Mars Panorama Shows Off Rocks, Mountains and Curiosity Rover

A portion of a panorama based on pictures taken by the Mars Curiosity rover on Sol 739 in September 2014. Credit: Andrew Bodrov/NASA/JPL-Caltech

Hey, it’s Mars in your browser! Panning around this scene that the Mars Curiosity rover captured earlier this month is the next best thing to being on the Red Planet.

Close by the rover’s is the terrain that proved far more challenging for mission planners than anticipated, and further in the distance you can see mountains — including the ultimate destination for this mission, Mount Sharp (Aeolis Mons).

The panorama, done by Andrew Bodrov, is based on pictures that Curiosity took during Sol 739 of its mission on Mars, which began in August 2012.

The Curiosity mission recently drew the concern of a NASA Senior Review panel, which said that the mission may be moving too fast to Mount Sharp and sacrificing looking carefully at other sites that could preserve signs of habitability.

The rover recently passed over a drilling target due to the nature of the rocks it was looking at, which were loose, unstable and at risk to the rover if they moved in an unpredictable way.

Rosetta Captures Breathtaking Comet Views Advancing Landing Site Selection

Jagged cliffs and prominent boulders are visible in this image taken by OSIRIS on 5 September 2014 from a distance of 62 kilometres from comet 67P/Churyumov-Gerasimenko. The left part of the image shows a side view of the comet’s 'body', while the right is the back of its 'head'. One pixel corresponds to 1.1 metres. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

The Rosetta spacecraft is capturing ever more breathtaking views of its target comet that are significantly advancing landing site selection for the history making touchdown on the bizarre worlds nucleus by the attached Philae lander.

Today ESA released the latest high resolution images of Comet 67P/Churyumov-Gerasimenko taken by the OSIRIS science camera on Sept. 5, and is shown above.

Jagged cliffs and prominent boulders are clearly visible in unprecedented detail on the head and body of Comet 67P displaying a multitude of different terrains in the new image taken from a distance of 62 kilometers.

Meanwhile the Rosetta science team is using the OSIRIS and navcam camera images to create a preliminary map of the comets surface. The map is color coded to divide the comet into several distinct morphological regions.

Several morphologically different regions are indicated in this preliminary map, which is oriented with the comet’s ‘body’ in the foreground and the ‘head’ in the background.  Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Several morphologically different regions are indicated in this preliminary map, which is oriented with the comet’s ‘body’ in the foreground and the ‘head’ in the background.
Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

“With various areas dominated by cliffs, depressions, craters, boulders or even parallel grooves, 67P/C-G displays a multitude of different terrains. Some areas even appear to have been shaped by the comet’s activity,” the Rosetta team said in the release.

The images were also shown at today’s scientific presentations at a special Rosetta research session at the 2014 European Planetary Science Congress being held in Cascais, Portugal.

The scientists are striving to meld all the imagery and data gathered from Rosetta’s 11 instruments in order to elucidate the composition and evolution of the different regions.

The mapping data is also being used to narrow the ‘Top 5’ Philae landing site candidates down to a primary and backup choice.

The final landing site selections will be made at a meeting being held this weekend on 13 and 14 September 2014 between the Rosetta Lander Team and the Rosetta orbiter team at CNES in Toulouse, France.

Four-image photo mosaic comprising images taken by Rosetta's navigation camera on 2 September 2014 from a distance of 56 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been contrast enhanced to bring out details of the coma, especially of jets of dust emanating from the neck region. Credits: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer - kenkremer.com
Four-image photo mosaic comprising images taken by Rosetta’s navigation camera on 2 September 2014 from a distance of 56 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been contrast enhanced to bring out details of the coma, especially of jets of dust emanating from the neck region.
Credits: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer – kenkremer.com

Philae’s history making landing on comet 67P is currently scheduled for around Nov. 11, 2014, and will be entirely automatic. The 100 kg lander is equipped with 10 science instruments.

The three-legged lander will fire two harpoons and use ice screws to anchor itself to the 4 kilometer (2.5 mile) wide comet’s surface. Philae will collect stereo and panoramic images and also drill 23 centimeters into and sample its incredibly varied surface.

Four-image photo mosaic comprising images taken by Rosetta's navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been rotated and contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo
Four-image photo mosaic comprising images taken by Rosetta’s navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been rotated and contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo

The comet nucleus is about 4 km (2.5 mi) across.

