Watch Live as NASA Announces Who Will Fly Astronauts to the Space Station



Broadcast live streaming video on Ustream

NASA will make a “major announcement” today on the return of human spaceflight launches for the U.S, specifically which commercial space company — or companies — will taxi astronauts to and from the International Space. You can watch the press conference live here today (Sept. 16) at 4 pm EDT (1 pm PDT, 20:00 UTC).

The competition for the Commercial Crew Program (CCP) has been between four companies: SpaceX, Boeing, Sierra Nevada and Blue Origin. Some media reports indicate NASA will make commercial crew awards to the obvious front-runners, Boeing and SpaceX.

SpaceX’s Dragon became the first commercial spacecraft to deliver cargo to the space station in 2012, and SpaceX has been working on a version of the Dragon that can carry humans as well.

Boeing’s CST-100 can carry up to seven passengers or a mix of humans and cargo.

Sierra Nevada has been working on the Dream Chaser, a winged spacecraft that looks similar to a mini space shuttle. Blue Origin has been developing a capsule called Space Vehicle.

The CCP program was developed after the space shuttle program ended in 2011. While NASA focuses its human spaceflight efforts on the new Space Launch System and going beyond Earth orbit, they will use commercial companies that will launch from the US to ferry their astronauts to the space station.

Repaired Opportunity Rover Readies For ‘Marathon Valley’ As It Transmits Martian Images

The Opportunity rover is at the west rim of Endeavour Crater on Mars in this image sent on Sol 3,783 in September 2014 -- after a successful Flash memory reset. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

With a newly cleared memory, it’s time for Opportunity to resume the next stage of its long, long Martian drive. The next major goal for the long-lived rover is to go to Marathon Valley, a spot that (in images from orbit) appears to have clay minerals on site. Clay tends to form in the presence of water, so examining the region could provide more information about Mars’ wet, ancient past.

The rover has driven further on Mars than any other human-made machine; as of Sept. 9, it had reached 25.28 miles (40.69 kilometers). But signs of age are showing as the rover moves through its 11th Earth year on Mars.

NASA recently halted science operations for a few days to reformat the rover’s Flash memory, which was causing several reboots. The remote repair worked perfectly and the rover is ready to resume work, NASA said in an update Sept. 12.

Ready to roll: the Opportunity rover's wheels and tracks are visible in this picture taken on Mars on Sol 3,783 in September 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
Ready to roll: the Opportunity rover’s wheels and tracks are visible in this picture taken on Mars on Sol 3,783 in September 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

A NASA planetary senior review panel from early September, which was evaluating the science value of several extended missions, said there are “software and communication issues that afflict the rover” that could affect its ability to send data. (This was written before the memory reformat.)

The major goal of Opportunity’s latest extended mission, the review continued, is to find out what habitability conditions existed on Mars. This includes looking at the water, the geology and the environment.

“This will be achieved by measurements of rocks and soils, as well as atmospheric observations, as it traverses from Murray Ridge to Cape Tribulation,” the report read.

A still from the Opportunity rover's navigation camera taken on Sol 3,783 in September 2014. At bottom is part of the solar panel cells used to power the Martian rover. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A still from the Opportunity rover’s navigation camera taken on Sol 3,783 in September 2014. At bottom is part of the solar panel cells used to power the Martian rover. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

“This extended mission will focus on the orbitally detected phyllosilicate deposits near Endeavour crater, which are considered to represent deposits from the ancient Noachian period. This would represent the first time that such ancient deposits have been analyzed on the Martian surface.”

The report further cautioned that there is no proof yet that the phyllosilicates (which are sheet salt silicate materials made of silicon and oxygen) are from the Noachian era, which represents geology that is more than 3.5 billion years old (depending on which source you consult). It added, however, that Opportunity is expected to be able to complete the science.

Meanwhile, enjoy these pictures from the rim of Endeavour Crater that Opportunity sent in the past few days.

Rocks scattered across the Martian vista in this picture captured by the Opportunity rover on Sol 3,783. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
Rocks scattered across the Martian vista in this picture captured by the Opportunity rover on Sol 3,783. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
Two of Opportunity's six wheels are visible in this shot from the rear hazcam on Sol 3,780, taken on Mars in September 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
Two of Opportunity’s six wheels are visible in this shot from the rear hazcam on Sol 3,780, taken on Mars in September 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
Tracks from Opportunity stretch across this vista taken by the rover on Sol 3,781 in September 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
Tracks from Opportunity stretch across this vista taken by the rover on Sol 3,781 in September 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

Stalking Uranus: A Complete Guide to the 2014 Opposition Season

Uranus as seen through the automated eyes of Voyager 2 in 1986. (Credit: NASA/JPL).

It’s no joke… now is the time to begin searching the much-maligned (and mispronounced) planet Uranus as it reaches opposition in early October leading up to a very special celestial event.

Last month, we looked at the challenges of spying the solar system’s outermost ice giant world, Neptune. Currently located in the adjacent constellation Aquarius, Neptune is now 39 degrees from Uranus and widening. The two worlds had a close conjunction of just over one degree of separation in late 1993, and only long time observers of the distant worlds remember a time waaaay back in the early-1970s where the two worlds appeared farther apart than 2014 as seen from our Earthly vantage point.

Stellarium
Uranus rising to the east the evening of October 7th, just prior to the start of the October 8th lunar eclipse later the same evening. Created  using Stellarium.

In 2014, opposition occurs at 21:00 Universal Time (UT)/5:00 PM EDT on October 7th. If this date sounds familiar, it’s because Full Moon and the second total lunar eclipse of 2014 and the ongoing lunar tetrad of eclipses occurs less than 24 hours afterwards. This puts Uranus extremely close to the eclipsed Moon, and a remote slice of the high Arctic will actually see the Moon occult (pass in front of) Uranus during totality. Such a coincidence is extremely rare: the last time the Moon occulted a naked eye planet during totality occurred back during Shakespearian times in 1591, when Saturn was covered by the eclipsed Moon. This close conjunction as seen from English soil possibly by the bard himself was mentioned in David Levy’s book and doctoral thesis The Sky in Early Modern English Literature, and a similar event involving Saturn occurs in 2344 AD.

