SpaceX Dragon Departs Space Station after Delivering Slew of Science and Returns with Ocean Splashdown

A space-weathered @SpaceX #Dragon looking great moments before release today. Credit: NASA/Reid Wiseman

Concluding a busy five week mission, the SpaceX Dragon CRS-4 commercial cargo ship departed the International Space Station (ISS) this morning, Oct. 25, after delivering a slew of some 2.5 tons of ground breaking science experiments and critical supplies that also inaugurated a new era in Earth science at the massive orbiting outpost following installation of the ISS-RapidScat payload.

Dragon was released from the snares of the station’s robotic arm at 9: 57 a.m. EDT while soaring some 250 mi (400 km) over the northwest coast of Australia.

It returned safely to Earth with a splashdown in the Pacific Ocean some six hours later, capping the fourth of SpaceX’s twelve contracted station resupply missions for NASA through 2016.

“The Dragon is free!” exclaimed NASA commentator Rob Navias during a live broadcast on NASA TV following the ungrappling this morning. “The release was very clean.”

Dragon released from snares of ISS robotic arm on Oct. 25, 2014 for return to Earth.  Credit: NASA
Dragon released from snares of ISS robotic arm on Oct. 25, 2014, for return to Earth. Credit: NASA

The private resupply ship was loaded for return to Earth with more than 3,276 pounds of NASA cargo and science samples from the station crew’s investigations on “human research, biology and biotechnology studies, physical science investigations, and education activities sponsored by NASA and the Center for the Advancement of Science in Space, the nonprofit organization responsible for managing research aboard the U.S. national laboratory portion of the space station,” said NASA.

The release set up a quick series of three burns by the ship’s Draco thrusters designed to carry Dragon safely away from the station.

NASA astronauts Reid Wiseman and Butch Wilmore quickly retracted the arm working from their robotics workstation in the domed Cupola module.

“Thanks for the help down there,” the astronauts radioed. “It was a great day.”

Dragon moves away from ISS on Oct. 25, 2014 for return to Earth.  Credit: NASA  TV
Dragon moves away from ISS on Oct. 25, 2014, for return to Earth. Credit: NASA TV

The first burn took place a minute later at about 9:58 a.m. EDT and the second at about 10:00 a.m. A yaw maneuver at 10:05 a.m. set up the orientation required for the third burn at about 10:08 a.m.

Dragon moved away quickly during the nighttime release and was already outside the Keep Out Sphere (KOS), an imaginary bubble surrounding the station at a distance of 200 m. It disappeared quickly in the dark and was barely visible within minutes.

“The propulsion systems are in good shape,” said Navias. “All systems on Dragon are functioning perfectly.”

With Dragon safely gone following the trio of burns, the next major event was the deorbit burn at 2:43 p.m. EDT at a distance of about 90 statute miles from the station.

Dragon slipped out of orbit. After surviving the scorching heat of reentry through the Earth’s atmosphere, the ship sequentially deployed its drogue chutes and three main parachutes at about 3:30 p.m.

Splashdown in the Pacific Ocean occurred as expected at about 3:39 p.m., approximately 265 miles west of the Baja peninsula.

Dragon is the only vehicle that can return intact from the ISS with a substantial load of cargo and is carrying critical science samples for distribution to researchers.

Today’s Dragon departure starts a week of heavy traffic of comings and goings to the ISS involving a series of US and Russian unmanned cargo ships.

SpaceX Dragon captures view of ISS after departure on Oct. 25, 2014 for return to Earth.  Credit: NASA  TV
SpaceX Dragon captures view of ISS after departure on Oct. 25, 2014, for return to Earth. Credit: NASA TV

The Orbital Sciences Antares rocket with the commercial Cygnus cargo freighter is set to launch on Monday, Oct. 27, from NASA Wallops, VA. It will dock at the ISS on Nov. 2 at the Earth-facing port on the Harmony module just vacated by Dragon.

Russia’s Progress 56 unmanned cargo ship will also undock on Oct. 27. And Progress 57 will launch from Baikonur on Wednesday, Oct 29.

The SpaceX Dragon CRS-4 cargo resupply mission thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida on Sept. 21.

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014, bound for the ISS. Credit: Ken Kremer/kenkremer.com

Dragon was successfully berthed at the Harmony module on Sept. 23, 2014.