The team is in a race against time to select a suitable landing zone soon since the comet warms up and the surface becomes ever more active as it swings in closer to the sun and makes the landing ever more hazardous.

Stay tuned here for Ken’s continuing Rosetta, Earth and Planetary science and human spaceflight news.

Ken Kremer

Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander.   The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Enlarged insets below highlight 5 landing zones.  Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA  Processing: Marco Di Lorenzo/Ken Kremer
Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander. The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Enlarged insets below highlight 5 landing zones. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Processing: Marco Di Lorenzo/Ken Kremer

MAVEN Mars Orbiter Ideally Poised to Uniquely Map Comet Siding Spring Composition – Exclusive Interview with Principal Investigator Bruce Jakosky

MAVEN is NASA’s next Mars Orbiter and will investigate how the planet lost most of its atmosphere and water over time. Credit: NASA

MAVEN to conduct up close observations of Comet Siding Spring during Oct. 2014
MAVEN is NASA’s next Mars Orbiter and will investigate how the planet lost most of its atmosphere and water over time. Credit: NASA
Story updated[/caption]

NASA’s MAVEN Mars Orbiter is “ideally” instrumented to uniquely “map the composition of Comet Siding Spring” in great detail when it streaks past the Red Planet during an extremely close flyby on Oct. 19, 2014 – thereby providing a totally “unexpected science opportunity … and a before and after look at Mars atmosphere,” Prof. Bruce Jakosky, MAVEN’s Principal Investigator of CU-Boulder, CO, told Universe Today in an exclusive interview.

The probes state-of-the-art ultraviolet spectrograph will be the key instrument making the one-of-a-kind compositional observations of this Oort cloud comet making its first passage through the inner solar system on its millions year orbital journey.

“MAVEN’s Imaging Ultraviolet Spectrograph (IUVS) is the ideal way to observe the comet coma and tail,” Jakosky explained.

“The IUVS can do spectroscopy that will allow derivation of compositional information.”

“It will do imaging of the entire coma and tail, allowing mapping of composition.”

Comet: Siding Spring. The images above show -- before and after filtering -- comet C/2013 A1, also known as Siding Spring, as captured by Wide Field Camera 3 on NASA's Hubble Space Telescope.  Image Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute)
Comet: Siding Spring
The images above show — before and after filtering — comet C/2013 A1, also known as Siding Spring, as captured by Wide Field Camera 3 on NASA’s Hubble Space Telescope. Image Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute)

Moreover the UV spectrometer is the only one of its kind amongst NASA’s trio of Martian orbiters making its investigations completely unique.

“IUVS is the only ultraviolet spectrometer that will be observing the comet close up, and that gives the detailed compositional information,” Jakosky elaborated

And MAVEN, or the Mars Atmosphere and Volatile Evolution, is arriving just in the nick of time to fortuitously capture this fantastically rich data set of a pristine remnant from the solar system’s formation.

The spacecraft reaches Mars in less than 15 days. It will rendezvous with the Red Planet on Sept. 21 after a 10 month interplanetary journey from Earth.

Furthermore, since MAVEN’s purpose is the first ever detailed study of Mars upper atmosphere, it will get a before and after look at atmospheric changes.

“We’ll take advantage of this unexpected science opportunity to make observations both of the comet and of the Mars upper atmosphere before and after the comet passage – to look for any changes,” Jakosky stated.

How do MAVEN’s observations compare to NASA’s other orbiters Mars Odyssey (MO) and Mars Reconnaissance Orbiter (MRO), I asked?

“The data from the other orbiters will be complementary to the data from IUVS.”

“Visible light imaging from the other orbiters provides data on the structure of dust in the coma and tail. And infrared imaging provides information on the dust size distribution.”

IUVS is one of MAVENS’s nine science sensors in three instrument suites targeted to study why and exactly when did Mars undergo the radical climatic transformation.

How long will MAVEN make observations of Comet C/2013 A1 Siding Spring?

“We’ll be using IUVS to look at the comet itself, about 2 days before comet nucleus closest approach.”

“In addition, for about two days before and two days after nucleus closest approach, we’ll be using one of our “canned” sequences to observe the upper atmosphere and solar-wind interactions.”