Credit:
The footprint of the October 8th occultation of Uranus. Credit: Occult 4.1.

We’re also in a cycle of occultations of Uranus in 2014, as the speedy Moon slides in front of the slow moving world every lunation until December 2015. Oppositions of Uranus — actually pronounced “YOOR-un-us” so as not to rhyme with a bodily orifice — currently occur in the month of September and move forward across our calendar by about 4 days a year.

Credit:
Uranus (lower left) near the limb of the gibbous Moon of September 11th, 2014. Credit: Roger Hutchinson.

This year sees Uranus in the astronomical constellation Pisces just south of the March equinoctial point. Uranus is moving towards and will pass within a degree of the +5.7 magnitude star 96 Piscium in late October through early November. Shining at magnitude +5.7 through the opposition season, Uranus presents a disk 3.7” in size at the telescope. You can get a positive ID on the planet by patiently sweeping the field of view: Uranus is the tiny blue-green “dot” that, unlike a star, refuses to come into a pinpoint focus.

The apparent path of Uranus from September 2014 through January 2015 across the constellation Pisces. The inset shows the tilt and orbit of its major moons across a 2′ field of view. Created by the author using Starry Night Education software.

Uranus also presents us with one of the key mysteries of the solar system. Namely, what’s up with its 97.8 degree rotational tilt? Clearly, the world sustained a major blow sometime in the solar system’s early history. In 2014, we’re viewing the world at about a 28 degree tilt and widening. This will continue until we’re looking straight at the south pole of Uranus in early 2030s. Of course, “south” and “north” are pretty arbitrary when you’re knocked back over 90 degrees on your axis! And while we enjoy the September Equinox next week on September 23rd, the last equinox for any would-be “Uranians” occurred on December 16th, 2007. This put the orbit of its moons edge-on from our point of view from 2006-2009 for only the third time since discovery of the planet in 1781. This won’t occur again until around 2049. Uranus also passed aphelion in 2009, which means it’s still at the farther end of its 19.1 to 17.3 astronomical unit (A.U.) range from the Sun in its 84 year orbit.

The moons of Uranus and Neptune as imaged during the 2011 opposition season. Credit: Rolf Wahl Olsen, used with permission.
The moons of Uranus and Neptune as imaged during the 2011 opposition season. Credit: Rolf Wahl Olsen, used with permission.

And as often as Uranus ends up as the butt (bad pun) of many a scatological punch line, we can at least be glad that the world didn’t get named Georgium Sidus (Latin for “George’s Star”) after William Herschel’s benefactor, King George the III. Yes, this was a serious proposal (!). Herschel initially thought he’d found a comet upon spying Uranus, until he realized its slow motion implied a large object orbiting far out in the solar system.

A replica... Credit:
A replica of the reflecting telescope that Herschel used to discover Uranus. Credit: Alun Salt/Wikimedia Commons image under a Creative Commons Attribution Share-Alike 2.0 license.

Spurious sightings of Uranus actually crop up on star maps prior to Herschel’s time, and in theory, it hovers juuusst above naked eye visibility near opposition as seen from a dark sky site… can you pick out Uranus without optical assistance during totality next month? Hershel and Lassell also made claims of spotting early ring systems around both Uranus and Neptune, though the true discovery of a tenuous ring system of Uranus was made by the Kuiper Airborne Observatory (a forerunner of SOFIA) during an occultation of a background star in 1977.

Credit: Ed Kotapish
A corkscrew chart for the moons of Uranus through October. Credit: Ed Kotapish/Rings PDS node.

Looking for something more? Owners of large light buckets can capture and even image (see above) 5 of the 27 known moons of Uranus. We charted the orbital elongations for favorable apparitions through October 2014 (to the left). Check out last year’s chart for magnitudes, periods, and maximum separations for each respective moon. An occulting bar eyepiece may help you in your quest to cut down the ‘glare’ of nearby Uranus.

When will we return to Uranus? Thus far, humanity has explored the world up close exactly once, when Voyager 2 passed by in 1986. A possible “Uranus Probe” (perhaps, Uranus Orbiter is a better term) similar to Cassini has been an on- and off- proposal over the years, though it’d be a tough sell in the current era of ever dwindling budgets. Plutonium, a mandatory power source for deep space missions, is also in short supply. Such a mission might take up to a decade to enter orbit around Uranus, and would represent the farthest orbital reconnaissance of a world in our solar system. Speedy New Horizons is just whizzing by Pluto next July.

All great thoughts to ponder as you scour the skies for Uranus in the coming weeks!

New Horizons Sights Tiny Pluto Moon As Spacecraft Races Toward Dwarf Planet

Artist's conception of the New Horizons spacecraft flying past Pluto and Charon, one of the dwarf planet's moons. Credit: Johns Hopkins University/APL

Here’s Hydra! The New Horizons team spotted the tiny moon of Pluto in July, about six months ahead of when they expected to. You can check it out in the images below. The find is exciting in itself, but it also bodes well for the spacecraft’s search for orbital debris to prepare for its close encounter with the system in July 2015.

Most of Pluto’s moons were discovered while New Horizons was under development, or already on its way. Mission planners are thus concerned that there could be moons out there that aren’t discovered yet — moons that could pose a danger to the spacecraft if it ended up in the wrong spot at the wrong time.  That’s why the team is engaging in long-range views to see what else is lurking in Pluto’s vicinity.