Among the nearly 5000 pounds of cargo hauled up by Dragon was as an Earth observation platform named ISS-RapidScat loaded in the unpressurized trunk section.

Also loaded aboard were a slew of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

It also carried the first 3-D printer to space for the first such space based studies ever attempted by the astronaut crews. The printer will remain at the station for at least the next two years.

20 mice housed in a special rodent habitat were also aboard, as well as fruit flies.

The ISS Rapid Scatterometer, or ISS-RapidScat, is NASA’s first research payload aimed at conducting near global Earth science from the station’s exterior and will be augmented with others in coming years.

ISS-RapidScat instrument, shown in this artist's rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014 and attached at ESA’s Columbus module.  It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.
ISS-RapidScat instrument, shown in this artist’s rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014, and attached at ESA’s Columbus module. It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.

The successful installation and activation of the ISS-RapidScat science instrument on the exterior of Europe’s Columbus module in late September and early October inaugurated a new era in space station science.

RapidScat is designed to monitor ocean winds for climate research, weather predictions, and hurricane monitoring.

The 1280 pound (580 kilogram) experimental instrument is already collecting its first science data following its recent power-on and activation at the station.

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40  awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com
SpaceX Falcon 9 with Dragon spaceship erect at Cape Canaveral launch pad 40 awaiting launch on Sept. 21, 2014, on the CRS-4 mission. Credit: Ken Kremer – kenkremer.com

“This mission enabled research critical to achieving NASA’s goal of long-duration human spaceflight in deep space,” said Sam Scimemi, director of the International Space Station division at NASA Headquarters.

“The delivery of the ISS RapidScatterometer advances our understanding of Earth science, and the 3-D printer will enable a critical technology demonstration. Investigations in the returned cargo could aid in the development of more efficient solar cells and semiconductor-based electronics, the development of plants better suited for space, and improvements in sustainable agriculture.”

The next SpacX cargo Dragon on the CRS-5 mission is slated for launch no earlier then Dec. 9.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Commercial Space, Orion and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 26/27: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

Making Cubesats do Astronomy

Will cubesats develop a new technological branch of astronomy? Goddard engineers are taking the necessary steps to make cubesat sized telescopes a reality. (Credit: NASA, UniverseToday/TRR)

One doesn’t take two cubesats and rub them together to make static electricity. Rather, you send them on a brief space voyage to low-earth orbit (LEO) and space them apart some distance and voilà, you have a telescope. That is the plan of NASA’s Goddard Space Flight Center engineers and also what has been imagined by several others.

Cubesats are one of the big crazes in the new space industry. But nearly all that have flown to-date are simple rudderless cubes taking photos when they are oriented correctly. The GSFC engineers are planning to give two cubes substantial control of their positions relative to each other and to the Universe surrounding them. With one holding a telescope and the other a disk to blot out the bright sun, their cubesat telescope will do what not even the Hubble Space Telescope is capable of and for far less money.

Semper (left), Calhoun, and Shah are advancing the technologies needed to create a virtual telescope that they plan to demonstrate on two CubeSats. (Image/Caption Credit: NASA/W. Hrybyk)
Semper (left), Calhoun, and Shah are advancing the technologies needed to create a virtual telescope that they plan to demonstrate on two CubeSats. (Image/Caption Credit: NASA/W. Hrybyk)

The 1U, the 3U, the 9U – these are all cubesats of different sizes. They all have in common the unit size of 1. A 1U cubesat is 10 x 10 x 10 centimeters cubed. A cube of this size will hold one liter of water (about one quart) which is one kilogram by weight. Or replace that water with hydrazine and you have very close to 1 kilogram of mono-propellent rocket fuel which can take a cubestat places.

GSFC aerospace engineers, led by Neerav Shah, don’t want to go far, they just want to look at things far away using two cubesats. Their design will use one as a telescope – some optics and a good detector –and the other cubesat will stand off about 20 meters, as they plan, and function as a coronagraph. The coronagraph cubesat will function as a sun mask, an occulting disk to block out the bright rays from the surface of the Sun so that the cubesat telescope can look with high resolution at the corona and the edge of the Sun. To these engineers, the challenge is keeping the two cubesats accurately aligned and pointing at their target.

