Seeking Apollo Pictures? Here’s How To Find Obscure Shots From The Moon-Landing Program

Apollo 14 astronaut Ed Mitchell at work in the Ocean of Storms on the Moon. Credit: NASA / Lunar and Planetary Institute

While any image from the Apollo program is stunning, some of the more iconic ones are used over and over again while equally amazing pictures remain relatively unknown.

A recent Reddit thread posted what the user said was some of the “more uncommon” images of the program. You can see the full slideshow here.

In the same spirit, we’ve posted some Apollo images below from the Lunar and Planetary Institute, which maintains a catalog of NASA shots (including some in high-resolution) on its website. We also recommend the 1999 Michael Light book Full Moon, which has dozens of lesser-known Apollo shots of high quality.

A half-Earth shines in this image taken by the Apollo 13 crew in April 1970. Credit: NASA / Lunar and Planetary Institute
A half-Earth shines in this image taken by the Apollo 13 crew in April 1970. Credit: NASA / Lunar and Planetary Institute
Footprints, dusty spacesuit knees and tools -- all a part of the Apollo 12 mission in November 1969. Credit: NASA / Lunar and Planetary Institute
Footprints, dusty spacesuit knees and tools — all a part of the Apollo 12 mission in November 1969. Credit: NASA / Lunar and Planetary Institute
Apollo 11 astronaut Buzz Aldrin inside the lunar module at the Moon's Sea of Tranquility in July 1969. Credit: NASA / Lunar and Planetary Institute
Apollo 11 astronaut Buzz Aldrin inside the lunar module at the Moon’s Sea of Tranquility in July 1969. Credit: NASA / Lunar and Planetary Institute
Shadowy lunar craters poke out in this image taken by the Apollo 8 crew in December 1968. Credit: NASA / Lunar and Planetary Institute
Shadowy lunar craters poke out in this image taken by the Apollo 8 crew in December 1968. Credit: NASA / Lunar and Planetary Institute
An Apollo 16 astronaut works near the lunar rover in the Descartes Highlands in April 1972. Credit: NASA / Lunar and Planetary Institute
An Apollo 16 astronaut works near the lunar rover in the Descartes Highlands in April 1972. Credit: NASA / Lunar and Planetary Institute

2 Days Out from the Red Planet, India’s MOM Probe Test Fires Main Engine for Mars Orbit Insertion

India’s Mars Orbiter Mission (MOM) is closing in on the Red Planet and the Mars Orbit Insertion engine firing when it arrives on September 24, 2014 after its 10 month interplanetary journey. Credit ISRO

Two days out from her history making date with destiny, India’s Mars Orbiter Mission (MOM) successfully completed a crucial test firing of the spacecraft’s main liquid engine to confirm its operational readiness for the critical Mars Orbital Insertion (MOI) engine firing on Wednesday morning Sept. 24 IST (Tuesday evening Sept. 23 EDT).

Engineers at the Indian Space Research Organization (ISRO) which designed and developed MOM successfully fired the probes 440 Newton Liquid Apogee Motor (LAM) earlier today, Sept. 22, 2014, for a duration of 3.968 seconds at 1430 hrs IST (Indian Standard Time), according to today’s announcement from ISRO.

“We had a perfect burn for four seconds as programmed. MOM will now go-ahead with the nominal plan for Mars Orbital Insertion,” said ISRO.

ISRO's Mars Orbiter Mission - The plan of action for Mars Orbit Insertion on September 24. Credit ISRO
ISRO’s Mars Orbiter Mission – The plan of action for Mars Orbit Insertion on September 24. Credit ISRO

MOM counts as India’s first interplanetary voyager and the nation’s first manmade object to orbit the 4th rock from our Sun – if all goes well.

The LAM was last fired over nine months ago on December 01, 2013 to inject MOM into a ten month long interplanetary Trans Mars Trajectory.

Today’s operation verified that LAM is fully operational to perform the do-or-die MOI braking burn on Sept. 24 targeted for 07:17:32 hrs IST (Sept. 23, 9:47:32 p.m. EDT) that will place the probe into a highly elliptical 377 km x 80,000 km orbit around the Red Planet.

You can watch all the action live on ISRO’s website during the streaming webcast starting at 6:45 IST (9:15 p.m. EDT): http://www.isro.org/

The burn was also marks the spacecraft’s final Trajectory Correction Maneuver known as TCM-4 and changed its velocity by 2.18 meters/second.

“The trajectory has been corrected,” said ISRO.

The $69 Million probe is being continuously monitored by the Indian Deep Space Network (IDSN) and NASA JPL’s Deep Space Network (DSN) to maintain its course.

Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) has moved the spacecraft in the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO
Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) has moved the spacecraft in the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO

ISRO space engineers are taking care to precisely navigate MOM to keep it on course during its long heliocentric trajectory from Earth to Mars through a series of in flight Trajectory Correction Maneuvers (TCMs).

The last TCM was successfully performed on June 11 by firing the spacecraft’s 22 Newton thrusters for a duration of 16 seconds. TCM-1 was conducted on December 11, 2013 by firing the 22 Newton Thrusters for 40.5 seconds.

Engineers determined that a TCM planned for August was not needed.

On “D-Day” as ISRO calls it, the LAM and the eight smaller 22 Newton liquid fueled engines are scheduled to fire for a duration of about 24 minutes.

The MOI braking burn will be carried out fully autonomously since MOM will be eclipsed by Mars due to the Sun-Earth-Mars geometry about five minutes prior to initiation of the engine firing.

Round trip radio signals communicating with MOM now take some 21 minutes.

The 1,350 kilogram (2,980 pound) probe has been streaking through space for over ten months.

MOM follows hot on the heels of NASA’s MAVEN spacecraft which successfully achieved Red Planet orbit less than a day ago on Sunday, Sept. 22, 2014.

“We wish a successful MOI for MOM,” said Bruce Jakosky, MAVEN principal investigator with the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder (CU/LASP) at MAVEN’s post MOI briefing earlier today.