“We’re thrilled to see it, because it shows that our satellite-search techniques work, and that our camera is operating superbly. But it’s also exciting just to see a third member of the Pluto system come into view, as proof that we’re almost there,” stated science team member John Spencer, of the Southwest Research Institute.

Watch the difference: Pluto’s moon Hydra stands out in these images taken by the New Horizons spacecraft on July 18 and 20, 2014. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Hydra was spotted using the spacecraft’s Long Range Reconnaissance Imager (LORRI), which took 48 images of 10 seconds apiece between July 18 and July 20. Then the team used half the images, the ones that show Hydra better, to create the images you see above.

The spacecraft was still 267 million miles (430 million kilometers) from Pluto when the images were taken. Another moon discovered around the same time as Hydra — Nix — is still too close to be seen given it’s so close to Pluto, but just wait.

Meanwhile, scientists are busily trying to figure out where to send New Horizons after Pluto. In July, researchers using the Hubble Space Telescope began a full-scale search for a suitable Kuiper Belt Object, which would be one of trillions of icy or rocky objects beyond Neptune’s orbit. Flying past a KBO would provide more clues as to how the Solar System formed, since these objects are considered leftovers of the chunks of matter that came together to form the planets.

Source: Johns Hopkins Applied Physics Laboratory

Martian Ctl-Alt-Del: NASA Resets Opportunity Rover’s Memory, Stopping The Science Hiatus

A self-portrait of the Opportunity rover shortly after dust cleared its solar panels in March 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

In fantastic news for the long-running Opportunity mission on Mars, NASA says the rover’s much-needed memory reset worked out perfectly. The rover was unable to perform science or beam pictures back to Earth because portions of its flash memory — which can store information even when the rover is turned off — were beginning to wear out.

The reboot means the rover is soon going to be on the move again as it continues exploring the rim of Endeavour Crater, tacking on nearly a marathon of miles that Opportunity has racked up on Mars since 2004.

“The rover’s Flash file system was successfully reformatted on Sol 3773 (Sept. 4, 2014),” NASA wrote in an update on the Mars Exploration Rover website late last week. “The Flash space available is slightly smaller (<1%) than before the reformat, consistent with the reformatting process flagging some bad cells to avoid.”

Traverse Map for NASA’s Opportunity rover from 2004 to 2014 - A Decade on Mars.  This map shows the entire path the rover has driven during a decade on Mars and over 3692 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location along Pillinger Point ridge south of Solander Point summit at the western rim of Endeavour Crater and heading to clay minerals at Cape Tribulation.  Opportunity discovered clay minerals at Esperance - indicative of a habitable zone.  Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Traverse Map for NASA’s Opportunity rover from 2004 to 2014 – A Decade on Mars. This map shows the entire path the rover has driven during a decade on Mars and over 3692 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location along Pillinger Point ridge south of Solander Point summit at the western rim of Endeavour Crater and heading to clay minerals at Cape Tribulation. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer

After performing related activities to the reformat on Sept. 6 and 7, controllers tried to take Opportunity out for a drive. They decided to stop shortly after beginning on Sept. 9 because the visual odometry Opportunity was using wasn’t enough for navigation. The controllers plan to try it again, using different landmarks next time. Current odometer on the rover: 25.28 miles (40.69 kilometers).

Sept. 9 marked the 3,778th Martian day or “sol” that Opportunity has been at work on Mars. The rover was originally designed to last three Earth months on the Martian surface, but is still performing drives and science in its 11th year. (The rover’s twin, Spirit, died in a sand trap after sending its last transmission March 22, 2010.)

Opportunity, however, is facing funding challenges on Earth as NASA and its political stakeholders weigh which of the agency’s long-term missions should continue.

Comet’s Head Selected as Landing Site for Rosetta’s Historic Philae Lander

Context image showing the location of the primary landing site for Rosetta’s lander Philae. Site J is located on the head of Comet 67P/Churyumov–Gerasimenko. An inset showing a close up of the landing site is also shown. The inset image was taken by Rosetta’s OSIRIS narrow-angle camera on 20 August 2014 from a distance of about 67 km. The image scale is 1.2 metres/pixel. The background image was taken on 16 August from a distance of about 100 km. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

The ‘head’ of the bizarre comet 67P/Churyumov-Gerasimenko has been selected as the primary landing site for the Rosetta spacecraft’s attached Philae lander, attempting mankind’s first ever landing on a comet in mid-November.

Scientists leading the European Space Agency’s Rosetta mission announced the primary landing site at a media briefing today, Sept. 15, at ESA headquarters.

After weeks of detailed study and debate focused on balancing scientific interest with finding a ‘technically feasible’ and safe Philae touchdown site, the team chose a target dubbed Site J as the primary landing site from among a list of five initially selected sites, said Stephan Ulamec, Philae Lander Manager at the DLR German Aerospace Center, at the briefing.

“Site J is the primary landing site around the head of the comet,” Ulamec announced.

“Site C is the backup site on the body [near the bottom of the comet].”

“This was not an easy task. Site J is a mix of flat areas and rough terrain. It’s not a perfectly flat area. There is still risk with high slope areas.”

Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

He also made clear that there is still some landing uncertainty with the targeting of the lander onto the comet.

Site J is an intriguing region on Comet 67P/Churyumov–Gerasimenko that offers unique scientific potential, with hints of activity nearby, and minimum risk to the lander compared to the other candidate sites, according to ESA.

“As we have seen from recent close-up images, the comet is a beautiful but dramatic world – it is scientifically exciting, but its shape makes it operationally challenging,” says Ulamec.

“None of the candidate landing sites met all of the operational criteria at the 100% level, but Site J is clearly the best solution.”

Philae’s history-making landing on comet 67P is currently scheduled for around Nov. 11, 2014, and will be entirely automatic. The 100 kg lander is equipped with 10 science instruments.

“All of Rosetta’s instruments are supporting the landing site selection,” said Holger Sierks, principal investigator for Rosetta’s OSIRIS camera from the Max Planck Institute for Solar System Research in Gottingen, Germany.