Only dedicated Sun observing space telescopes such as SDO, STEREO and SOHO are capable of blocking out the Sun, but their coronagraphs are limited. Separating the coronagraph farther from the optics markedly improves how closely one can look at the edge of a bright object. With the corongraph mask closer to the optics, more bright light will still reach the optics and detectors and flood out what you really want to see. The technology Shah and his colleagues develop can be a pathfinder for future space telescopes that will search for distant planets around other stars – also using a coronagraph to reveal the otherwise hidden planets.

The engineers have received a $8.6-million investment from the Defense Advanced Research Project Agency (DARPA) and are working in collaboration with the Maryland-based Emergent Space Technologies.

An example of a 3U cubesat - 3 1U cubes stacked. This cubesat size  could function as the telescope of a two cubesat telescope system. It could be a simple 10 cm diameter optic system or use fancier folding optics to improve its resolving power. (Credit: LLNL)
An example of a 3U cubesat – 3 1U cubes stacked. This cubesat size could function as the telescope of a two cubesat telescope system. It could be a simple 10 cm diameter optic system or use fancier folding optics to improve its resolving power. (Credit: LLNL)

The challenge of GSFC engineers is giving two small cubesats guidance, navigation, and control (GN&C) as good as any standard spacecraft that has flown. They plan on using off-the-shelf technology and there are many small and even large companies developing and selling cubesat parts.

This is a sorting out period for the cubesat sector, if you will, of the new space industry. Sorting through the off-the-shelf components, the GSFC engineers led by Shah will pick the best in class. The parts they need are things like tiny sun sensors and star sensors, laser beams and tiny detectors of those beams, accelerometers, tiny gyroscopes or momentum wheels and also small propulsion systems. The cubesat industry is pretty close to having all these ready as standard issue. The question then is what do you do with tiny satellites in low-Earth orbit (LEO). Telescopes for earth-observing are already making headway and scopes for astronomy are next. There are also plans to venture out to interplanetary space with tiny and capable cubesat space probes.

Whether one can sustain a profit for a company built on cubesats remains a big question. Right now those building cubesats to customer specs are making a profit and those making the tiny picks and shovels for cubesats are making profits. The little industry may be overbuilt which in economic parlance might be only natural. Many small startups will fail. However, for researchers at universities and research organizations like NASA, cubesats have staying power because they reduce cost by their low mass and size, and the low cost of the components to make them function. The GSFC effort will determine how quickly cubesats begin to do real work in the field of astronomy. Controlling attitude and adding propulsion is the next big thing in cubesat development.

References:

NASA Press Release

Comet Siding Spring Was Bleeding Hydrogen As It Sped By Mars

Comet Siding Spring shines in ultraviolet in this image obtained by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Credit: Laboratory for Atmospheric and Space Physics/University of Colorado; NASA

As Comet Siding Spring passed close by Mars on Sunday (Oct. 19), NASA’s newest Mars spacecraft took a time-out from its commissioning to grab some ultraviolet pictures of its coma. What you see above is hydrogen, a whole lot of it, leaving the comet in this picture taken from 5.3 million miles (8.5 million kilometers).

The hydrogen is a product of the water ice on the comet that the Sun is slowly melting and breaking apart into hydrogen and oxygen molecules. Because hydrogen scatters ultraviolet light from the Sun, it shows up rather clearly in this picture taken by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft.

Check out more recent pictures of Siding Spring below.

Is this an image of Comet Siding Spring? It's the only fuzzy object in the field photographed on Sol 3817 (October 19) by the Opportunity Rover. Click for original raw image.
Is this an image of Comet Siding Spring? It’s the only fuzzy object in the field photographed on Sol 3817 (October 19) by the Opportunity Rover. Click for original raw image.
Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA
Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA
Another photo, just in, taken of the comet and Mars today (Oct. 19) by Rolando Ligustri. Beautiful!
Another photo, just in, taken of the comet and Mars today (Oct. 19) by Rolando Ligustri. Beautiful!
Comet 2013 A1 Siding Spring on October 17, 2014, with two days to go until its Martian encounter. Very dense Milkyway starfield in the background with many darker obscured regions. Credit and copyright: Damian Peach.
Comet 2013 A1 Siding Spring on October 17, 2014, with two days to go until its Martian encounter. Very dense Milkyway starfield in the background with many darker obscured regions. Credit and copyright: Damian Peach.

