinct summary of who we were on July 19,” said Spilker in a NASA statement.

“Cassini’s picture reminds us how tiny our home planet is in the vastness of space, and also testifies to the ingenuity of the citizens of this tiny planet to send a robotic spacecraft so far away from home to study Saturn and take a look-back photo of Earth.”

Ken Kremer

JPL Waves at Saturn As NASA's Cassini spacecraft turned its imaging cameras to Earth, scientists, engineers and visitors at NASA's Jet Propulsion Laboratory, Pasadena, Calif., gathered to wave at our robotic photographer in the Saturn system on July 19, 2013. Credit: NASA/JPL-Caltech
JPL Waves at Saturn
As NASA’s Cassini spacecraft turned its imaging cameras to Earth, scientists, engineers and visitors at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., gathered to wave at our robotic photographer in the Saturn system on July 19, 2013. Credit: NASA/JPL-Caltech

Super-Moon Monday: The 3rd (& Final?) Act

The gibbous Moon rising rising over the Andes Mountains in Chile. (Credit: @WladimirPulgarG/Flickr).

“Once more into the breach, my dear friends…”

Such a quip may be deemed appropriate as we endured the media onslaught this past weekend for the third and final perigee Full Moon of 2013.

Tonight, on Monday, July 22nd, the Moon reaches Full at 18:15 Universal Time (UT)/4:15 PM EDT. This is only 21.9 hours after reaching perigee, or the closest point in its orbit at 358,401 kilometres from the Earth on the Sunday evening at 20:28 UT. Continue reading “Super-Moon Monday: The 3rd (& Final?) Act”

Apollo 11 F-1 Engine Finding Confirmed by Jeff Bezos on Eve of 1st Human Moonwalk

Saturn V Moon Rocket F-1 Engine Thrust Chamber recovered from the floor of the Atlantic Ocean. Credit: Jeff Bezos Expeditions

In a fitting testament to NASA’s momentous Apollo Moon Landing Program, NASA and billionaire Jeff Bezos confirmed today (July 19) the discovery of a powerful F-1 first stage engine component from the Saturn V moon rocket that launched three American astronauts on the historic journey of Apollo 11 to land the first two humans on the Moon on July 20, 1969.

“On the eve of the 44th moonwalk anniversary, the Bezos Expedition confirms an Apollo 11 Saturn V F1 engine find,” NASA officially announced on its websites just moments ago today, July 19.

Apollo 11 commander and NASA astronaut Neil Armstrong, was immortalized forever when he first set foot on the moon 44 years ago tomorrow (July 20, 1969), followed minutes later by the lunar module pilot, NASA astronaut Buzz Aldrin.

The Saturn V rockets first stage was powered by a cluster of five F-1 engines – a technological marvel and the most powerful single-nozzle, liquid-fueled rocket engine ever developed.

“44 years ago tomorrow Neil Armstrong stepped onto the moon, and now we have recovered a critical technological marvel that made it all possible,” says Bezos on his Expedition website today.

Apollo 11 Saturn V F-1 Engine Thrust Chamber recovered from the floor of the Atlantic Ocean- stenciled with Rocketdyne serial number “2044”. Credit: Jeff Bezos Expeditions
Apollo 11 Saturn V F-1 Engine Thrust Chamber recovered from the floor of the Atlantic Ocean- stenciled with Rocketdyne serial number “2044”. Credit: Jeff Bezos Expeditions

Bezos, founder and Chief Executive Officer of the aerospace company Blue Origin and Amazon.com, originally announced the discovery and recovery of significant components of two flown F-1 engines amongst a field of twisted wreckage from the floor of the Atlantic Ocean in March of this year, aboard the Seabed Worker at Port Canaveral, Florida, along with a treasure trove of other major Saturn V components hauled up from a depth of almost 3 miles.

“We brought back thrust chambers, gas generators, injectors, heat exchangers, turbines, fuel manifolds and dozens of other artifacts – all simply gorgeous and a striking testament to the Apollo program,” wrote Bezos in a update this morning, July 19.

But until today, the engines exact identification remained elusive because of decades of severe seabed corrosion and their fiery, destructive end upon plunging and smashing unimpeded onto the ocean’s surface.

Saturn V F-1 Engine Nozzle recovered from the floor of the Atlantic Ocean. Credit: Jeff Bezos Expeditions
Saturn V F-1 Engine nozzle recovered from the floor of the Atlantic Ocean. Credit: Jeff Bezos Expeditions

Conservators from the Kansas Cosmosphere and Space Center in Hutchinson, Kansas worked painstakingly since March to identify the F-1 engine parts.

“Today, I’m thrilled to share some exciting news. One of the conservators who was scanning the objects with a black light and a special lens filter has made a breakthrough discovery – “2044” – stenciled in black paint on the side of one of the massive thrust chambers, says Bezos.

“2044 is the Rocketdyne serial number that correlates to NASA number 6044, which is the serial number for F-1 Engine #5 from Apollo 11. The intrepid conservator kept digging for more evidence, and after removing more corrosion at the base of the same thrust chamber, he found it – “Unit No 2044” – stamped into the metal surface.”