“Site J is just 500-600 meters away from some pits and an area of comet outgassing activity. They will become more active as we get closer to the sun.

The team is in a race against time to select a suitable landing zone quickly and develop the complex landing sequence since the comet warms up and the surface becomes ever more active as it swings in closer to the sun and makes the landing ever more hazardous.

Since the descent to the comet is passive it is only possible to predict that the landing point will place within a ‘landing ellipse’ typically a few hundred metres in size, the team elaborated.

The three-legged lander will fire two harpoons and use ice screws to anchor itself to the 4 kilometer (2.5 mile) wide comet’s surface. Philae will collect stereo and panoramic images and also drill 20 to 30 centimeters into and sample its incredibly varied surface.

“We will make the first ever in situ analysis of a comet at this site, giving us an unparalleled insight into the composition, structure and evolution of a comet,” says Jean-Pierre Bibring, a lead lander scientist and principal investigator of the CIVA instrument at the IAS in Orsay, France.

“Site J in particular offers us the chance to analyse pristine material, characterise the properties of the nucleus, and study the processes that drive its activity.”

“It’s amazing how much we have learned so far.”

“We are in a true revolution of how we think Planets form and evolve,” Bibring elaborated at the briefing.

“We will make many types of scientific measurements of the comet from the surface. We will get a complete panoramic view of the comet on the macroscopic and microscopic scale.”

Rosetta is currently orbiting the comet from a distance of 30 km, said ESA Rosetta flight director Andrea Accomazzo. He said it will likely go even closer to 20 km and perhaps 10 km.

Four-image photo mosaic comprising images taken by Rosetta's navigation camera on 2 September 2014 from a distance of 56 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been contrast enhanced to bring out details of the coma, especially of jets of dust emanating from the neck region. Credits: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer - kenkremer.com
Four-image photo mosaic comprising images taken by Rosetta’s navigation camera on 2 September 2014 from a distance of 56 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been contrast enhanced to bring out details of the coma, especially of jets of dust emanating from the neck region. Credits: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer – kenkremer.com

“Now that we’re closer to the comet, continued science and mapping operations will help us improve the analysis of the primary and backup landing sites,” says ESA Rosetta flight director Andrea Accomazzo.

“Of course, we cannot predict the activity of the comet between now and landing, and on landing day itself. A sudden increase in activity could affect the position of Rosetta in its orbit at the moment of deployment and in turn the exact location where Philae will land, and that’s what makes this a risky operation.”

Four-image photo mosaic comprising images taken by Rosetta's navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been rotated and contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo
Four-image photo mosaic comprising images taken by Rosetta’s navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been rotated and contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo

The final landing site selections were made at a meeting being held this weekend on 13 and 14 September 2014 between the Rosetta Lander Team and the Rosetta orbiter team at CNES in Toulouse, France.

“No one has ever attempted to land on a comet before, so it is a real challenge,” says Fred Jansen, ESA Rosetta mission manager.

“The complicated ‘double’ structure of the comet has had a considerable impact on the overall risks related to landing, but they are risks worth taking to have the chance of making the first ever soft landing on a comet.”

Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander.   The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Enlarged insets below highlight 5 landing zones.  Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA  Processing: Marco Di Lorenzo/Ken Kremer
Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander. The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Enlarged insets below highlight 5 landing zones. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Processing: Marco Di Lorenzo/Ken Kremer

Stay tuned here for Ken’s continuing Rosetta, Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA’s First Completed Orion Takes First Step on Journey to the Launch Pad

NASA’s Orion EFT 1 crew module departs Neil Armstrong Operation and Checkout Building on Sept. 11, 2014 at the Kennedy Space Center, FL, beginning the long journey to the launch pad and planned liftoff on Dec. 4, 2014. Credit: Ken Kremer - kenkremer.com

NASA’s Orion EFT 1 crew module departs Neil Armstrong Operation and Checkout Building on Sept. 11, 2014 at the Kennedy Space Center, FL, beginning the long journey to the launch pad and planned liftoff on Dec. 4, 2014. Credit: Ken Kremer – kenkremer.com
Story updated[/caption]

KENNEDY SPACE CENTER – NASA’s first space worthy Orion crew module rolled out of its assembly facility at the Kennedy Space Center (KSC) on Thursday, Sept. 11, taking the first step on its nearly two month journey to the launch pad and planned blastoff this coming December.

The Orion spacecraft is NASA’s next generation human rated vehicle and is scheduled to launch on its maiden uncrewed mission dubbed Exploration Flight Test-1 (EFT-1) in December 2014.

Orion’s assembly was just completed this past weekend by technicians and engineers from prime contractor Lockheed Martin inside the agency’s Neil Armstrong Operations and Checkout (O & C) Facility. They have been working 24/7 to manufacture the capsule and prepare it for launch.

“I’m excited as can be,” said Scott Wilson, NASA’s Orion Manager of Production Operations at KSC during the move. “For some of us this has been ten years in the making.”

The black tiled Orion crew module (CM) was stacked atop an inert white colored service module (SM) in the O & C high bay in June. The CM/SM stack was placed on top of the Orion-to-stage adapter ring that will mate them to the booster rocket. Altogether the capsule, service module and adapter ring stack stands 40 feet tall and 16 feet in diameter.

“This is awesome,” Bob Cabana, Kennedy Space Center director and former shuttle commander, told the media during the rollout.

NASA’s Orion EFT 1 crew module enters the Payload Hazardous Servicing Facility on Sept. 11, 2014 at the Kennedy Space Center, FL, beginning the long journey to the launch pad and planned liftoff on Dec. 4, 2014.  Credit: Ken Kremer - kenkremer.com
NASA’s Orion EFT 1 crew module enters the Payload Hazardous Servicing Facility on Sept. 11, 2014 at the Kennedy Space Center, FL, beginning the long journey to the launch pad and planned liftoff on Dec. 4, 2014. Credit: Ken Kremer – kenkremer.com

Workers subsequently covered the crew module and its thermal insulating tiles with a see through foil to shield the capsule and blanket it under a protective climate controlled atmosphere to guard against humidity.