Videos: From Space, Lightning Looks Like Creepy White Blobs

Lightning over Equatorial Africa
Lightning over Equatorial Africa

Standing on the ground, we’re used to seeing the bolts and flashes of lightning during epic thunderstorms. But how would it look like from space? These three Vine videos from orbiting NASA astronaut Reid Wiseman provide a glimpse.

As you can see in these videos he uploaded to his Twitter account a few days ago, flashes and pools of light appear in this lightning storm over Kansas that he spotted from the International Space Station. Check out more below the jump. Continue reading “Videos: From Space, Lightning Looks Like Creepy White Blobs”

Hubble Composite Picture Shows How Close Siding Spring Comet Was To Mars

Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA

We’ve seen spectacular images of Comet Siding Spring from Mars spacecraft, showing just how close the small body was to the Red Planet when it whizzed by Sunday (Oct. 19). But how close were the two objects actually, in the sky? This Hubble Space Telescope composite image shows just how astoundingly near they were.

Above are two separate exposures taken Oct. 18-19 EDT (Oct. 18-20 UTC) against the same starry field image from another survey. It was a complicated shot to get, NASA explains, but it does serve as a powerful illustration of the celestial close encounter.

“This is a composite image because a single exposure of the stellar background, comet Siding Spring, and Mars would be problematic. Mars is actually 10,000 times brighter than the comet, and so could not be properly exposed to show detail in the Red Planet,” NASA stated.

High resolution image pairs made with HiRISE camera on MRO during Comet Siding Spring's closest approach to Mars on October 19. Shown at top are images of the nucleus region and inner coma. Those at bottom were exposed to show the bigger coma beginning of a tail. Credit: NASA/JPL/Univ. of Arizona
High resolution image pairs made with HiRISE camera on MRO during Comet Siding Spring’s closest approach to Mars on October 19. Shown at top are images of the nucleus region and inner coma. Those at bottom were exposed to show the bigger coma beginning of a tail. Credit: NASA/JPL/Univ. of Arizona

“The comet and Mars were also moving with respect to each other and so could not be imaged simultaneously in one exposure without one of the objects being motion blurred. Hubble had to be programmed to track on the comet and Mars separately in two different observations.”

The two images were blended together in this single shot, showing their separation of 1.5 arc minutes (1/20 of the Moon’s apparent diameter.) The background stars comes from data from the Palomar Digital Sky Survey “reprocessed to approximate Hubble’s resolution”, NASA stated.

While the nucleus is too small to be imaged by Hubble, you can see what it looks like in the image above from the Mars Reconnaissance Orbiter. Siding Spring passed by the Red Planet at a distance of just 87,000 miles (140,000 km).

Source: NASA

Assembly Complete for NASA’s Maiden Orion Spacecraft Launching in December 2014

Technicians complete final assembly of NASA’s first Orion spacecraft with installation of the close out panels on the Launch Abort System that smooth airflow. Credit: Photo credit: Kim Shiflett

Technicians at the Kennedy Space Center have completed the final major assembly work on NASA’s maiden Orion crew module slated to launch on its first unmanned orbital test flight this December, dubbed Exploration Flight Test-1 (EFT-1)

After first attaching the Launch Abort System (LAS) to the top of the capsule, engineers carefully installed a fairing composed of a set of four ogive panels over the crew module and the abort systems lower structural framework joining them together.

“The ogive panels smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future,” according to a NASA description.

Upon finishing the panel assembly work inside the Launch Abort System Facility (LASF) at NASA’s Kennedy Space Center, the teams cleared the last major hurdle before the Orion stack is rolled out to launch pad 37 in mid-November and hoisted to the top of the Delta IV Heavy rocket.

Technicians complete final assembly of NASA’s first Orion spacecraft with installation of the  last ogive close out panels on the Launch Abort System that smooth airflow. Credit: Photo credit: Kim Shiflett
Technicians complete final assembly of NASA’s first Orion spacecraft with installation of the last ogive close out panels on the Launch Abort System that smooth airflow. Photo credit: Kim Shiflett

The Orion stack is comprised of the LAS, crew module (CM) and service module (SM).

The maiden blastoff of the state-of-the-art Orion spacecraft on the EFT-1 mission is slated for December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida atop the triple barreled United Launch Alliance (ULA) Delta IV Heavy booster.

Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.

NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to the Payload Hazardous Servicing Facility (PHFS) on Sept. 11, 2014 at the Kennedy Space Center, FL.  Credit: Ken Kremer - kenkremer.com
NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to the Payload Hazardous Servicing Facility (PHSF) on Sept. 11, 2014, at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

The two-orbit, four and a half hour EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years. It will test the avionics and electronic systems inside the Orion spacecraft.

Then the spacecraft will travel back through the atmosphere at speeds approaching 20,000 mph and temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.

Launch Abort System (LAS) for Orion EFT-1 on view horizontally inside the Launch Abort System Facility at the Kennedy Space Center, Florida, prior to installation atop the crew module. Credit: Ken Kremer/kenkremer.com
Launch Abort System (LAS) for Orion EFT-1 on view horizontally inside the Launch Abort System Facility at the Kennedy Space Center, Florida, prior to installation atop the crew module. Credit: Ken Kremer/kenkremer.com

The LAS plays a critically important role to ensure crew safety.

In case of an emergency situation, the LAS is designed to ignite within milliseconds to rapidly propel the astronauts inside the crew module away from the rocket and save the astronauts’ lives. The quartet of LAS abort motors would generate some 500,000 pounds of thrust to pull the capsule away from the rocket.

And don’t forget that you can fly your name on Orion and also print out an elegant looking “boarding pass.”

Details below and in my article – here.

NASA announced that the public can submit their names for inclusion on a dime-sized microchip that will travel on Orion and succeeding spacecraft voyaging to destinations beyond low-Earth orbit, including Mars.

The deadline to submit your name is soon: Oct 31, 2014.

Click on this weblink posted online by NASA today: http://go.usa.gov/vcpz

NASA invites you to send your name to Mars via the first Orion test flight in December 2014.  Deadline for submissions is Oct 31, 2014. Join over 170,000 others! See link below. Credit: NASA
NASA invites you to send your name to Mars via the first Orion test flight in December 2014. Deadline for submissions is Oct 31, 2014. Join over 170,000 others! See link below. Credit: NASA

“NASA is pushing the boundaries of exploration and working hard to send people to Mars in the future,” said Mark Geyer, Orion Program manager, in a NASA statement.

“When we set foot on the Red Planet, we’ll be exploring for all of humanity. Flying these names will enable people to be part of our journey.”

NASA’s Orion Program manager Mark Geyer discusses Orion EFT-1 mission.  Credit: Ken Kremer - kenkremer.com
NASA’s Orion Program manager Mark Geyer discusses Orion EFT-1 mission, while holding a model of the Launch Abort System. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer

The United Launch Alliance Delta-IV Heavy rocket tasked with launching NASA’s Orion EFT-1 mission being hoisted vertical atop Space Launch Complex-37B at Cape Canaveral Air Force Station in Florida on the morning of Oct. 1, 2014. Photo Credit: Alan Walters / AmericaSpace
The United Launch Alliance Delta-IV Heavy rocket tasked with launching NASA’s Orion EFT-1 mission being hoisted vertical atop Space Launch Complex-37B at Cape Canaveral Air Force Station in Florida on the morning of Oct. 1, 2014. Photo Credit: Alan Walters / AmericaSpace

…………….

Learn more about Orion, Space Taxis, and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 26/27: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

This 3-D Martian Picture Feels Like You’re Standing Beside The Opportunity Rover

A 3-D image of "Wdowiak Ridge" on Mars, based on images from the left and right side of the Opportunity rover's Pancam. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

Grab your 3-D glasses (you do have a pair handy, right?) and take a look at this latest vista from Mars. This is a view taken by the Opportunity rover that looks at a location nicknamed “Wdowiak Ridge”, on the rim of Endeavour Crater.

This mosaic was obtained Sept. 17 as Opportunity continued its journey to “Marathon Valley”, a spot that could hold clays (which would indicate a water-rich environment in the past.) The rover is more than a decade into its mission and has been sending back images amid battling Flash memory problems lately.

Check out more recent pictures below, including a probable one of Comet Siding Spring passing by Mars (which Bob King wrote about in detail earlier this week.)

“Wdowiak Ridge sticks out like a sore thumb.  We want to understand why this ridge is located off the primary rim of Endeavour Crater and how it fits into the geologic story of this region,” stated Jim Rice, the Opportunity science-team of the Planetary Science Institute in Arizona.