MOM was launched on Nov. 5, 2013 from India’s spaceport at the Satish Dhawan Space Centre, Sriharikota, atop the nation’s indigenous four stage Polar Satellite Launch Vehicle (PSLV) which placed the probe into its initial Earth parking orbit.

Watch this cool animation showing the interplanetary path of MOM and MAVEN from Earth to Mars sent to me be an appreciative reader – Sankaranarayanan K V:

Although MOM’s main objective is a demonstration of technological capabilities, she will also study the planet’s atmosphere and surface.

The probe is equipped with five indigenous instruments to conduct meaningful science – including a tri-color imager (MCC) and a methane gas sniffer (MSM) to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.

Both MAVEN’s and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars’ climate into its cold, desiccated state of today.

If all goes well, India will join an elite club of only four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

Stay tuned here for Ken’s continuing MOM, MAVEN, Rosetta, Opportunity, Curiosity, Mars rover and more Earth and planetary science and human spaceflight news.

Ken Kremer

Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

Rosetta’s Philae Lander: A Swiss Army Knife of Scientific Instruments

Rosetta's Philae lander is Like a modern-day Swiss Army Knife, now prepared for a November 11th dispatch to a comet's surface.

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make the long journey worthwhile.

The previous Universe Today article “How do you land on a Comet?” described Philae’s landing technique on comet 67P/Churyumov-Gerasimenko. But what will the lander do once it arrives and gets settled in its new surroundings? As Henry David Thoreau said, “It is not worthwhile to go around the world to count the cats in Zanzibar.” So it is with the Rosetta lander Philae. With the stage set – a landing site chosen and landing date of November 11th, the Philae lander is equipped with a carefully thought-out set of scientific instruments. Comprehensive and compact, Philae is a like a Swiss Army knife of tools to undertake the first on-site (in-situ) examination of a comet.

Now, consider the scientific instruments on Philae which were selected about 15 years ago. Just like any good traveler, budgets had to be set which functioned as constraints on the instrument selection that could be packed and carried along on the journey. There was a maximum weight, maximum volume, and power. The final mass of Philae is 100 kg (220 lbs). Its volume is 1 × 1 × 0.8 meters (3.3 × 3.3 × 2.6 ft)  about the size of a four burner oven-range. However, Philae must function on a small amount of stored energy upon arrival: 1000 Watt-Hours (equivalent of a 100 watt bulb running for 10 hours). Once that power is drained, it will produce a maximum of 8 watts of electricity from Solar panels to be stored in a 130 Watt-Hour battery.

Side view schematics of the inner structure of the lander compartment showing the location of COSAC and PTOLEMY systems, the CONSERT antennas, the SESAME dust sensor and various ÇIVA cameras (Credits: "Capabilities of Philae, the Rosetta Lander, J. Biele, S. Ulamec, September 2007)
Side view schematics of the inner structure of the lander compartment showing the location of COSAC, PTOLEMY, the CONSERT antennas, the SESAME dust sensor and ÇIVA cameras. Philae is about the size of a dishwasher or four burner oven. (Credits: “Capabilities of Philae, the Rosetta Lander, J. Biele, S. Ulamec, September 2007)

Without any assurance that they would land fortuitously and produce more power, the Philae designers provided a high capacity battery that is charged, one time only, by the primary spacecraft solar arrays (64 sq meters) before the descent to the comet. With an initial science command sequence on-board Philae and the battery power stored from Rosetta, Philae will not waste any time to begin analysis — not unlike a forensic analysis — to do a “dissection” of a comet. Thereafter, they utilize the smaller battery which will take at least 16 hours to recharge but will permit Philae to study 67P/Churyumov-Gerasimenko for potentially months.

There are 10 science instrument packages on the Philae lander. The instruments use absorbed, scattered, and emitted light, electrical conductivity, magnetism, heat, and even acoustics to assay the properties of the comet. Those properties include the surface structure (the morphology and chemical makeup of surface material), interior structure of P67, and the magnetic field and plasmas (ionized gases) above the surface. Additionally, Philae has an arm for one instrument and the Philae main body can be rotated 360 degrees around its Z-axis. The post which supports Philae and includes a impact dampener.

CIVA and ROLIS imaging systems. CIVA represents three cameras which share some hardware with ROLIS. CIVA-P (Panoramic) is seven identical cameras, distributed around the Philae body but with two functioning in tandem for stereo imaging. Each has a 60 degree field of view and uses as 1024×1024 CCD detector. As most people can recall, digital cameras have advanced quickly in the last 15 years. Philae’s imagers were designed in the late 1990s, near state-of-the-art, but today they are surpassed, at least in number of pixels, by most smartphones. However, besides hardware, image processing in software has advanced as well and the images may be enhanced to double their resolution.

CIVA-P will have the immediate task, as part of the initial autonomous command sequence, of surveying the complete landing site. It is critical to the deployment of other instruments. It will also utilize the Z-axis rotation of the Philae body to survey. CIVA-M/V is a microscopic 3-color imager (7 micron resolution) and CIVA-M/I is a near infra-red spectrometer (wavelength range of 1 to 4 microns) that will inspect each of the samples that is delivered to the COSAC & PTOLEMY ovens before the samples are heated.

The CIVA micro-camera. Mass: less than 100 grams, Power: less than 2 Watts, Minimum Operating Temperature: -120C (Credit:ESA, Philae Lander Fact Sheet)
The CIVA micro-camera. Mass: less than 100 grams, Power: less than 2 Watts, Minimum Operating Temperature: -120C (Credit:ESA, Philae Lander Fact Sheet)

ROLIS is a single camera, also with a 1024×1024 CCD detector, with the primary role of surveying the landing site during the descent phase. The camera is fixed and downward pointing with an f/5 (f-ratio) focus adjustable lens with a 57 degree field of view. During descent it is set to infinity and will take images every 5 seconds. Its electronics will compress the data to minimize the total data that must be stored and transmitted to Rosetta. Focus will adjust just prior to touchdown but thereafter, the camera functions in macro mode to spectroscopically survey the comet immediately underneath Philae. Rotation of the Philae body will create a “working circle” for ROLIS.