The CM/SM stack was then lifted and placed onto a 36-wheeled transporter and moved about 1 mile to a KSC facility named the Payload Hazardous Servicing Facility (PHFS) for fueling. The move took about an hour.

“Orion will stay at the PHFS for about a month,” Wilson told me in a KSC interview during the move.

Orion will be fueled with ammonia and hyper-propellants for its flight test, said Wilson.

NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to Launch Abort System Facility (LASF) on Sept. 11, 2014 at the Kennedy Space Center, FL.  Credit: Ken Kremer - kenkremer.com
NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to the Payload Hazardous Servicing Facility (PHSF) on Sept. 11, 2014 at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

The fueled Orion will then move yet again to the Launch Abort System Facility (LASF) for the installation of the launch abort system (LAS).

The full Orion stack will rollout to Space Launch Complex 37 in early November.

“Nothing about building the first of a brand new space transportation system is easy,” said Mark Geyer, Orion Program manager.

“But the crew module is undoubtedly the most complex component that will fly in December. The pressure vessel, the heat shield, parachute system, avionics — piecing all of that together into a working spacecraft is an accomplishment. Seeing it fly in three months is going to be amazing.”

The Orion EFT-1 test flight is slated to soar to space atop the mammoth, triple barreled United Launch Alliance (ULA) Delta IV Heavy rocket from Cape Canaveral, Florida, on Dec. 4, 2014.

The state-of-the-art Orion spacecraft will carry America’s astronauts on voyages venturing farther into deep space than ever before – past the Moon to Asteroids, Mars and Beyond!

The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.

Ken Kremer

Scott Wilson, NASA’s Orion Manager of Production Operations at KSC and Ken Kremer/Universe Today discuss Orion EFT-1 mission during capsule rollout on Sept. 11, 2014 at the Kennedy Space Center, FL.  Credit: Ken Kremer - kenkremer.com
Scott Wilson, NASA’s Orion Manager of Production Operations at KSC and Ken Kremer/Universe Today discuss Orion EFT-1 mission during capsule rollout on Sept. 11, 2014 at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

An Incredible Journey, Mars Curiosity Rover Reaches the Base of Mount Sharp

MRO image of Gale Crater illustrating the landing location and trek of the Rover Curiosity. Curiosity's images and data show that the Gale Crater held water for much longer than thought. (Credits: NASA/JPL, illustration, T.Reyes)

Scientists at the Jet Propulsion Laboratory have announced that the Mars Science Lab (MSL), Curiosity Rover, has reached the base of the central peak inside Gale Crater, Aeolis Mons also known as Mount Sharp. Mount Sharp is a prime objective of NASA’s Curiosity journey. The mountain is like a layer cake, holding a chronology of past events, one after the other, stacked upon each other over billions of years. It took two years and one month to reach this present point and what lies ahead is the beginning of an upward trek towards the peak of Mount Sharp, 5500 meters (18,000 feet) above the floor of Gale Crater. However, it is worth a look back and to consider what Mount Sharp represents to the mission.

For over 17 years, NASA robotic spacecraft have maintained a constant presence above or upon the surface of Mars. The Mars Pathfinder mission arrived on July 4, 1997, then quickly followed by Mars Global Surveyor on September 11 and since this time, there has always been at least one active Mars mission.

"Seven Minutes of Terror" - the Entry, Descent and Landing (EDL) of the Mars Science Lab (MSL) - Mars Curiosity Rover. (Credit: NASA/JPL)
“Seven Minutes of Terror” – the Entry, Descent and Landing (EDL) of the Mars Science Lab (MSL) – Mars Curiosity Rover. (Credit: NASA/JPL)

On November 26, 2011, the voyage of Mars Curiosity Rover began as a trek across 320 million kilometers (200 million miles) of the inner Solar System and culminated in the coined “Seven Minutes of Terror”. For seven long minutes, the MSL, the Mars Curiosity Rover, plowed straight into the Martian atmosphere – the entry, deployed a parachute – the descent, to slow down to about 320 km/hour (200 mph) then the Sky Crane with Rover under foot was released – the landing. With only seconds before an imminent hard impact, the Sky Crane hit the breaks, firing its rockets, then released Curiosity Rover on a tether. This was the Entry, Descent and Landing (EDL). All the while, it was the computer inside the Rover in control. When the tether was cut, the Sky Crane was forced to switch to a simpler processor within its system to complete a final scuttling of itself a few hundred meters away.

The Sky Crane gently lowered Curiosity to the landing point, christened Bradbury Station after the celebrated science fiction writer, Ray Bradbury, writer of the Martian Chronicles(c.1950), who passed away at age 91, 61 days before the landing on August 5, 2012. (recommended video – R. Bradbury reading “If Only We had been Taller” at the public event marking the arrival of Mariner 9 at Mars, November 12, 1971)

 