More specifically, the team is interested in why this ridge is so prominent and sharp — they are calling it one of the most distinctive features Opportunity has ever seen. How it resisted erosion in an area so worn down is one thing scientists are hoping to learn about.

A Martian mosaic showing "Wdowiak Ridge", which the Opportunity rover imaged Sept. 17, 2014. The rover's tracks are visible at right. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A Martian mosaic showing “Wdowiak Ridge”, which the Opportunity rover imaged Sept. 17, 2014. The rover’s tracks are visible at right. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

The last Opportunity rover update talks about activities through Sept. 30, but NASA has released raw images available since then. Check out a selection below.

Is this an image of Comet Siding Spring? It's the only fuzzy object in the field photographed on Sol 3817 (October 19) by the Opportunity Rover. Click for original raw image.
Is this an image of Comet Siding Spring? It’s the only fuzzy object in the field photographed on Sol 3817 (October 19) by the Opportunity Rover. Click for original raw image.
The Opportunity rover at work on Mars on Sol 3,817 in October 2014. Credit: NASA/JPL-Caltech
The Opportunity rover at work on Mars on Sol 3,817 in October 2014. Credit: NASA/JPL-Caltech
An image of Martian terrain with the Opportunity's rover solar panel just visible at the bottom of the panel. Picture taken Sol 3,817 in October 2014. Credit: NASA/JPL-Caltech
An image of Martian terrain with the Opportunity’s rover solar panel just visible at the bottom of the panel. Picture taken Sol 3,817 in October 2014. Credit: NASA/JPL-Caltech
A dramatic, shadowy picture showing part of the Opportunity rover on Mars lit by the Sun (at top). Picture taken Sol 3,812 in October 2014. Credit: NASA/JPL-Caltech
A dramatic, shadowy picture showing part of the Opportunity rover on Mars lit by the Sun (at top). Picture taken Sol 3,812 in October 2014. Credit: NASA/JPL-Caltech
The Opportunity rover's tracks dominate this image taken on Mars on Sol 3,807 in October 2014. Credit: NASA/JPL-Caltech
The Opportunity rover’s tracks dominate this image taken on Mars on Sol 3,807 in October 2014. Credit: NASA/JPL-Caltech

Stunning View of Solar System’s Largest Volcano and Valles Marineris Revealed by India’s Mars Orbiter Mission

Olympus Mons, Tharsis Bulge trio of volcanoes and Valles Marineris from ISRO's Mars Orbiter Mission. Note the clouds and south polar ice cap. Credit: ISRO

India’s Mars Orbiter Mission (MOM) has delivered another sweet treat – a stunning view of our Solar System’s largest volcano and the largest canyon.

Just days ago, MOM captured a new global image of the Red Planet dominated by Olympus Mons and Valles Marineris – which is the largest known volcano and the largest known canyon in the Solar System, respectively.

Situated right in between lies a vast volcanic plateau holding a trio of huge volcanoes comprising the Tharsis Bulge: Arsia Mons, Pavonis Mons, and Ascraeus Mons. All four volcanoes are shield volcanoes.

To give an idea of its enormity, Olympus Mons stands about three times taller than Mount Everest and is about the size of Arizona.

Olympus Mons from Mars orbit compared to the state of Arizona. Credit: NASA
Olympus Mons from Mars orbit compared to the state of Arizona. Credit: NASA

Olympus Mons is located in Mars’ western hemisphere and measures 624 kilometers (374 miles) in diameter, 25 km (16 mi) high, and is rimmed by a 6 km (4 mi) high scarp.

Valles Marineris is often called the “Grand Canyon of Mars.” It spans about as wide as the entire United States.

The Indian Space Research Organization (ISRO), India’s space agency which designed and developed the orbiter released the image on Oct. 17, barely two days ahead of the planet’s and spacecrafts’ extremely close encounter with comet Siding Spring.

By the way, a relieved ISRO tweeted MOM’s survival of her close shave with the once-in-a-lifetime cometary passage with gusto, soon after the swingby:

“Phew! Experience of a lifetime. Watched the #MarsComet #SidingSpring whizzing past the planet. I’m in my orbit, safe and sound.”

The new global image was taken by the tri-color camera as MOM swooped around the Red Planet in a highly elliptical orbit whose nearest point to Mars (periapsis) is at 421.7 km and farthest point (apoapsis) at 76,993.6 km, according to ISRO.