Blacklight ocean view of Saturn V F-1 Engine recovered from the floor of the Atlantic Ocean.   Credit: Jeff Bezos Expeditions
Blacklight view of Apollo 11 Saturn V F-1 Engine recovered from the floor of the Atlantic Ocean with identifying “2044” serial number. Credit: Jeff Bezos Expeditions

Apollo 11 launched to the Moon on July 16, 1969 from Launch Complex 39-A at the Kennedy Space Center in Florida.

Armstrong and Aldrin landed on the Sea of Tranquility inside the Lunar Module. They took a single lunar excursion and spent 2 hours and 11 minutes as the first two men to walk on the moon. They stayed on the moon for a total of 21 hours and 36 minutes before blasting off for the journey back home to Earth.

Armstrong suddenly passed away nearly a year ago on August 25, 2012 at age 82 – read my stories, here and here.

Aldrin is still active and strenuously advocating for starting human expeditions to the Red Planet.

He outlined his exploration concepts in a newly published book titled – “Mission to Mars.”

neil_bg_800

The five F-1 engines used in the 138-foot-tall Saturn V first stage known as the S-IC generated 7.5 million pounds of liftoff thrust, or some 1.5 million pounds each. They stand 19 feet tall by 12 feet wide. Each one weighs over 18,000 pounds and was manufactured by Rocketdyne.

The F-1 had more power than all three space shuttle main engines combined. They burned a mixture of liquid oxygen and kerosene fuel for two-and-one-half-minutes, carrying the Saturn V to an altitude of some 36 miles.

Altogether, six Apollo Moon landing flights boosted by Saturn V’s sent a total of 12 humans on moon walking expeditions to Earth’s nearest neighbor during the 1960s and 1970s.

“This is a big milestone for the project and the whole team couldn’t be more excited to share it with you all,” Bezos wrote.

Bezos’ Blue Origin firm is also working to develop a commercial rocket and ‘space taxi’ to finally resume launching American astronauts back to low Earth orbit from American soil after a multi year gap.

More than four decades have passed since the last humans traversed the lunar surface in December 1972 during NASA’s Apollo 17 moon landing mission.

After all that time, the F-1 may yet live again.

NASA is now working on an upgraded F-1 to power a future variant of the new SLS heavy lift booster under development and intended to launch humans aboard the new Orion crew capsule back to the Moon and to deep space destinations including Asteroids and Mars.

NASA’s robotic exploration of the moon continues this year with the blastoff of the LADEE Lunar observatory on Sept. 6 from NASA’s Wallops Island facility in Virginia.

Ken Kremer

Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history - exactly 44 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA
Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history – exactly 44 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA

Astrophoto: The Gorgeous Colors of a Setting Quarter Moon

A mosaic of five different shots of the quarter Moon as it set over Marina di Pisa, Tuscany, Italy on July 15, 2013. Credit and copyright: Giuseppe Petricca.

When I looked out my south-facing window last night, I saw a gorgeous quarter Moon high in the sky. Giuseppe Petricca from Marina di Pisa, Tuscany, Italy took a longer look and created this beautiful composition of five different shots of the Moon on July 15, 2013, revealing how the appearance of the Moon changes as it sinks lower in the sky.

“These are the colours that our natural satellite assumes thanks to the Rayleigh Scattering in Earth’s atmosphere,” Guiseppe said via email. He noted that in his image, colors of the single shots are not digitally altered (except with a light Sharpness Mask to enhance the surface details.)

Guiseppe used a Nikon P90 bridge digital camera, at ISO 100, and used various but limited exposition times (trying to maintain a short medium exposition range in seconds, he said. His mosaic composed with Photoshop.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Does the Moon Rotate?

Does the Moon Rotate?

Have you ever noticed that the Moon always looks the same? Sure, the phase changes, but the actual features on the Moon always look the same from month to month.

Does the Moon rotate? What’s going on?

From our perspective here on Earth, the Moon always shows us the same face because it’s tidally locked to our planet. At some point in the distant past, the Moon did rotate from our perspective, but the Earth’s gravity kept pulling unevenly at the Moon, slowing its rotation. Eventually the Moon locked into place, always displaying the same side to us.

But if you looked down on the Earth-Moon system from the north celestial pole, from the perspective of Polaris, the North Star, you’d see that the Moon actually does rotate on its axis. In fact, as the Moon travels around the Earth in a counter-clockwise orbit every 27.5 days, it also completes one full rotation on its axis – also moving in a counter-clockwise direction.

If you look at a time lapse animation of the Moon moving entirely through its phases over the course of a month, you’ll notice a strange wobble, as if the Moon is rocking back and forth on its axis a bit.

This is known as libration.

On average, the Moon is tidally locked to the Earth’s surface. But its actual orbit is elliptical, it moves closer and then more distant from the Earth.

When the Moon is at its closest point, it’s rotation is slower than its orbital speed, so we see an additional 8 degrees on its eastern side. And then when the Moon is at the most distant point, the rotation is faster than its orbital speed, so we can see 8 degrees on the Western side.

Libration allowed astronomers to map out more of the Moon’s surface than we could if the Moon followed a circular orbit.