The ultimate Selfie - a self-protrait taken on anoher planet. This is the capability of the Mars Hand Lens Imager (MAHLI) camera, one of 5 instruments on the turret at the end of the 2.1 meter (7 ft), 30 kg (66 lb) Robotic Arm. On numerous occasions, Curiosity has taken self-portraits, many as mosaics. This on is on Sol (Mars day) 85, post landing, showing Curiosity with its destination - Aeolis Mons (Mt. Sharp) in the background. (Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo, "Curiosity Celebrates 90 Sols Scooping Mars and Snapping Amazing Self-Portrait with Mount Sharp")
The ultimate Selfie – a self-protrait taken on anoher planet. This is the capability of the Mars Hand Lens Imager (MAHLI) camera, one of 5 instruments on the turret at the end of the 2.1 meter (7 ft), 30 kg (66 lb) Robotic Arm. On numerous occasions, Curiosity has taken self-portraits, many as mosaics. This on is on Sol (Mars day) 85, post landing, showing Curiosity with its destination – Aeolis Mons (Mt. Sharp) in the background. (Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo, “Curiosity Celebrates 90 Sols Scooping Mars and Snapping Amazing Self-Portrait with Mount Sharp“)
September 27, 2012: A rock outcrop called Link pops out from a Martian surface taken by the 100-millimeter Mast Camera on NASA’s Curiosity Mars rover September 2, 2012. Rounded gravel fragments, or clasts, up to a couple inches (few centimeters) in size are in a matrix of white material. The outcrop characteristics are consistent with a sedimentary conglomerate, or a rock that was formed by the deposition of water and is composed of many smaller rounded rocks cemented together. Scientists enhanced the color in this version to show the Martian scene as it would appear under the lighting conditions we have on Earth, which helps in analyzing the terrain. (NASA/JPL-Caltech/MSSS/Handout/Reuters)
September 27, 2012: A rock outcrop called Link pops out from a Martian surface taken by the 100-millimeter Mast Camera on NASA’s Curiosity Mars rover September 2, 2012. Rounded gravel fragments, or clasts, up to a couple inches (few centimeters) in size are in a matrix of white material. The outcrop characteristics are consistent with a sedimentary conglomerate, or a rock that was formed by the deposition of water and is composed of many smaller rounded rocks cemented together. Scientists enhanced the color in this version to show the Martian scene as it would appear under the lighting conditions we have on Earth, which helps in analyzing the terrain. (NASA/JPL-Caltech/MSSS/Handout/Reuters)
Mars Curiosity at the "John Klein" site on January 10, 2013 (Mars Sol 153). The Mastcam mosaic was taken from 5 meters (16 ft). The area is full of fractures and veins with intervening rock with concretions (small spherical concentrations of minerals). The enlargements show particular areas of interest. (A) Ridge-like veins protruding from the surface. (B) Shows discontinuities in the veins that likely extend beneath the surface. (C) Shows a hole developed in the sand that overlies a fracture, implying infiltration of sand down into the fracture system. To this author, the area around (A) seems like the remnants of dried mud chips or scales one finds in the dry areas of estuaries on Earth. (Credits: NASA/JPL)
Mars Curiosity at the “John Klein” site in Yellow Knife Bay on January 10, 2013 (Mars Sol 153). The Mastcam mosaic was taken from 5 meters (16 ft). The area is full of fractures and veins with intervening rock with concretions (small spherical concentrations of minerals). The enlargements show particular areas of interest. (A) Ridge-like veins protruding from the surface. (B) Shows discontinuities in the veins that likely extend beneath the surface. (C) Shows a hole developed in the sand that overlies a fracture, implying infiltration of sand down into the fracture system. To this author, the area around (A) seems similar to the remnants of dried mud chips or scales one finds in the dry areas of estuaries on Earth. (Credits: NASA/JPL)

What has followed in the last 25 months since the landing is simply staggering. Mars Curiosity Rover, with the most advanced array of instruments and tools ever delivered to a celestial body, has already delivered an immense trove of images and scientific data that is improving and changing our understanding of Mars.

HIRISE images from the orbiting MRO spacecraft are used to show the old and new routes of NASA's Mars Curiosity rover. The new route provides excellent access to many features in the Murray Formation. And it will eventually pass by the Murray Formation's namesake, Murray Buttes, previously considered to be the entry point to Mt. Sharp. (Credit: NASA/JPL-Caltech/Univ. of Arizona)
HIRISE images from the orbiting MRO spacecraft are used to show the old and new routes of NASA’s Mars Curiosity rover. The new route provides excellent access to many features in the Murray Formation. And it will eventually pass by the Murray Formation’s namesake, Murray Buttes, previously considered to be the entry point to Mt. Sharp. (Credit: NASA/JPL-Caltech/Univ. of Arizona)

Curiosity had been making progress towards an entry point to Mount Sharp called Murray Buttes, however, because of challenges that the terrain posed – sand dunes and treacherous rocks, they have chosen to enter at Pahrump Hills. Furthermore, the new entry to the lower slopes of Mount Sharp are considered scientifically more interesting. The boundary between the mountain and the crater-floor deposits is not an exact one but NASA scientists explained the reason for the announcement at this point:

“Both entry points lay along a boundary where the southern base layer of the mountain meets crater-floor deposits washed down from the crater’s northern rim.” The terrain is now primarily material from the mountain from here on upward.

Image taken by the MastCam of Curiosity Rover on August 23, 2012 which shows the buttes representing the base of Mount Sharp, including Murray Buttes. Today, two years later, Mars Curiosity now stands at entry points in the region of the buttes at 6.6 km (direct line distance). In the middle of the image is the boulder-strewn area in which much of Curiosity's wheel damage occurred. At top are the expansive series of sendiments that is the great interest of Mars researchers. (Credit: NASA/JPL)
Image taken by the MastCam of Curiosity Rover on August 23, 2012 which shows the buttes representing the base of Mount Sharp, including Murray Buttes. Today, two years later, Mars Curiosity now stands at entry points in the region of the buttes at 6.6 km (direct line distance). In the middle of the image is the boulder-strewn area in which much of Curiosity’s wheel damage occurred. At top are the expansive series of sendiments that is the great interest of Mars researchers. (Credit: NASA/JPL)

Mount Sharp is anything but the normal central peak of an impact crater. Gale crater at 154 km (96 miles) in diameter is what is called a complex crater. Beyond a certain size, depending on the gravity of the planet, craters will have a central peak. It is similar to the spike of water which is thrust upwards when you drop an object into a pool of water. Like the spike of water, an impact, thrusts regolith upwards and it collapses and coalesces into a central peak. However, with Mount Sharp there is something more. If the peak was nothing but a central impact peak, NASA with Mars Curiosity would not be trekking inside Gale Crater.