“This will give us a detailed look at the upper atmosphere both before and after the comet, allowing us to look for differences.”

Describe the risk that Comet Siding Spring poses to MAVEN, and the timing?

“We have the encounter with Comet Siding Spring about 2/3 of the way through the commissioning phase we call transition.”

“We think that the risk to the spacecraft from comet dust is minimal, but we’ll be taking steps to reduce the risk even further so that we can move on toward our science mission.”

“Throughout this entire period, though, spacecraft and instrument health and safety come first.”

This graphic depicts the orbit of comet C/2013 A1 Siding Spring as it swings around the sun in 2014. On Oct. 19, 2014 the comet will have a very close pass at Mars. Its nucleus will miss Mars by about 82,000 miles (132,000 kilometers).   Credit: NASA/JPL-Caltech
This graphic depicts the orbit of comet C/2013 A1 Siding Spring as it swings around the sun in 2014. On Oct. 19, 2014 the comet will have a very close pass at Mars. Its nucleus will miss Mars by about 82,000 miles (132,000 kilometers). Credit: NASA/JPL-Caltech

What’s your overall hope and expectation from the comet encounter?

“Together [with the other orbiters], I’m hoping it will all provide quite a data set!

“From Mars, the comet truly will fill the sky!” Jakosky gushed.

The comet’s nucleus will fly by Mars at a distance of only about 82,000 miles (132,000 kilometers) at 2:28 p.m. ET (18:28 GMT) on Oct. 19, 2014. That’s barely 1/3 the distance from the Earth to the Moon.

What’s the spacecraft status today?

“Everything is on track.”

Maven spacecraft trajectory to Mars. Credit: NASA
Maven spacecraft trajectory to Mars on Sept. 4, 2014. Credit: NASA

The $671 Million MAVEN spacecraft’s goal is to study Mars upper atmosphere to explore how the Red Planet lost most of its atmosphere and water over billions of years and the transition from its ancient, water-covered past, to the cold, dry, dusty world that it has become today.

MAVEN soared to space over nine months ago on Nov. 18, 2013 following a flawless blastoff from Cape Canaveral Air Force Station’s Space Launch Complex 41 atop a powerful Atlas V rocket and thus began a 10 month interplanetary voyage from Earth to the Red Planet.

It is streaking to Mars along with ISRO’s MOM orbiter, which arrives a few days later on September 24, 2014.

So far it has traveled 95% of the distance to the Red Planet, amounting to over 678,070,879 km (421,332,902 mi).

As of Sept. 4, MAVEN was 205,304,736 km (127,570,449 miles) from Earth and 4,705,429 km (2,923,818 mi) from Mars. Its Earth-centered velocity is 27.95 km/s (17.37 mi/s or 62,532 mph) and Sun-centered velocity is 22.29 km/s (13.58 mi/s or 48,892 mph) as it moves on its heliocentric arc around the Sun.

One-way light time from MAVEN to Earth is 11 minutes and 24 seconds.

MAVEN is NASA’s next Mars orbiter and launched on Nov. 18, 2014 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars and observing Comet Siding Spring. Credit: Ken Kremer/kenkremer.com
MAVEN is NASA’s next Mars orbiter and launched on Nov. 18, 2014 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars and observing Comet Siding Spring. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing MAVEN, MOM, Rosetta, Opportunity, Curiosity, Mars rover and more Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on Sept. 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com
NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on Sept. 27, 2013. MAVEN launched to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com

Space Station’s Robonaut 2 Is Getting More Astronaut-Like By The Day

Robonaut 2
An example of some of the tasks Robonaut 2 can perform. Credit: NASA

NASA’s large space station robot now has legs and a plan to (eventually) head outside to do spacewalks, to replace some of the more routine tasks taken on by astronauts. Robonaut 2 has actually been on the International Space Station since 2011, but only received the extra appendages in the past few days.

The robot is capable of flipping switches, moving covers and with the legs, clamping on to spots around the station. Check out the videos below to see some of the stuff that it is already capable of. It’s both creepy and amazing to watch.