The multi-role design of ROLIS clearly shows how scientists and engineers worked together to overall reduce weight, volume, and power consumption, and make Philae possible and, together with Rosetta, fit within payload limits of the launch vehicle, power limitations of the solar cells and batteries, limitations of the command and data system and radio transmitters.

Philae's APXS - Alpha Proton X-Ray Spectrometer (Credit: Inst. for Inorganic Chemistry & Analytical Chemistry, Max-Planck Institute for Chemistry)
Philae’s APXS – Alpha Proton X-Ray Spectrometer (Credit: Inst. for Inorganic Chemistry & Analytical Chemistry, Max-Planck Institute for Chemistry)

APXS. This is a Alpha Proton X-ray Spectrometer. This is a near must-have instrument of the space scientist’s Swiss Army Knife. APXS spectrometers have become a common fixture on all Mars Rover missions and Philae’s is an upgraded version of Mars Pathfinder’s. The legacy of the APXS design is the early experiments by Ernest Rutherford and others that led to discovering the structure of the atom and the quantum nature of light and matter.

This instrument has a small source of Alpha particle emission (Curium 244) essential to its operation. The principles of Rutherford Back-scattering of Alpha particles is used to detect the presence of lighter elements such as Hydrogen or Beryllium (those close to an Alpha particle in mass, a Helium nucleus). The mass of such lighter elemental particles will absorb a measurable amount of energy from the Alpha particle during an elastic collision; as happens in Rutherford back-scattering near 180 degrees. However, some Alpha particles are absorbed rather than reflected by the nuclei of the material. Absorption of an Alpha particle causes emission of a proton with a measurable kinetic energy that is also unique to the elemental particle from which it came (in the cometary material); this is used to detect heavier elements such as magnesium or sulfur. Lastly, inner shell electrons in the material of interest can be expelled by Alpha particles. When electrons from outer shells replace these lost electrons, they emit an X-Ray of specific energy (quantum) that is unique to that elementary particle; thus, heavier elements such as Iron or Nickel are detectable. APXS is the embodiment of early 20th Century Particles Physics.

CONSERT. COmet Nucleus Sounding Experiment by Radio wave Transmission, as the name suggests, will transmit radio waves into the comet’s nucleus. The Rosetta orbiter transmits 90 MHz radio waves and simultaneously Philae stands on the surface to receive with the comet residing between them. Consequently, the time of travel through the comet and the remaining energy of the radio waves is a signature of the material through which it propagated. Many radio transmissions and receptions by CONSERT through a multitude of angles will be required to determine the interior structure of the comet. It is similar to how one might sense the shape of a shadowy object standing in front of you by panning one’s head left and right to watch how the silhouette changes; altogether your brain perceives the shape of the object. With CONSERT data, a complex deconvolution process using computers is necessary. The precision to which the comet’s interior is known improves with more measurements.

MUPUS. Multi-Purpose Sensor for Surface and Subsurface Science is a suite of detectors for measuring the energy balance, thermal and mechanical properties of the comet’s surface and subsurface down to a depth of 30 cm (1 foot).  There are three major parts to MUPUS. There is the PEN which is the penetrator tube. PEN is attached to a hammering arm that extends up to 1.2 meters from the body. It  deploys with sufficient downward force to penetrate and bury PEN below the surface; multiple hammer strokes are possible. At the tip, or anchor, of PEN (the penetrator tube) is an accelerometer and standard PT100 (Platinum Resistance Thermometer). Together, the anchor sensors will determine the hardness profile at the landing site and the thermal diffusivity at the final depth [ref]. As it penetrates the surfaces, more or less deceleration indicates harder or softer material. The PEN includes an array of  16 thermal detectors along its length to measure subsurface temperatures and thermal conductivity. The PEN also has a heat source to transmit heat to the cometary material and measure its thermal dynamics. With the heat source off, detectors in PEN will monitor the temperature and energy balance of the comet as it approaches the Sun and heats up. The second part is the MUPUS TM,  a radiometer atop the PEN which will measure thermal dynamics of the surface. TM consists of four thermopile sensors with optical filters to cover a wavelength range from 6-25 µm.

SD2 Sample Drill and Distribution device will penetrate the surface and subsurface to a depth of 20 cm. Each retrieved sample will be a few cubic millimeters in volume and distributed to 26  ovens mounted on a carousel. The ovens heat the sample which creates a gas that is delivered to the gas chromatographs and mass spectrometers that are COSAC and PTOLEMY. Observations and analysis of APXS and ROLIS data will be used to determine the sampling locations all of which will be on a “working circle” from the rotation of Philae’s body about its Z-axis.

COSAC Cometary Sampling and Composition experiment. The first gas chromatograph (GC) I saw was in a college lab and was being used by the lab manager for forensic tests supporting the local police department. The intent of Philae is nothing less than to perform forensic tests on a comet hundred of million of miles from Earth. Philae is effectively Sherlock Holmes’ spy glass and Sherlock is all the researchers back on Earth. The COSAC gas chromatograph includes a mass spectrometer and will measure the quantities of elements and molecules, particularly complex organic molecules, making up comet material. While that first lab GC I saw was closer to the size of Philae, the two GCs in Philae are about the size of shoe boxes.

Philae's two Gas Chromatograph (GC). Left: COSAC, integrated into Philae, Right: PTOLEMY on an engineering lab. (Credit: ESA)
Philae’s two Gas Chromatographs (GC). Left: COSAC, integrated into Philae, Right: PTOLEMY in an engineering lab. (Credit: ESA)

PTOLEMY. An Evolved Gas Analyzer [ref], a different type of gas chromatograph. The purpose of Ptolemy is to measure the quantities of specific isotopes to derive the isotopic ratios, for example, 2 parts isotope C12 to one part C13. By definition, isotopes of an element have the same number of protons but different numbers of neutrons in their nuclei. One example is the 3 isotopes of Carbon, C12, C13 and C14; the numbers being the number of neutrons. Some isotopes are stable while others can be unstable – radioactive and decay into stable forms of the same element or into other elements. What is of interest to Ptolemy investigators is the ratio of stable isotopes (natural and not those affected by, or that result from, radioactive decay) for the elements H, C, N, O and S, but particularly Carbon. The ratios will be telltale indicators of where and how comets are created. Until now, spectroscopic measurements of comets to determine isotopic ratios have been from a distance and the accuracy has been inadequate for drawing firm conclusions about the origin of comets and how comets are linked to the creation of planets and the evolution of the Solar Nebula, the birthplace of our planetary system surrounding the Sun, our star. An evolved gas analyzer will heat up a sample (~1000 C) to transform the materials into a gaseous state which a spectrometer can very accurately measure quantities. A similar instrument, TEGA (Thermal Evolved Gas Analyzer) was an instrument on Mars Phoenix lander.