As data and analysis has accumulated from not just Mars Curiosity Rover but rather from all the active Mars missions, the models and hypotheses describing the structure and morphology on Mars has become more complex. This model and explanation of how Mount Sharp built up over billions of years uses deposition of ice and dust. Click to enlarge to review the five steps to making a layer cake mountain - Aeolis Mons (Mount Sharp). It is a process which is comparable to how the Martian polar caps formed. Illustration presented by Paul Niles (NASA Johnson Space Center) and Joseph Michalski (Planetary Science Insitute, UK)at the 43rd Lunar and Planetary Science Conference, The Woodlands, Texas)
As data and analysis has accumulated from not just Mars Curiosity Rover but rather from all the active Mars missions, the models and hypotheses describing the structure and morphology on Mars have become more complex. This model and explanation of how Mount Sharp built up over billions of years uses deposition of ice and dust. Click to enlarge and review the five steps to making a layer cake mountain – Mount Sharp. (Credit:  Illustration presented by Paul Niles (NASA Johnson Space Center) and Joseph Michalski (Planetary Science Insitute, UK)at the 43rd Lunar and Planetary Science Conference, The Woodlands, Texas)

Mars scientists believe that Gale crater after its creation was completely filled with sedimentary material from a series of huge floods passing over the surrounding terrain or by dust and ice deposits such as happened at the Martian polar caps. The deposition over 2 billion years left a series sedimentary layers that filled the crater.

Following the deposition of the layers, there was a long period of erosion which has finally led to the condition of the crater today. The erosion by some combination of aeolean (wind) forces and water (additional flooding), scooped out the huge crater, re-exposing most of the original depth. However, covering the original central peak are many sedimentary layers of debris. Gale crater’s original central peak actually remains completely hidden and covered by sedimentation. This is what has attracted scientists with Curiosity to the base of Mount Sharp.

The Mars Trek of NASA's Curiosity Rover from Bradbury Station (landing site) up to Martian Sol 743. The announcement that Curiosity has reached the base of Mt. Sharp is Sol 746. (Credit: NASA/JPL)
The trek of NASA’s Curiosity Rover from Bradbury Station (landing site, Sol 1) up to Martian Sol 743. The announcement that Curiosity had reached the base of Mt. Sharp is Sol 746. On Martian Sol 675, the Rover took its first step beyond its landing ellipse. (Credit: NASA/JPL)

Within the sedimentary layers covering Mount Sharp, there is a sequential record of the events that laid down the layers. Embedded in each of those layers is a record of the environmental conditions on Mars going back over 2 billion years. At the base are the oldest sedimentary layers and as Curiosity climbs the flanks of the mountain, it will step forward in time. The advanced instrumentation residing on and inside Curiosity will be able to analyze each layer for material content and also determine its age. Each layer and its age will reveal information such as how much water was present, whether the water was alkaline or acidic, if there is any organic compounds. The discovery of organic compounds on Mount Sharp could be, well, Earth shaking. There are organic compounds and then there are organic compounds that are linked to life and this search for organics is of very high importance to this mission.

Already, over the two year trek, Curiosity has seen numerous signs of the flow of water and sedimentation. At its first major waypoint, Glenelg, Curiosity stepped into an area called Yellow Knife Bay that showed numerous signs of past water. There were veins of magnesium  salt deposits embedded in the soil, sedimentation and even conglomerate rock such as that found in river beds.

In late 2013, wear and tear accelerated on Curiosity's wheels, the result of crossing boulder-strewn terrain. Clearly signs of punctures, tears and dents are seen in the photo taken by Curiosity performing a self-inspection. While it certainly raised alarm, mission planners remain confident that it can be handled and will not limit the duration of the mission.(Credits: NASA/JPL)
In late 2013, wear and tear accelerated on Curiosity’s wheels, the result of crossing boulder-strewn terrain. Clearly signs of punctures, tears and dents are seen in the photo taken by Curiosity performing a self-inspection. While it certainly raised alarm, mission planners remain confident that it can be handled and will not limit the duration of the mission.(Credits: NASA/JPL)

There is another side to the terrain that Curiosity is traversing. The crater floor, essentially a flood plain has been particularly hard on the mobility system of Curiosity. This is to say that the sharp rocks it continues to encounter under foot are taking a toll on the wheels. Curiosity is now being operated in reverse in order to reduced the impact forces on its wheels.

Furthermore, while scientists are helping to choose the path of the rover, the Curiosity drivers who must assess the field ahead must find paths with fewer sharp rocks in order to slow the damage being done. The Mars Curiosity team is concerned but remain confident that the mobility system will be capable of surviving the ten year life span of the rover’s power supply. So, the momentous occasion is hardly a time to pause and reflect, the trek moves upward, northward to see what the layers on Mount Sharp will reveal.

There are competing hypotheses on how Mount Sharp evolved. Here are two worthy web pages with additional reading.

Crater mound a prize and puzzle for Mars rover“, Eric Hand, August 3, 2012

Big pile in Gale Crater“, R. Burnham, March 30, 2012

For further reading –

NASA’s Mars Curiosity Rover Arrives at Martian Mountain“, September 11, 2014

Recommended gateway to the Mars Curiosity web pages – a Curiosity Slide Show

Recent Universe Today articles on Curiosity: Sept 9,  Sept. 4,  Aug 23, Aug 20, Aug 16

Astronaut Snaps Amazing Picture Of His Crewmates Returning To Earth

The Expedition 40 crew returns to Earth, as seen from the International Space Station Sept. 10, 2014. Credit: Reid Wiseman / Twitter

Wow! See that bright streak in the photo above? That’s a shot of the Expedition 40 crew making a flawless return from the International Space Station yesterday (Sept. 10) … a shot taken from space itself.