Spotted: Asteroids ‘Smashing Themselves To Smithereens’ 1,200 Light-Years Away

An artist's conception of what scientists think was an asteroid collision near star NGC 2547-1D8, which is 1,200 light-years from Earth. An influx of dust was noticed from Earth between August 2012 and 2013. Credit: NASA/JPL-Caltech

When a crop of dust spread forth from the star NGC 2547-1D8 during 2012 observations, scientists quickly sprang into action. What they believe happened was two huge asteroids 1,200 light-years away crashed into each other. What’s more, researchers say that what they witnessed could herald planetary formation similar to what created our own solar system.

“We think two big asteroids crashed into each other, creating a huge cloud of grains the size of very fine sand, which are now smashing themselves into smithereens and slowly leaking away from the star,” stated lead author and graduate student Huan Meng of the University of Arizona.

The debris was tracked with NASA’s Spitzer Space Telescope, and represents the first time scientists have picked up information before and after an event such as this.

Scientists did see dust variability from the system before, which prompted them to put it under close scrutiny — sometimes looking at it every day. The biggest surge took place across five months in 2012. Observations were interrupted because the star was too close to our Sun’s field of view; when it was safe to return, that’s when scientists spotted all the dust.

The Spitzer Space Telescope.  Credit:  NASA
The Spitzer Space Telescope. Credit: NASA

“We not only witnessed what appears to be the wreckage of a huge smashup, but have been able to track how it is changing — the signal is fading as the cloud destroys itself by grinding its grains down so they escape from the star,” stated Kate Su of the University of Arizona, who is a co-author on the study.

It is believed that planets, moons and other objects in our solar system coalesced over millions of years from collisions such as this. The far-away collision did take place in a spot where planets could form some day, NASA noted, which makes it all the more interesting to scientists.

A paper on the research is available in the journal Science. Observations on the system continue.

Source: NASA

Memory Problems On Mars Will Force Opportunity Rover Reformat From Earth

A raw shot from the front hazcam of NASA's Opportunity rover taken on Sol 3757, on Aug. 19, 2014. Credit: NASA/JPL-Caltech

NASA’s Opportunity rover, which has been roaming Mars for more than 10 Earth years, requires a flash memory reformat to keep doing science on the Red Planet, the agency wrote in an update Aug. 29 along with its intentions for making that possible quickly.

“Flash-memory induced resets have increased in occurrence, preventing meaningful science until this problem can be corrected,” NASA said on the Opportunity website. “The project is developing plans to reformat the flash file system to correct the problem.”

The agency has experience in doing this procedure as they successfully ran it on the twin Spirit rover five years ago, before the rover got stuck in sand and died. A separate update on the Jet Propulsion Laboratory website noted there have been more than a dozen incidents on Opportunity in the past month, and it takes a day or two to recover from each one.

Flash memory, the update added, is useful because data remains on the rover even if it is turned off. But after 10 years of using the cells on Opportunity’s flash memory, the agency suspects that these cells are starting to wear out. “Reformatting clears the memory while identifying bad cells and flagging them to be avoided,” the update read.

The crest of Endeavour Crater is at the horizon of this picture taken by the Opportunity rover from Mars on Sol 3,749 (Aug. 10, 2014). Credit: NASA/JPL-Caltech
The crest of Endeavour Crater is at the horizon of this picture taken by the Opportunity rover from Mars on Sol 3,749 (Aug. 10, 2014). Credit: NASA/JPL-Caltech

The procedure will take place early this month. Meanwhile, NASA is flushing the flash memory by sending the data back to Earth — as well as switching the rover to a mode where it doesn’t use flash memory. Just in case the rover resets itself during the procedure, NASA is also changing up Opportunity’s communications to send data more slowly (which makes the rover more resilient to problems, the agency said.)

“The flash reformatting is a low-risk process, as critical sequences and flight software are stored elsewhere in other non-volatile memory on the rover,” stated JPL’s John Callas, project manager for NASA’s Mars Exploration Rover Project.

Opportunity is currently circling the ring of Endeavour crater and is in otherwise excellent health, NASA said. The rover has driven 25.28 miles (40.69 kilometers) since arriving on Mars in January 2004 for what was supposed to be a 90-day mission.

Here’s Your Chance To Send A Message To An Asteroid

NASA is planning to launch a time capsule aboard the Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer (OSIRIS-REx) spacecraft, which is expected to head to an asteroid in 2016. Credit: Heather Roper/University of Arizona/OSIRIS-REx

What’s your vision for solar system exploration? And how cool would it be to send it literally into the solar system?