SESAME Surface Electrical Sounding and Acoustic Monitoring Experiment This instrument involves three unique detectors. The first is the SESAME/CASSE, the acoustic detector. Each landing foot of Philae has acoustic emitters and receivers. Each of the legs will take turns transmitting acoustic waves (100 Hertz to KiloHertz range) into the comet which the sensors of the other legs will measure. How that wave is attenuated, that is, weakened and transformed, by the cometary material it passes through, can be used along with other cometary properties gained from Philae instruments, to determine daily and seasonal variations in the comet’s structure to a depth of about 2 meters. Also, in a passive (listening) mode, CASSE will monitor sound waves from creaks, groans inside the comet caused potentially by stresses from Solar heating and venting gases.

Next is the SESAME/PP detector – the Permittivity Probe. Permittivity is the measure of the resistance a material has to electric fields. SESAME/PP will deliver an oscillating (sine wave) electric field into the comet. Philae’s feet carry the receivers – electrodes and AC sine generators to emit the electric field. The resistance of the cometary material to about a 2 meter depth is thus measured providing another essential property of the comet – the permittivity.

Philae SESAME/DIM, Dust Impact Monitor. The monitor can measure particle size and velocity. Later as comet P67's activity rises, it can continue to return total particle flux. (Credit: ESA)
Philae SESAME/DIM, Dust Impact Monitor. The monitor can measure particle size and velocity. Later as comet P67’s activity rises, it can continue to return total particle flux. (Credit: ESA)

The third detector is called SESAME/DIM. This is the comet dust counter. There were several references used to compile these instrument descriptions. For this instrument, there is, what I would call, a beautiful description which I will simply quote here with reference. “The Dust Impact Monitor (DIM) cube on top of the Lander balcony is a dust sensor with three active orthogonal (50 × 16) mm piezo sensors. From the measurement of the transient peak voltage and half contact duration, velocities and radii of impacting dust particles can be calculated. Particles with radii from about 0.5 µm to 3 mm and velocities from 0.025–0.25 m/s can be measured. If the background noise is very high, or the rate and/or the amplitudes of the burst signal are too high, the system automatically switches to the so called Average Continuous mode; i.e., only the average signal will be obtained, giving a measure of the dust flux.” [ref]

ROMAP Rosetta Lander Magnetometer and Plasma detector also includes a third detector, a pressure sensor. Several spacecraft have flown by comets and an intrinsic magnetic field, one created by the comet’s nucleus (the main body) has never been detected. If an intrinsic magnetic field exists, it is likely to be very weak and landing on the surface would be necessary. Finding one would be extraordinary and would turn theories regarding comets on their heads. Low and behold Philae has a fluxgate magnetometer.

Philae ROMAP, Tri-Axial Fluxgate magnetometer and Plasma Monitor (Credit: ESA/MPS)
Philae ROMAP, Tri-Axial Fluxgate Magnetometer and Plasma Monitor (Credit: ESA/MPS)

The Earth’s magnetic (B) field surrounding us is measured in the 10s of thousands of nano-Teslas (SI unit, billionth of a Tesla). Beyond Earth’s field, the planets, asteroids, and comets are all immersed in the Sun’s magnetic field which, near the Earth, is measured in single digits, 5 to 10 nano-Tesla. Philae’s detector has a range of +/- 2000 nanoTesla; a just in case range but one readily offered by fluxgates. It has a sensitivity of 1/100th of a nanoTesla. So, ESA and Rosetta came prepared. The magnetometer can detect a very minute field if it’s there. Now let’s consider the Plasma detector.

Much of the dynamics of the Universe involves the interaction of plasma – ionized gases (generally missing one or more electrons thus carrying a positive electric charge) with magnetic fields. Comets also involve such interactions and Philae carries a plasma detector to measure the energy, density and direction of electrons and of positively charged ions. Active comets are releasing essentially a neutral gas into space plus small solid (dust) particles. The Sun’s ultraviolet radiation partially ionizes the cometary gas of the comet’s tail, that is, creates a plasma. At some distance from the comet nucleus depending on how hot and dense that plasma is, there is a standoff between the Sun’s magnetic field and the plasma of the tail. The Sun’s B field drapes around the comet’s tail kind of like a white sheet draped over a Halloween trick-or-treater but without eye holes.

The structure of an active comet. In early 2015, 67P/Churyumov–Gerasimenko will wake-up. The heat of the Sun will increase gas and dust production which will interact with Solar UV radiation and the Solar Wind. The Sun's magnetic field will be draped around the coma and tail of the comet. (Photo: ESA)
The structure of an active comet. In early 2015, 67P/Churyumov–Gerasimenko will wake up. The heat of the Sun will increase gas and dust production which will interact with Solar UV radiation and the Solar Wind. The Sun’s magnetic field will be draped around the coma and tail of the comet. (Photo: ESA)

So at P67’s surface, Philae’s ROMAP/SPM detector, electrostatic analyzers and a Faraday Cup sensor will measure free electrons and ions in the not so empty space. A “cold” plasma surrounds the comet; SPM will detect ion kinetic energy in the range of 40 to 8000 electron-volts (eV) and electrons from 0.35 eV to 4200 eV. Last but not least, ROMAP includes a pressure sensor which can measure very low pressure – a millionth or a billionth or less than the air pressure we enjoy on Earth. A Penning Vacuum gauge is utilized which ionizes the primarily neutral gas near the surface and measures the current that is generated.