“Our view of the picture perfect reentry of TMA-12M,” wrote Expedition 41 astronaut Reid Wiseman, who just hours before bid farewell to Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos). The re-entry was in fact so perfect that TV cameras caught the parachute immediately after deployment, which doesn’t always happen.

As you can see in the video replay below, the Soyuz made a bulls-eye landing near Dzhezkazgan, Kazakhstan at 10:23 p.m. EDT (2:23 a.m. UTC). There are now only three people tending to the space station until the rest of the Expedition 41 crew launches, which is expected to happen Sept. 25.

Assembly Complete for NASA’s First Orion Crew Module Blasting off Dec. 2014

NASA’s first completed Orion crew module sits atop its service module at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014. The crew and service module will be transferred soon to another facility for fueling. Credit: NASA/Rad Sinyak

This past weekend technicians completed assembly of NASA’s first Orion crew module at the agency’s Neil Armstrong Operations and Checkout (O & C) Facility at the Kennedy Space Center (KSC) in Florida, signifying a major milestone in the vehicles transition from fabrication to full scale launch operations.

Orion is NASA’s next generation human rated vehicle and is scheduled to launch on its maiden uncrewed mission dubbed Exploration Flight Test-1 (EFT-1) in December 2014. It replaces the now retired space shuttle orbiters.

The black Orion crew module (CM) sits stacked atop the white service module (SM) in the O & C high bay photos, shown above and below.

The black area is comprised of the thermal insulating back shell tiles. The back shell and heat shield protect the capsule from the scorching heat of re-entry into the Earth’s atmosphere at excruciating temperatures reaching over 4000 degrees Fahrenheit (2200 C) – detailed in my story here.

Technicians and engineers from prime contractor Lockheed Martin subsequently covered the crew module with protective foil. The CM/SM stack was then lifted and moved for the installation of the Orion-to-stage adapter ring that will mate them to the booster rocket.

Lifting and stacking NASA’s first completed Orion crew and service modules at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014.   Credit: NASA/Rad Sinyak
Lifting and stacking NASA’s first completed Orion crew and service modules at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014. Credit: NASA/Rad Sinyak

At the conclusion of the EFT-1 flight, the detached Orion capsule plunges back and hits the Earth’s atmosphere at 20,000 MPH (32,000 kilometers per hour).

“That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told me during an interview at KSC.

The next step in Orion’s multi stage journey to the launch pad follows later this week with transport of the CM/SM stack to another KSC facility named the Payload Hazardous Servicing Facility (PHFS) for fueling, before moving again for the installation of the launch abort system (LAS) in yet another KSC facility.

Stacking NASA’s first completed Orion crew and service modules at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014.   Credit: NASA/Rad Sinyak
Stacking NASA’s first completed Orion crew and service modules at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014. Credit: NASA/Rad Sinyak

The Orion EFT-1 test flight is slated to soar to space atop the mammoth, triple barreled United Launch Alliance (ULA) Delta IV Heavy rocket from Cape Canaveral, Florida, on Dec. 4, 2014 .

The state-of-the-art Orion spacecraft will carry America’s astronauts on voyages venturing farther into deep space than ever before – past the Moon to Asteroids, Mars and Beyond!

NASA’s first completed Orion crew and service modules being moved inside the High Bay at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014.   Credit: NASA/Rad Sinyak
NASA’s first completed Orion crew and service modules being moved inside the High Bay at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014. Credit: NASA/Rad Sinyak

NASA is simultaneously developing a monster heavy lift rocket known as the Space Launch System or SLS, that will eventually launch Orion on its deep space missions.

The maiden SLS/Orion launch on the Exploration Mission-1 (EM-1) unmanned test flight is now scheduled for no later than November 2018 – read my story here.

SLS will be the world’s most powerful rocket ever built.

The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

Orion service module assembly in the Operations and Checkout facility at Kennedy Space Center - now renamed in honor of Neil Armstrong.   Credit: Ken Kremer/kenkremer.com
Orion service module assembly in the Operations and Checkout facility at Kennedy Space Center – now renamed in honor of Neil Armstrong. Credit: Ken Kremer/kenkremer.com

The EFT-1 mission will test the systems critical for EM-1 and future human missions to deep space that follow.

The Orion EFT-1 capsule has come a long way over the past two years of assembly.

The bare bones, welded shell structure of the Orion crew cabin arrived at KSC in Florida from NASA’s Michoud facility in New Orleans in June 2012 and was officially unveiled at a KSC welcoming ceremony on 2 July 2012, attended by this author.

“Everyone is very excited to be working on the Orion. We have a lot of work to do. It’s a marathon not a sprint to build and test the vehicle,” said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during an exclusive 2012 interview with Universe Today inside the Orion clean room at KSC.

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida.  Service module at bottom.  Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Service module at bottom. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.

Ken Kremer

Orion crew module back shell tiles and panels inside the Neil Armstrong Operations and Checkout Building high bay at the Kennedy Space Center in Florida.   Credit: Ken Kremer - kenkremer.com
Orion crew module back shell tiles and panels inside the Neil Armstrong Operations and Checkout Building high bay at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com
Orion EFT-1 capsule under construction inside the Structural Assembly Jig at the Operations and Checkout Building (O & C) at the Kennedy Space Center (KSC); Jules Schneider, Orion Project Manager for Lockheed Martin and Ken Kremer, Universe Today.  Credit: Ken Kremer - kenkremer.com
Orion EFT-1 capsule under construction inside the Structural Assembly Jig at the Operations and Checkout Building (O & C) at the Kennedy Space Center (KSC); Jules Schneider, Orion Project Manager for Lockheed Martin and Ken Kremer, Universe Today. Credit: Ken Kremer – kenkremer.com