NASA is offering its fans the chance to compose a tweet or send a picture showing how we can step out into the cosmos. The best ones among these will be placed aboard a spacecraft that will zoom to an asteroid in 2016.

The “time capsule” will be placed aboard the Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer (OSIRIS-REx). If all goes to plan, it will meet with the asteroid Bennu in 2019, pick up a sample and then return it to Earth in 2023.

And by the way, you can also send your name to Bennu via this form (a joint initiative of NASA and the Planetary Society.) Seems a good chance to get your name off of Earth, until the time when space travel becomes affordable to ordinary citizens.

For more details about the tweets and images time capsule, visit this NASA website. Make sure to submit your message before Sept. 30.

Source: NASA

Hunting for “Minimoons” Orbiting Earth

Credit: Used with permission

It’s an engaging thought experiment.

What if Earth had multiple moons?  Our world has one large natural satellite, just over a quarter the diameter, 1/50th the volume, and less than 1/80th the mass of our fair world. In fact, the Earth-Moon system has sometimes been referred to as a “binary planet,” and our Moon stands as the largest natural satellite of any planet — that is, if you subscribe to bouncing Pluto and Charon out of “the club” — in contrast to its primary of any moon in our solar system.

But what if we had two or more moons? And are there any tiny “moonlet” candidates lurking out there, awaiting discovery and perhaps exploration?

While historical searches for tiny secondary moons of the Earth — and even “moons of our Moon” — have turned up naught, the Earth does indeed capture asteroids as temporary moons and eject them back into solar orbit from time to time.

Now, a recent paper out of the University of Hawaii written in partnership with the SETI Institute and the Department of Physics at the University of Helsinki has looked at the possible prospects for the population of captured Near-Earth asteroids, and the feasibility of detecting these with existing and future systems about to come online.

The hunt for spurious moons of the Earth has a fascinating and largely untold history. Arthur Upgren’s outstanding book Many Skies devotes an entire chapter to the possible ramifications of an Earth with multiple moons… sure, more moons would be a bane for astrophotographers, but hey, eclipses and transits of the Sun would be more common, a definite plus.

In 1846, astronomer Frederic Petit announced the discovery of a tiny Earth-orbiting moon from Toulouse observatory. “Petit’s Moon” was said to orbit the Earth once every 2 hours and 44 minutes and reach an apogee of 3,570 kilometres and a perigee of just 11.4 (!) kilometres, placing it well inside the Earth’s atmosphere on closest approach.

Credit:
The announcement (in German) of the discovery of Waltemath’s Moon. “Ein zweiter Mond der Erde” translates into “a second Earth moon.” Credit: Wikimedia Commons image in the public domain.

A slightly more believable claim came from astronomer Georg Waltemath in 1898 for a moon 700 kilometres in size — he claimed it was, of course, a very dark body and not very easily visible — orbiting the Earth at about 2.5 times the distance of the Moon. Waltemath even made an announcement of his discovery, and claimed to have found a third moon of the Earth for good measure.

And a much more dubious claim came from the astrologer Walter Gornold in 1918 of a secondary moon, dubbed Lilith. Apparently, then (as now) astrologers never actually bothered to look at the skies…

Turns out, our large Moon makes a pretty good goaltender, ejecting —and sometimes taking a beating from — any tiny second moon hopeful. Of course, you can’t blame those astronomers of yore entirely. Though none of these spurious moons survived the test of observational verification, these discoveries often stemmed from early efforts to accurately predict the precise motion of the Moon. Astronomers therefore felt they were on the right track, looking for an unseen perturbing body.

Fast forward to the 21st century. Quasi-moons of the Earth, such as 3753 Cruithne, have horseshoe-shaped orbits and seem to approach and recede from our planet as both orbit the Sun. Similar quasi-moons of Venus have also been discovered.

And even returning space junk can masquerade as a moon of Earth, as was the case of J002E3 and 2010 QW1, which turned out to be boosters from Apollo 12 and the Chinese Chang’e-2 missions, respectively.