Philae will carry 10 instrument suites to the surface of 67P/Churyumov-Gerasimenko but altogether the ten represent 15 different types of detectors. Some are interdependent, that is, in order to derive certain properties, one needs multiple data sets. Landing Philae on the comet surface will provide the means to measure many properties of a comet for the fist time and others with significantly higher accuracy. Altogether, scientists will come closer to understanding the origins of comets and their contribution to the evolution of the Solar System.

MAVEN Arrives at Mars! Parks Safely in Orbit

The control room at Lockheed Martin shortly before MAVEN successfully entered Mars orbit tonight September 21, 2014. Credit: NASA-TV

138 million miles and 10 months journey from planet Earth, MAVEN moved into its new home around the planet Mars this evening. Flight controllers at Lockheed Martin Space Systems in Littleton, Colorado anxiously monitored the spacecraft’s progress as onboard computers successfully eased the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft into Mars orbit at 10:24 p.m. Eastern Daylight Time. 

Shortly before orbital insertion, six small thrusters were fired to steady the spacecraft so it would enter orbit in the correct orientation. This was followed by a 33-minute burn to slow it down enough for Mars’ gravity to capture the craft into an elliptical orbit with a period of 35 hours. Because it takes radio signals traveling at the speed of light 12 minutes to cross the gap between Mars and Earth, the entire orbital sequence was executed by onboard computers. There’s no chance to change course or make corrections, so the software has to work flawlessly. It did. The burn, as they said was “nominal”, science-speak for came off without a hitch.

Simulation of MAVEN in Martian orbit. Credit: NASA
Simulation of MAVEN in orbit around Mars. The craft’s unique aerodynamically curved solar panels allow it to dive more deeply into the Martian atmosphere. Credit: NASA

“This was a very big day for MAVEN,” said David Mitchell, MAVEN project manager from NASA’s Goddard Space Flight Center, Greenbelt, Maryland. “We’re very excited to join the constellation of spacecraft in orbit at Mars and on the surface of the Red Planet. Congratulations to the team for a job well done today.”

Over the next six weeks, controllers will test MAVEN’s instruments and shape its orbit into a long ellipse with a period of 4.5 hours and a low point of just 93 miles (150 km), close enough to get a taste of the planet’s upper atmosphere. MAVEN’s one-Earth-year long primary mission will study the composition and structure of Mars’ atmosphere and how it’s affected by the sun and solar wind. At least 2,000 Astronomers want to determine how the planet evolved from a more temperate climate to the current dry, frigid desert.

Evidence for ancient water flows on Mars - a delta in Eberswalde Crater. Credit: NASA
Evidence for ancient water flows on Mars – a delta in Eberswalde Crater. Credit: NASA

Vast quantities of water once flowed over the dusty red rocks of Mars as evidenced by ancient riverbeds, outflow channels carved by powerful floods, and rocks rounded by the action of water. For liquid water to flow on its surface without vaporizing straight into space, the planet must have had a much denser atmosphere at one time.

Mars may have been much more like Earth is today 3-4 billion years ago with a thicker atmosphere and water flowing across its surface. Today, it's evolved into dry, cold planet with an atmosphere as thin as Scrooge's gruel. Credit: NASA
Three to four billion years ago, Mars may have been much more like Earth with a thicker atmosphere and water flowing across its surface (left). Over time,  it evolved into a dry, cold planet with an atmosphere too thin to support liquid water. Credit: NASA

Mars’ atmospheric pressure is now less than 1% that of Earth’s. As for the water, what’s left today appears locked up as ice in the polar caps and subsurface ice. So where did it go all the air go? Not into making rocks apparently. On Earth, much of the carbon dioxide from volcanic outgassing in the planet’s youth dissolved in water and combined with rocks to form carbon-bearing rocks called carbonates. So far, carbonates appear to be rare on Mars. Little has been seen from orbit and in situ with the rovers.

Illustration of electrons and protons in the solar wind slamming into and ionizing atoms in Mars upper atmosphere. Once ionized, the atoms may be carried away by the wind. Credit: NASA
Illustration of electrons and protons in the solar wind slamming into and ionizing atoms in Mars upper atmosphere. Once ionized, the atoms may be carried away by the wind. Credit: NASA

During the year-long mission, MAVEN will dip in and out of the atmosphere some 2,000 times or more to measure what and how much Mars is losing to space. Without the protection of a global magnetic field like the Earth’s,  it’s thought that the solar wind eats away at the Martian atmosphere by ionizing (knocking off electrons) its atoms and molecules. Once ionized, the atoms swirl up the magnetic field embedded in the wind and are carried away from the planet.

MAVEN’s suite of instruments will provide the measurements essential to understanding the evolution of the Martian atmosphere. (Courtesy LASP/MAVEN)
MAVEN’s suite of instruments will provide the measurements essential to understanding the evolution of the Martian atmosphere. Courtesy LASP/MAVEN

Scientists will coordinate with the Curiosity rover, which can determine the atmospheric makeup at ground level. Although MAVEN won’t be taking pictures, its three packages of instruments will be working daily to fill gaps in the story of how Mars became the Red Planet and we the Blue.

For more on the ongoing progress of MAVEN later tonight and tomorrow, stop by NASA TV online. You can also stay in touch by following the hashtags #MAVEN and #JourneytoMars on social media channels including Twitter, Instagram and Facebook. Twitter updates will be posted throughout on the agency’s official accounts @NASA, @MAVEN2Mars and @NASASocial.

SpaceX Commercial Resupply Dragon Set for Sept. 21 Blastoff to Station – Watch Live

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission.
Credit: Ken Kremer – kenkremer.com
Story/launch date/headline updated[/caption]

KENNEDY SPACE CENTER, FL – SpaceX is on the cusp of launching the company’s fourth commercial resupply Dragon spacecraft mission to the International Space Station (ISS) shortly after midnight, Saturday, Sept. 20, 2014, continuing a rapid fire launch pace and carrying NASA’s first research payload – RapidScat – aimed at conducting Earth science from the stations exterior.