Until the space age, half the Moon was hidden from us, always facing away. This hemisphere of the Moon was finally first observed by the Soviet Luna 3 probe in 1959, followed by the first human eyes with Apollo 8 in 1968.

The two hemispheres of the Moon are very different.

While the near side is covered with large basaltic plains called maria, the far side is almost completely covered in craters. The reasons for this difference is still a mystery to planetary scientists, but it’s possible that a second Moon crashed into it, billions of years ago, creating the strange surface we see today.

So yes, the Moon does rotate.

But its rotation exactly matches its orbit around the Earth, which is why it looks like it never does.

You can listen to a very interesting podcast about the formation of the Moon from Astronomy Cast, Episode 17: Where Did the Moon Come From?

LADEE Lunar Probe Unveiled at NASA’s Wallops Launch Site in Virginia

The LADEE spacecraft awaits spin balance testing, conducted to ensure stability during flight, at NASA’s Wallops Flight Facility in Virginia. LADEE is slated to liftoff from Wallops on Sep. 5, 2013 July 10. Credit: NASA/Patrick Black

NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) Observatory has arrived at the launch site on the Eastern Shore of Virginia at NASA’s Wallops Flight Facility on Wallops Island and is now in the midst of weeks of performance testing to ensure it is ready for liftoff in early September.

The LADEE lunar orbiting probe will be the first planetary science mission ever launched from NASA Wallops and the Mid-Atlantic Regional Spaceport (MARS). It will soar to space atop a solid fueled Minotaur V rocket on its maiden flight.

LADEE will blaze a brilliant trail to the Moon during a spectacular nighttime blastoff slated for Sept. 6, 2013 at 11:27 PM from Launch Pad 0B.

LADEE_1

LADEE is equipped with three science instruments to gather detailed information about the lunar atmosphere, conditions near the surface and environmental influences on lunar dust.

“LADEE will investigate the moons tenuous exosphere, trace outgases like the sodium halo and lofted dust at the terminator,” said Jim Green, Planetary Science Division Director at NASA HQ, in an exclusive interview with Universe Today.

“The spacecraft has a mass spectrometer to identify the gases, a physical dust detector and an imager to look at scattered light from the dust. These processes also occur at asteroids.”

“And it will also test a laser communications system that is a technology demonstrator for future planetary science missions. It communicates at 650 megabits per second,” Green explained to me.

The couch sized 844 pound (383 kg) robotic explorer was assembled at NASA’s Ames Research Center, Moffett Field Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.

The LADEE spacecraft awaits spin balance testing, conducted to ensure stability during flight, at NASA’s Wallops Flight Facility in Virginia.  LADEE is slated to liftoff from Wallops  on Sep. 5, 2013  July 10.  Credit:  NASA/Patrick Black
The LADEE spacecraft awaits spin balance testing, conducted to ensure stability during flight, at NASA’s Wallops Flight Facility in Virginia. LADEE is slated to liftoff from Wallops on Sept. 6, 2013. Credit: NASA/Patrick Black

The spacecraft was then shipped cross country by a dedicated truck inside a specially-designed shipping container – blanketed with protective nitrogen – which insulated the spacecraft from temperature, moisture, bumps in the road and more than a few crazy drivers.

The first leg of LADEE’s trip to the Moon took 5 days. The trans lunar leg will take 30 days.

It’s standard practice that whenever space probes are moved by ground transportation that they are accompanied by a caravan that includes a lead scout vehicle to ensure safe road conditions and followed by engineers monitoring the health and environmental storage conditions.

Technicians are now engaged in a lengthy series of performance tests to confirm that LADEE was not damaged during the road trip and that all spacecraft systems are functioning properly.

“One important preparation about to begin is spin-balancing LADEE,” says Butler Hine, LADEE Project Manager. “During this procedure, the spacecraft is mounted to a spin table and rotated at a high-speed to make sure it is perfectly balanced for launch.”

After all spacecraft systems pass the performance tests, LADEE will be fueled, encapsulated and moved to the Wallops Island launch pad later this summer for mating with the five stage Minotaur V booster stack.

“I’m excited about the night launch because people up and down the Atlantic seacoast will be able to see it,” Green told me.

Ken Kremer

LADEE Launch Pad 0B at NASA Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com
Looking up the Flame Trench –
LADEE Launch Pad 0B at NASA Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com
Aerial view of NASA Wallops launch site on Virginia shore shows launch pads for both suborbital and orbital rockets. The Antares rocket Pad 0A for missions to the ISS is in the foreground.  Suborbital rockets blast off just behind the Pad 0A water tower. This photo was snapped from on top of Pad 0B that will soon launch NASA‘s LADEE orbiter to the Moon. Credit: Ken Kremer- kenkremer.com
Aerial view of NASA Wallops launch site on Virginia shore shows launch pads for both suborbital and orbital rockets. The Antares rocket Pad 0A for missions to the ISS is in the foreground. Suborbital rockets blast off just behind the Pad 0A water tower. This photo was snapped from on top of Pad 0B that will soon launch NASA‘s LADEE orbiter to the Moon. Credit: Ken Kremer- kenkremer.com