What modern researchers are looking for are termed Temporarily Captured Orbiters, or TCOs. The study notes that perhaps an average of a few dozen asteroids up to 1 to 2 metres in size are in a “steady state” population that may be orbiting the Earth at any given time on an enter, orbit, and eject sort of conveyor belt. Estimates suggest that a large 5 to 10 metre asteroid is captured every decade so, and a 100 metre or larger TCO is temporarily captured by the Earth every 100,000 years. The study also estimates that about 1% occasionally hit the Earth. And though it wasn’t a TCO, the ability to detect an Earthbound asteroid before impact was demonstrated in 2008 with the discovery of 2008 TC3, less than 24 hours prior to striking in the Sudanese desert.

“There are currently no projects that are solely looking for minimoons at this time,” lead researcher Bryce Bolin of the University of Hawaii told Universe Today. “There are several surveys, such as PanSTARRS, the Catalina Sky Survey and the Palomar Transit Factory that are currently in operation that have the capability of discovering minimoons.”

Credit:
The convoluted orbit of 2006 RH120 around the Earth-Moon system, to date the only confirmed TCO. Credit: Wikimedia Commons/Ohms law.

We’re getting better at this hazardous asteroid detection business, that’s for sure. The researchers modeled paths and orbits for TCOs in the study, and also noted that collections may “clump” at the anti-sunward L2 opposition point, and the L1 sunward point, with smaller distributions located at the east and west quadrature points located 90 degrees on either side of the Earth. The L2 point in particular might make a good place to start the search.

Ironically, systems such as LINEAR and PanSTARRS may have already captured a TCO in their data and disregarded them in their quest for traditional Near Earth Objects.

“Surveys such as PanSTARRS/LINEAR utilize a filtration process to remove artifacts and false positives in the data as it gets processed through the data pipeline,” Researcher Bryce Bolin told Universe Today. “A common method is to apply a rate of motion cut… this is effective in eliminating many artifacts (which) tend to have a rate of motion as measured by the pipeline which is very high.”

Such systems aren’t always looking for fast movers near Earth orbit that can produce a trail or streak which may reassemble space junk or become lost in the gaps over multiple detection devices. And speaking of which, researchers note that Arecibo and the U.S. Air Force’s Space Surveillance System may be recruited in this effort as well. To date, one definite TCO, named 2006 RH120 has been documented orbiting and departing from the vicinity of the Earth, and such worldlets might make enticing targets for future manned missions due to their relatively low Delta-V for arrival and departure.

Future asteroid mission. Credit: NASA
An artist’s concept of a possible future asteroid mission near Earth. Credit: NASA.

PanSTARRS-2 saw first light last year in 2013, and is slated to go online for full science operations by the end of 2014. Eventually, the PanSTARRS system will employ four telescopes, and may find a bevy of TCOs. The researchers estimate in the study that a telescope such as Subaru stands a 90% chance of nabbing a TCO after only five nights of dedicated sweeps of the sky.

Finally, the study also notes that evidence miniature moonlets orbiting Earth may lurk in the all sky data gathered by automated cameras and amateur observers during meteor showers.  Of course, we’re talking tiny, dust-to-pebble sized evidence, but there’s no lower limit as to what constitutes a moon…

And so, although moons such a “Lilith” and “Petit’s Moon” belong to the annuals of astronomical history, temporary “minimoons” of Earth are modern realities. And as events such as Chelyabinsk remind us, it’s always worthwhile to hunt for hazardous NEOs (and TCOs) that may be headed our way. Hey, to paraphrase science fiction author Larry Niven: unlike the dinosaurs, we have a space program!

Read more about the fascinating history of moons that never were and more in the classic book The Haunted Observatory.

Rosetta Now Up Close to Comet 67P – Snapping Mapping Mosaics for Momentous Philae Landing

Four-image photo mosaic comprising images taken by Rosetta's navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo

Four-image photo mosaic comprising images taken by Rosetta’s navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been contrast enhanced to bring out details. The comet nucleus is about 4 km across.
Credits: ESA/Rosetta/NAVCAM/Ken Kremer – kenkremer.com/Marco Di Lorenzo
See rotated version and 4 individual images below[/caption]

ESA’s Rosetta orbiter has now moved in so close to its comet quarry that the primordial body overwhelms the screen, and thus its snapping mapping mosaics to capture the complete scene of the bizarre world so it can find the most suitable spot for the momentous Philae landing – upcoming in mid-November.

In fact Rosetta has ‘drawn and quartered’ the comet to collect high resolution views of Comet 67P/Churyumov-Gerasimenko with the navcam camera on Sunday, August 31.