Final preparations for the launch are underway right now at the Cape Canaveral launch pad with the stowage of sensitive late load items including a specially designed rodent habitat housing 20 mice.

Update 20 Sept: Poor weather scrubs launch to Sept. 21 at 1:52 a.m.

Fueling of the two stage rocket with liquid oxygen and kerosene propellants commences in the evening prior to launch.

If all goes well, Saturday’s launch of a SpaceX Falcon 9 rocket would be the second in less than two weeks, and the fourth over the past ten weeks. The last Falcon 9 successfully launched the AsiaSat 6 commercial telecom satellite on Sept. 7 – detailed here.

“We are ready to go,” said Hans Koenigsmann, SpaceX vice president of mission assurance, at a media briefing at the Kennedy Space Center today, Sept. 19.

Liftoff of the SpaceX Falcon 9 rocket on the CRS-4 mission bound for the ISS is targeted for an instantaneous window at 2:14 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at the moment Earth’s rotation puts Cape Canaveral in the flight path of the ISS.

A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com
Story/launch date/headline updated

You can watch NASA’s live countdown coverage which begins at 1 a.m. on NASA Television and NASA’s Launch Blog: http://www.nasa.gov/multimedia/nasatv/

Liftoff of SpaceX Falcon 9 rocket and Dragon from Cape Canaveral Air Force Station, Fla, April 18, 2014.   Credit: Ken Kremer/kenkremer.com
Liftoff of SpaceX Falcon 9 rocket and Dragon from Cape Canaveral Air Force Station, Fla, April 18, 2014. Credit: Ken Kremer/kenkremer.com

The weather forecast is marginal at 50/50 with rain showers and thick clouds as the primary concerns currently impacting the launch site.

The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

The CRS-4 missions marks the start of a new era in Earth science. The truck of the Dragon is loaded Dragon with the $30 Million ISS-Rapid Scatterometer to monitor ocean surface wind speed and direction.

RapidScat is NASA’s first research payload aimed at conducting Earth science from the stations exterior. The stations robot arm will pluck RapidScat out of the truck and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.

Dragon will also carry the first 3-D printer to space for studies by the astronaut crews over at least two years.

SpaceX Falcon 9  rests horizontally at Cape Canaveral launch pad 40 awaiting blastoff reset to Sept 21, 2014 on the CRS-4 mission.  Credit: Ken Kremer - kenkremer.com
SpaceX Falcon 9 rests horizontally at Cape Canaveral launch pad 40 awaiting blastoff reset to Sept 21, 2014 on the CRS-4 mission. Credit: Ken Kremer – kenkremer.com

The science experiments and technology demonstrations alone amount too over 1644 pounds (746 kg) and will support 255 science and research investigations that will occur during the station’s Expeditions 41 and 42 for US investigations as well as for JAXA and ESA.

“This flight shows the breadth of ISS as a research platform, and we’re seeing the maturity of ISS for that,” NASA Chief Scientist Ellen Stofan said during a prelaunch news conference held today, Friday, Sept. 19 at NASA’s Kennedy Space Center.

After a two day chase, Dragon will be grappled and berth at an Earth-facing port on the stations Harmony module.

The Space CRS-4 mission marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

SpaceX Dragon resupply spacecraft arrives for successful berthing and docking at the International Space Station on Easter Sunday morning April 20, 2014. Credit: NASA TV
SpaceX Dragon resupply spacecraft arrives for successful berthing and docking at the International Space Station on Easter Sunday morning April 20, 2014. Credit: NASA TV

This week, SpaceX was also awarded a NASA contact to build a manned version of the Dragon dubbed V2 that will ferry astronauts crews to the ISS starting as soon as 2017.

NASA also awarded a second contact to Boeing to develop the CST-100 astronaut ‘space taxi’ to end the nation’s sole source reliance on Russia for astronaut launches in 2017.

Dragon V2 will launch on the same version of the Falcon 9 launching this cargo Dragon

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 awaits launch on Sept 20, 2014 on the CRS-4 mission. Credit: NASA
SpaceX Falcon 9 awaits launch on Sept 20, 2014 on the CRS-4 mission. Credit: NASA

Space Station Extension May Cost More Than NASA Expects: Report

The International Space Station. Credit: NASA

NASA’s anticipated $3 billion to $4 billion annual budget for the International Space Station is “overly optimistic”, a new report from NASA’s Inspector General says.

Transportation costs will likely rise when NASA uses commercial spacecraft to access the station instead of Russian Soyuzes, the report said. Also, if international partners don’t commit to extending the station four extra years to 2024, NASA will need to pick up more of the financial burden.

“While ISS program officials have been seeking ways to reduce costs and consolidate resources, it is unclear whether these efforts will be sufficient to address anticipated cost increases, particularly because the program does not expect to maintain any funding reserves over the next several years,” the report reads.

Expedition 38 crew members proudly sport their national flags in this March 2014 picture from the International Space Station. Pictured (clockwise from top center) are Russian cosmonaut Oleg Kotov, commander; Japan Aerospace Exploration Agency astronaut Koichi Wakata, Russian cosmonaut Sergey Ryazanskiy, NASA astronauts Rick Mastracchio and Mike Hopkins, and Russian cosmonaut Mikhail Tyurin, all flight engineers. Credit: NASA
Expedition 38 crew members proudly sport their national flags in this March 2014 picture from the International Space Station. Pictured (clockwise from top center) are Russian cosmonaut Oleg Kotov, commander; Japan Aerospace Exploration Agency astronaut Koichi Wakata, Russian cosmonaut Sergey Ryazanskiy, NASA astronauts Rick Mastracchio and Mike Hopkins, and Russian cosmonaut Mikhail Tyurin, all flight engineers. Credit: NASA

In January, the Obama administration approved NASA’s request to extend the ISS until 2024. At the time, NASA said the extension would be beneficial for science and also for the companies that will send spacecraft to the station, which right now appear to be SpaceX and Boeing. (NASA has been purchasing Soyuz seats since the shuttle retired in 2011, and U.S. flights are slated to start up again in 2017.)

There are 16 nations participating in space station operations, however, and any extension may require the approval of some or all of them. Political tensions with major partner Russia (which manages much of the station) have increased since the Ukrainian invasion crisis erupted earlier this year, prompting international condemnation. NASA cut most scientific ties with Russia in April, but preserved the station — an activity the agency says is proceeding normally, despite the crisis.

Besides political ramifications, the report points to technical issues with the ISS that could make an extension difficult. Its solar arrays are degrading faster than predicted, causing power limitations, and NASA has limited capability to lift large replacements parts to the station since the shuttle’s retirement.

Image above: Expedition 24 Flight Engineers Doug Wheelock (right) and Tracy Caldwell Dyson work to replace a failed ammonia pump module outside of the International Space Station. Credit: NASA TV
Image above: Expedition 24 Flight Engineers Doug Wheelock (right) and Tracy Caldwell Dyson work to replace a failed ammonia pump module outside of the International Space Station. Credit: NASA TV

Even the station’s promise of science return is proving to be a challenge. ISS United States laboratory manager Center for the Advancement of Science in Space (CASIS) is facing “issues related to funding and patent licenses and data rights” that are “deterring commercial stakeholders from conducting research on the ISS,” the report notes.

The report suggests that NASA keep trying to secure commitments from the ISS partners to share station costs, and that the agency “prioritize the human health risks to long-term exploration” in terms of its scientific research. While the report praised NASA for taking its recommendations seriously, it chastised the agency for not having a list of risks to the ISS ready yet.

NASA’s spending on the ISS was $2.9 billion in fiscal 2013, with 43% of that money going to system operations and maintenance, and 34% to crew and cargo transportation. About 10% is allocated to research.

The report was signed by Paul Martin, the inspector general, and can be read in full at this link. This news report just skims the surface of what the actual report says, so we highly encourage you to read it.

How NASA’s Next Mars Spacecraft Will Greet The Red Planet On Sunday

An artist concept of MAVEN in orbit around Mars. (Credit: NASA's Goddard Spaceflight Center).

NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) orbiter is oh-so-close to its destination after a 10-month journey. It’s scheduled to arrive in orbit Sunday (Sept. 21) around 9:50 p.m. EDT (1:50 a.m. UTC) if all goes well, but there are a few things that need to happen, in order, first.

One big obstacle is already out of the way. MAVEN controllers had expected to do final engine burn tweaks to put it on the right trajectory, but the mission is so on-target that it won’t be needed.

“#MAVEN orbit insertion sequence has been activated on the s/c. No additional ground intervention is needed to enter #Mars’ orbit on Sunday,” the official account tweeted yesterday (Sept. 18).

So what does the sequence entail? MAVEN will need to turn on its six thruster engines for a 33-minute braking maneuver to slow it down. This will allow the gravity of Mars to “capture” the spacecraft into an elliptical or oval-shaped orbit.

Should that all go safely, MAVEN still has a lot of work to do before being ready to capture information about the upper atmosphere of the Red Planet. All spacecraft go through a commissioning phase to ensure their instruments are working correctly and that they are in the correct orbit and orientation to do observations.

As such, controllers will spend about six weeks moving MAVEN into a more circular orbit and testing out its instruments. Usually this period is done without interruption, but NASA wants to capture information when Comet Siding Spring comes whizzing by Mars Oct. 19.

Controllers are interested in learning about the comet and its effect on the upper atmosphere, so they will stop the commissioning to make those measurements. MAVEN will also be oriented in such a way that its solar panels are protected as much as possible from the dust, although scientists now believe the risk of strikes is very low.

This graphic depicts the orbit of comet C/2013 A1 Siding Spring as it swings around the sun in 2014. On Oct. 19, 2014 the comet will have a very close pass at Mars. Its nucleus will miss Mars by about 82,000 miles (132,000 kilometers).   Credit: NASA/JPL-Caltech
This graphic depicts the orbit of comet C/2013 A1 Siding Spring as it swings around the sun in 2014. On Oct. 19, 2014 the comet will have a very close pass at Mars. Its nucleus will miss Mars by about 82,000 miles (132,000 kilometers). Credit: NASA/JPL-Caltech

MAVEN is expected to work at Mars for a year, but investigators are hoping it will be for longer so that the atmosphere can be tracked through more of a solar cycle. The Sun’s activity is a major influencer on the atmosphere and the “stripping” of molecules from it over time, which could have thinned Mars’ atmosphere in the ancient past.

The spacecraft will also serve as a backup communications and data relay for the Opportunity and Curiosity rovers on the surface, which might be needed if some of the older NASA Mars spacecraft that fulfill that function experience technical difficulties.

Sandy Ridges Pose A Mystery For Future Martian Beach Vacations

A September 2014 image from the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter showing transverse aeolian ridges. Credit: NASA/JPL/University of Arizona

What are these thick dune-like features on Mars, and how were they formed? Scientists are still trying to puzzle out these ridges, which you can see above in a more tropical region of the Red Planet called Iapygia, which is south of Syrtis Major. The thick ridges were captured from orbit by the Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE), and we’ve included some more intriguing pictures below the jump.

“Called transverse aeolian ridges, or TARs, the features stand up to 6 meters tall and are spaced a few tens of meters apart. They are typically oriented transverse to modern day wind directions, and often found in channels and crater interiors,” read an update on the University of Arizona’s HiRISE blog.

“The physical process that produces these features is still mysterious. Most TARs display no evidence of internal structure, so it is difficult to discern exactly how they were formed.”

A wider view of the Iapygia region on Mars, where transverse aeolian ridges (TARs) -- dune-like features -- were spotted in 2014. PIcture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
A wider view of the Iapygia region on Mars, where transverse aeolian ridges (TARs) — dune-like features — were spotted in 2014. PIcture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona

This picture from the NASA spacecraft was taken in Iapygia, which is south of Syrtis Major. While scientists say these look similar to TARs in other parts of the Red Planet, the features have layers on the northwest faces and a paucity on the southern side.

Scientists suggest it’s because these TARs may have had wedge-shaped layers, which hints that they would have gotten taller as material was added to the ridges. They hope to do further studies to learn more about how TARs formed in other regions on Mars.

We’ve included other recent releases from the HiRISE catalog below, so enjoy the Martian vistas!

An image of Eridania Basin, a southern region of Mars that once could been a lake or inland sea. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
An image of Eridania Basin, a southern region of Mars that once could been a lake or inland sea. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Scientists are still puzzling out the nature and formation of these light-toned deposits in the old Vinogradov Crater on Mars. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Scientists are still puzzling out the nature and formation of these light-toned deposits in the old Vinogradov Crater on Mars. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Older lava flows in Daedalia Planum on Mars. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Older lava flows in Daedalia Planum on Mars. Picture taken by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona

Saturn-Circling Cassini Spacecraft Plumbs Titan’s Seas Next Week

Titan's thick haze. Image: NASA/JPL/Space Science Institute.

Is the surf up yet on Titan? As the moon of Saturn moves towards northern summer, scientists are trying to spot signs of the winds picking up. This weekend, the Cassini spacecraft plans a look at the the largest body of liquid on Titan, Kraken Mare, to see if there are any waves on this huge hydrocarbon sea.

Cassini will make the 105th flyby of Titan on Monday (Sept. 22) to probe the moon’s atmosphere, seas and even a crater. The spacecraft will examine “the seas and lakes of the northern polar area, including Kraken and Ligeia at resolution better than 3 miles (5 kilometers) per pixel,” the Cassini website stated.

Besides wet areas of Titan, Cassini will also look at dunes and the relatively fresh-looking Sinlap crater, where scientists hope to get a high-resolution image. Managers also plan a mosaic of Tsegihi — a bright zone south of the equator — and the darker dune-filled area of Fensal. The spacecraft additionally will examine aerosols and the transparency of hazes in Titan’s atmosphere.

Titan is of interest to scientists in part because its chemistry is a possible precursor to what made life possible. Earlier this week, Cassini transmitted several raw images of its view of Titan and Saturn right now — some of the latest pictures are below.

A raw image of Saturn's moon Titan taken by the Cassini spacecraft Sept. 14, 2014. Credit: NASA/JPL/Space Science Institute
A raw image of Saturn’s moon Titan taken by the Cassini spacecraft Sept. 14, 2014. Credit: NASA/JPL/Space Science Institute
Atmospheric features on Saturn's moon Titan appear to be faintly visible in this raw image taken by the Cassini spacecraft Sept. 10, 2014. Credit: NASA/JPL/Space Science Institute
Atmospheric features on Saturn’s moon Titan appear to be faintly visible in this raw image taken by the Cassini spacecraft Sept. 10, 2014. Credit: NASA/JPL/Space Science Institute
A crescent Titan beckons the Cassini spacecraft (in Saturn's system) in this image taken Aug. 24, 2014. Credit: NASA/JPL/Space Science Institute
A crescent Titan beckons the Cassini spacecraft (in Saturn’s system) in this image taken Aug. 24, 2014. Credit: NASA/JPL/Space Science Institute
A raw image of Saturn taken by the Cassini spacecraft Sept. 15, 2014. Credit: NASA/JPL/Space Science Institute
A raw image of Saturn taken by the Cassini spacecraft Sept. 15, 2014. Credit: NASA/JPL/Space Science Institute

Radiation Blast Delays NASA Spacecraft’s Arrival At Dwarf Planet Ceres

Artist's conception of the NASA Dawn spacecraft approaching Ceres. Credit: NASA

NASA’s Dawn spacecraft experienced technical problems in the past week that will force it to arrive at dwarf planet Ceres one month later than planned, the agency said in a statement yesterday (Sept. 16).

Controllers discovered Dawn was in safe mode Sept. 11 after radiation disabled its ion engine, which uses electrical fields to “push” the spacecraft along. The radiation stopped all engine thrusting activities. The thrusting resumed Monday (Sept. 15) after controllers identified and fixed the problem, but then they found another anomaly troubling the spacecraft.

Dawn’s main antenna was also disabled, forcing the spacecraft to send signals to Earth (a 53-minute roundtrip by light speed) through a weaker secondary antenna and slowing communications. The cause of this problem hasn’t been figured out yet, but controllers suspect radiation affected the computer’s software. A computer reset has solved the issue, NASA added. The spacecraft is now functioning normally.

Vesta (left) and Ceres. Vesta was photographed up close by the Dawn spacecraft from July 2011-Sept. 2012, while the best views we have to date of Ceres come from the Hubble Space Telescope. The bright white spot is still a mystery. Credit: NASA
Vesta (left) and Ceres. Vesta was photographed up close by the Dawn spacecraft from July 2011-Sept. 2012, while the best views we have to date of Ceres come from the Hubble Space Telescope. The bright white spot is still a mystery. Credit: NASA

“As a result of the change in the thrust plan, Dawn will enter into orbit around dwarf planet Ceres in April 2015, about a month later than previously planned. The plans for exploring Ceres once the spacecraft is in orbit, however, are not affected,” NASA’s Jet Propulsion Laboratory stated in a press release.

Dawn is en route to Ceres after orbiting the huge asteroid Vesta between July 2011 and September 2012. A similar suspected radiation blast three years ago also disabled Dawn’s engine before it reached Vesta, but the ion system worked perfectly in moving Dawn away from Vesta when that phase of its mission was complete, NASA noted.

Among Dawn’s findings at Vesta is that the asteroid is full of hydrogen, and it contains the hydrated mineral hydroxyl. This likely came to the asteroid when smaller space rocks brought the volatiles to its surface through low-speed collisions.

Spacecraft can experience radiation through energy from the Sun (particularly from solar flares) and also from cosmic rays, which are electrically charged particles that originate outside the Solar System. Earth’s atmosphere shields the surface from most space-based radiation.

Source: Jet Propulsion Laboratory