To date ISRO has released four global images of the Red Planet, including a 3-D view, reported here.

Olympus Mons, the Tharsis Bulge, and Valles Marineris are near the equator.

Valles Marineris stretches over 4,000 km (2,500 mi) across the Red Planet, is as much as 600 km wide, and measures as much as 7 kilometers (4 mi) deep.

Here’s a comparison view of the region taken by NASA’s Viking 1 orbiter in the 1970s.

Global Mosaic of Mars Centered on Valles Marineris
Global Mosaic of Mars Centered on Valles Marineris from NASA’s Viking 1 orbiter. Credit: NASA

MOM is India’s first deep space voyager to explore beyond the confines of her home planet’s influence and successfully arrived at the Red Planet only one month ago after the “history creating” orbital insertion maneuver on Sept. 23/24 following a ten month journey.

The $73 million MOM mission is expected to last at least six months.

MOM’s success follows closely on the heels of NASA’s MAVEN orbiter which also successfully achieved orbit barely two days earlier on Sept. 21 and could last 10 years or more.

With MOM’s arrival, India became the newest member of an elite club of only four entities that have launched probes that successfully investigated Mars – following the Soviet Union, the United States, and the European Space Agency (ESA).

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

ISRO's Mars Orbiter Mission captures spectacular portrait of the Red Planet and swirling dust storms with the on-board Mars Color Camera from an altitude of 74500 km on Sept. 28, 2014.  Credit: ISRO
ISRO’s Mars Orbiter Mission captures spectacular portrait of the Red Planet and swirling dust storms with the on-board Mars Color Camera from an altitude of 74,500 km on Sept. 28, 2014. Credit: ISRO

How NASA and SpaceX are Working Together to Land on Mars

Thermal imagery of Falcon 9 rocket. Image Credit: NASA/Scifli Team/Applied Physics Laboratory Images

It is no secret that NASA is seeking out private space contractors to help bring some of its current plans to fruition. Naturally, these involve restoring indigenous launch capabilities to the US, but also include the more far-reaching goal of sending astronauts to Mars. Towards that end, NASA and SpaceX participated in an unprecedented data-sharing project that will benefit them both.

Continue reading “How NASA and SpaceX are Working Together to Land on Mars”

Could ‘Heavy Metal’ Frost Lurk Beneath Venus’ Hothouse Clouds?

A radar view of Venus taken by the Magellan spacecraft, with some gaps filled in by the Pioneer Venus orbiter. Credit: NASA/JPL

Talk about using old data for a new purpose! Researchers re-examining information from the completed NASA Magellan mission found signs of what could be “heavy metal” frost on the hell-like surface. What the researchers saw in radio-wave reflectance is the highlands appear brighter, with dark spots in the tallest locations.

What substance exactly is causing the patches on the surface is unknown, and it is extremely hard to make predictions given the difficulty of simulating Venus’ 900-degree Fahrenheit (500-degree Celsius) surface temperature, which is also 90 times Earth’s air pressure at sea level.

“Like on Earth, the temperature changes with elevation,” stated Elise Harrington, an Earth sciences undergraduate at British Columbia’s Simon Fraser University who led the research. “Among the possibilities on Venus are a temperature dependent chemical-weathering process or heavy metal compound precipitating from the air – a heavy metal frost.”

Venus' volcano Sapas Mons, which was imaged by the Magellan mission in 1991. Credit: NASA
Venus’ volcano Sapas Mons, which was imaged by the Magellan mission in 1991. Credit: NASA

Scrutiny of a previously examined area on Venus, the Odva Regio highlands, saw a low radar reflection at 2,400 meters (7,900 feet), which progressively gets brighter until dark spots begin appearing and reflections drop at 4,700 meters (15,400 meters).

While previous research spotted a few of these patches, Harrington and supervisor Allan Treiman (Lunar and Planetary Institute) saw hundreds. There’s no radar-imaging spacecraft in orbit around Venus right now, but the authors hope that the finding will generate more interest in this planet. (Of note, the European Space Agency’s Venus Express is finishing up a mission there now, which included several daring atmosphere-skimming maneuvers earlier this year.)

The research was presented at the Geological Society of America meeting in Vancouver, British Columbia.

Source: Geological Society of America