The navcam quartet has just been posted to the Rosetta portal today, Monday, September 1, 2014. ESA invited readers to create global photo mosaics.

See above our four frame photo mosaic of navcam images Rosetta took on Aug. 31.

The purpose of taking the images as well as spectra and physical measurements up close is to find a ‘technically feasible’ Philae touchdown site that is both safe and scientifically interesting.

Below is the Rosetta teams four image navcam montage, arranged individually in a 2 x 2 raster.

Four-image montage comprising images taken by Rosetta's navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM
Four-image montage comprising images taken by Rosetta’s navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM

The navcam image raster sequence was taken from a distance of 61 km from comet 67P.

“Roughly one quarter of the comet is seen in the corner of each of the four images. The four images are taken over an approximately 20 minute period, meaning that there is some motion of the spacecraft and rotation of the comet between the images. As a result, making a clean mosaic out of the four images is not simple,” according to ESA’s Rosetta blog.

As I reported here last week, the ‘Top 5’ landing site candidates have been chosen for the Rosetta orbiters piggybacked Philae lander for humankind’s first attempt to land on a comet.

The potential touchdown sites were announced on Aug. 25, based on a thorough analysis of high resolution measurements collected by ESA’s Rosetta spacecraft over the prior weeks since it arrived at the pockmarked Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014.

See our montage of the ‘Top 5’ landing sites below.

Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander.   The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Enlarged insets below highlight 5 landing zones.  Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA  Processing: Marco Di Lorenzo/Ken Kremer
Five candidate sites were identified on Comet 67P/Churyumov-Gerasimenko for Rosetta’s Philae lander. The approximate locations of the five regions are marked on these OSIRIS narrow-angle camera images taken on 16 August 2014 from a distance of about 100 km. Enlarged insets below highlight 5 landing zones. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Processing: Marco Di Lorenzo/Ken Kremer

Rosetta is a mission of many firsts, including history’s first ever attempt to orbit a comet for long term study.

Philae’s history making landing on comet 67P is currently scheduled for around Nov. 11, 2014, and will be entirely automatic. The 100 kg lander is equipped with 10 science instruments.

The new images released today are the best taken so far by the Navcam camera. The probes OSIRIS science camera are even more detailed, and will hopefully be released by ESA soon!

“This is the first time landing sites on a comet have been considered,” said Stephan Ulamec, Lander Manager at DLR (German Aerospace Center), in an ESA statement.

Since rendezvousing with the comet after a decade long chase of over 6.4 billion kilometers (4 Billion miles), a top priority task for the science and engineering team leading Rosetta has been “Finding a landing strip” for the Philae comet lander.

“The clock is ticking’ to select a suitable landing zone soon since the comet warms up and the surface becomes ever more active as it swings in closer to the sun and makes the landing ever more hazardous.

This image of comet 67P/Churyumov-Gerasimenko shows the diversity of surface structures on the comet's nucleus. It was taken by the Rosetta spacecraft's OSIRIS narrow-angle camera on August 7, 2014. At the time, the spacecraft was 65 miles (104 kilometers) away from the 2.5 mile (4 kilometer) wide nucleus.  Credit:  ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA/Enhanced processing Marco Di Lorenzo/Ken Kremer
This image of comet 67P/Churyumov-Gerasimenko shows the diversity of surface structures on the comet’s nucleus. It was taken by the Rosetta spacecraft’s OSIRIS narrow-angle camera on August 7, 2014. At the time, the spacecraft was 65 miles (104 kilometers) away from the 2.5 mile (4 kilometer) wide nucleus. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA/Enhanced processing Marco Di Lorenzo/Ken Kremer

The three-legged lander will fire two harpoons and use ice screws to anchor itself to the 4 kilometer (2.5 mile) wide comet’s surface. Philae will collect stereo and panoramic images and also drill 23 centimeters into and sample its incredibly varied surface.

Stay tuned here for Ken’s continuing Rosetta, Earth and Planetary science and human spaceflight news.

Ken Kremer

Four-image photo mosaic comprising images taken by Rosetta's navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been rotated and contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo
Four-image photo mosaic comprising images taken by Rosetta’s navigation camera on 31 August 2014 from a distance of 61 km from comet 67P/Churyumov-Gerasimenko. The mosaic has been rotated and contrast enhanced to bring out details. The comet nucleus is about 4 km across. Credits: ESA/Rosetta/NAVCAM/Ken Kremer/Marco Di Lorenzo
ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale.  Credit: ESA/Rosetta/NAVCAM - Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com
ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale. Credit: ESA/Rosetta/NAVCAM – Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com

Read my Rosetta series here:

5 Landing Site Candidates Selected for Rosetta’s Historic Philae Comet Lander

Rosetta Moving Closer to Comet 67P Hunting for Philae Landing Site

What’s Ahead for Rosetta – ‘Finding a Landing Strip’ on Bizarre Comet 67P/Churyumov-Gerasimenko

Rosetta Arrives at ‘Scientific Disneyland’ for Ambitious Study of Comet 67P/Churyumov-Gerasimenko after 10 Year Voyage

Rosetta on Final Approach to Historic Comet Rendezvous – Watch Live Here

Rosetta Probe Swoops Closer to Comet Destination than ISS is to Earth and Reveals Exquisite Views

Rosetta Orbiter less than 500 Kilometers from Comet 67P Following Penultimate Trajectory Burn

Rosetta Closing in on Comet 67P/Churyumov-Gerasimenko after Decade Long Chase

25 Days from Mars – India’s MOM is in Good Health!

India’s Mars Orbiter Mission (MOM) marked 100 days out from Mars on June 16, 2014 and the Mars Orbit Insertion engine firing when it arrives at the Red Planet on September 24, 2014 after its 10 month interplanetary journey. Credit ISRO

Now less than 25 days from her history making rendezvous with the Red Planet and the critical Mars Orbital Insertion (MOI) engine firing, India’s MOM is in good health!

The Mars Orbiter Mission, or MOM, counts as India’s first interplanetary voyager and the nation’s first manmade object to orbit the 4th rock from our Sun on September 24, 2014 – if all goes well.

MOM was designed and developed by the Indian Space Research Organization (ISRO).

“MOM and its payloads are in good health,” reports ISRO in a new update.

As of today, Aug. 31, MOM has traveled a total distance of over 622 million km in its heliocentric arc towards Mars, says ISRO. It is currently 199 million km away from Earth.

25 Days to Mars Orbit Insertion engine firing for ISRO’s Mars Orbiter Mission (MOM) on Sept. 24, 2014. Prelaunch images show MOM undergoing solar panel illumination tests during 2013 prior to launch.  Credit: ISRO
25 Days to Mars Orbit Insertion engine firing for ISRO’s Mars Orbiter Mission (MOM) on Sept. 24, 2014. Prelaunch images show MOM undergoing solar panel illumination tests during 2013 prior to launch. Credit: ISRO

Altogether the probe has completed over 90% of the journey to Mars.

In the past week alone it has traveled over 20 million km and is over 10 million km further from Earth. It is now less than 9 million kilometers away from Mars

Round trip radio signals communicating with MOM now take some 21 minutes.

The 1,350 kilogram (2,980 pound) probe has been streaking through space for nearly ten months.

To remain healthy and accomplish her science mission ahead, the spacecraft must fire the 440 Newton liquid fueled main engine to brake into orbit around the Red Planet on September 24, 2014 – where she will study the atmosphere and sniff for signals of methane.

The do or die MOI burn on September 24, 2014 places MOM into an 377 km x 80,000 km elliptical orbit around Mars.

Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) has moved the spacecraft in the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO
Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) moved the spacecraft into the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO

MOM was launched on Nov. 5, 2013 from India’s spaceport at the Satish Dhawan Space Centre, Sriharikota, atop the nations indigenous four stage Polar Satellite Launch Vehicle (PSLV) which placed the probe into its initial Earth parking orbit.

MOM is streaking to Mars along with NASA’s MAVEN orbiter, which arrives a few days earlier on September 21, 2014.

Although MOM’s main objective is a demonstration of technological capabilities, she will also study the planet’s atmosphere and surface.

The probe is equipped with five indigenous instruments to conduct meaningful science – including a tri color imager (MCC) and a methane gas sniffer (MSM) to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.

Stay tuned here for Ken’s continuing MOM, MAVEN, Rosetta, Opportunity, Curiosity, Mars rover and more Earth and planetary science and human spaceflight news.

Ken Kremer

Clouds on the ground !  The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Clouds on the ground ! The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO