Captain HiRISE, Space Detective Beams Martian History Album To Earth

A large crater in Meridiani Planum on Mars, about 20 kilometers (12.4 miles) northwest of Opportunity's landing site and 42 kilometers (24.6 miles) northwest of Endeavour Crater, where Opportunity is right now. The crater is older than Victoria Crater (another target of Opportunity's), which is clear because it is more filled in with sediments and eroded. Credit: NASA/JPL/University of Arizona

Mars, that ever-changing and beautiful Red Planet practically next door to us, is one of the most well-studied places humans have in the universe. We’ve sent spacecraft there for about 50 years. Yet there’s still a lot of mysteries out there.

NASA’s Mars Reconnaissance Orbiter is among the investigating spacecraft in the area checking out the planet’s past and looking for any interesting clues to tell us more about how Mars — and the Earth, and the solar system, and planets in general — formed. Mars had a wetter past (as the rovers have showed us), but where the water went and why its atmosphere are so thin are among the things scientists are trying to understand.

Luckily for us, the catalog of the University of Arizona’s High Resolution Imaging Science Experiment (HiRISE) is easily available online for all of us to marvel at. Here are just some of the pictures sent back from across the solar system. To see more, look below and check out this HiRISE web page.

This image from Mars shows a variety of sandy features: ripples, transverse aeolian ridges (which are larger and lighter), dunes (dark) and draa (very large bedforms that are greater than 1 kilometer or 0.62 miles). Credit: NASA/JPL/University of Arizona
This image from Mars shows a variety of sandy features: ripples, transverse aeolian ridges (which are larger and lighter), dunes (dark) and draa (very large bedforms that are greater than 1 kilometer or 0.62 miles). Credit: NASA/JPL/University of Arizona
A Martian alluvial fan on the floor of a 60-kilometer (38-mile) crater near the equator of Mars. Scientists commonly study these features to learn more about the Red Planet's wet past. Credit: NASA/JPL/University of Arizona
A Martian alluvial fan on the floor of a 60-kilometer (38-mile) crater near the equator of Mars. Scientists commonly study these features to learn more about the Red Planet’s wet past. Credit: NASA/JPL/University of Arizona
Shiny dunes on Mars taken by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Shiny dunes on Mars taken by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Dunes migrating across the surface of Mars. Picture taken by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Dunes migrating across the surface of Mars. Picture taken by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona

Meet SpaceX’s New Manned Dragon: Cool Animation Shows ‘How It Works’

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX


Caption: Animation of SpaceX Dragon V2 astronaut transporter. Credit: SpaceX

Would you like to meet and fly aboard SpaceX’s next generation manned Dragon V2 spacecraft?

Well hop aboard for a ride, take a seat and prepare for the thrill of a lifetime to the International Space Station (ISS) and back.

Watch the cool animation above to see exactly ‘How it Works!’

Now you can experience the opening salvo in the exciting new chapter of ‘Commercial Human Spaceflight.’

The commercial crew effort is led by a trio of private American aerospace company’s (SpaceX, Boeing & Sierra Nevada) in an intimate partnership with NASA to get American’s back in space on American rockets from American Soil – rather than being totally dependent on Russian rocket technology and Soyuz capsules for astronaut rides to orbit.

“We need to have our own capability to get our crews to space. Commercial crew is really, really, really important,” NASA Administrator Charles Bolden told me in an exclusive interview.

Billionaire entrepreneur and SpaceX CEO Elon Musk let the curtain to the future drop on Thursday, May 29 to reveal his company’s new manned Dragon V2 astronaut transporter for all the world to see during a live streaming webcast direct from SpaceX’s state-of-the-art design and manufacturing facility and Headquarters in Hawthorne, CA.

And with a flair worthy of the premiere of a blockbuster Hollywood Science Fiction movie he unveiled the gum-dropped shaped Dragon V2 – and the lively animation. Although its not known if he’ll provide the crews with musical entertainment during the trip too.

As you’ll quickly notice watching the animation, the sleek styled V2 manned Dragon is a far cry ahead of the current V1 cargo Dragon.

“We wanted to take a big step in spacecraft technology. It is a big leap forward in technology and takes things to the next level,” said Musk.

The top of the V2 is equipped to open up and expose a docking probe so it’s able to dock autonomously at the ISS – and at the same port as NASA’s now retired space shuttle orbiters.

‘Catching a Dragon by the tail’- with the Canadian built robot arm as the stations astronauts like to say and berthing it at an Earth-facing port on the Harmony module, will be a thing of the past.

“No robotic arm necessary!” Musk explained.

SpaceX Dragon V2 docks at the ISS. Credit: SpaceX
SpaceX Dragon V2 docks at the ISS. Credit: SpaceX

And for departure there’s another big difference – powerful SuperDraco landing rockets for pinpoint touchdown accuracy rather than an ocean splashdown.

The animation shows a thrilling land landing back at the Kennedy Space Center launch base.

“An important characteristic of that is its ability to land anywhere on land, propulsively. It can land anywhere on Earth with the accuracy of a helicopter,” Musk said.

“I think that’s what a spaceship should be able to do.”

Musk and SpaceX are not alone aiming to get Americans back to space.

Boeing and Sierra Nevada are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s Commercial Crew Program in a public/private partnership.

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

Read my earlier “Dragon V2” unveiling event articles – here, here and here.

Enjoy!

SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014.  Credit:  Robert Fisher/America Space
SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014. Credit: Robert Fisher/America Space

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Stunning Snapshots from Space Courtesy of Reid Wiseman

Sunset-lit clouds swirl over Perth on May 31, 2014 (Reid Wiseman/NASA)

On May 28 the crew of Expedition 40/41 launched from Baikonur Cosmodrome, their Soyuz TMA-13M arriving at the International Space Station about eight and a half hours later. And it didn’t take much time for the newly-arrived NASA astronaut Reid Wiseman to start taking photos from his new vantage point in orbit and sharing them on Twitter for the rest of us to enjoy! Here are some of Reid’s latest images from the edge of space, looking down on the beautiful blue world we call home.

One of Reid Wiseman's first few tweets from space
One of Reid Wiseman’s first few tweets from space!
A "beautiful pass over the Falkland Islands" (aka Malvinas) on May 30 with docked Soyuz in the foreground
A “beautiful pass over the Falkland Islands” (aka Islas Malvinas) on May 30 with docked Soyuz in the foreground
Reid confirmed that the Earth is indeed round with a 12mm lens on June 1
Reid confirmed that the Earth is indeed round with a 12mm lens on June 1
Looking down on glacial flows near the Strait of Magellan
Looking down on glacial flows near the Strait of Magellan
Pink clouds at sunset may look beautiful from Earth but "not as pretty here" according to Reid Wiseman
Pink clouds at sunset may look beautiful from Earth but “not as pretty here” according to Reid Wiseman
May 31 was a "nice day to hit the beach" in Santos, Brazil
May 31 was a “nice day to hit the beach” in Santos, Brazil
"Our planet is almost all ocean and so pretty," Tweeted Reid on June 1
“Our planet is almost all ocean and so pretty,” Tweeted Reid on June 1
A "Soyuz selfie" in the cupola with Expedition 40/41 crew members Alexander Gerst, Oleg Artemyev, and Reid Wiseman, shared on June 2
A “Soyuz group selfie” in the cupola with Expedition 40/41 crew members Alexander Gerst, Oleg Artemyev, and Reid Wiseman, shared on June 2
"Chile just left me speechless," Reid tweeted on June 4
“Chile just left me speechless,” Reid tweeted on June 4
"Clouds turn 2D into 3D" tweeted Reid on Thursday, June 5
“Clouds turn 2D into 3D” tweeted Reid on Thursday, June 5
Just a week into his stay aboard the ISS microgravity is already second nature!
Just a week into his stay aboard the ISS microgravity is already second nature!

See these photos (and more as they are taken!) on Reid Wiseman’s Twitter feed, and learn more about Expedition 40 here.

Photos courtesy Reid Wiseman/NASA.

Asteroid 2014 KH39 Zips Just 1.1 LD from Earth – Watch it LIVE June 3

Near Earth asteroid 2014 KH39, discovered on May 24, 2014, is the faint 'star' in the crosshairs in this photo made on May 31. The telescope tracked the asteroid, so the stars are trailed. The streak is a satellite. Credit: Gianluca Masi

Got any plans Tuesday? Good. Keep them but know this. That day around 3 p.m. CDT (20:00 UT) asteroid 2014 KH39 will silently zip by Earth at a distance of just 272,460 miles (438,480 km) or 1.14 LDs (lunar distance). Close as flybys go but not quite a record breaker. The hefty space rock will buzz across the constellation Cepheus at nearly 25,000 mph (11 km/sec) near the Little Dipper at the time.

Observers in central Europe and Africa will have  dark skies for the event, however at magnitude +17 the asteroid will be too faint to spot in amateur telescopes. No worries. The Virtual Telescope Project, run by astrophysicist Gianluca Masi, will be up and running with real-time images and live commentary during the flyby. The webcast begins at 2:45 p.m. CDT June 3.

2014 KH39 was discovered on May 24 by Richard Kowalski of the Catalina Sky Survey. (Kowalski is the same astronomer who discovered asteroid 2008 TC3, the small asteroid that impacted in Sudan in 2008). Further observations by the CSS and additional telescopes like Pan-STARRS 1 in Hawaii nailed down its orbit as an Earth-approacher with an approximate size of 72 feet (22 meters). That’s a tad larger than the 65-foot Chelyabinsk asteroid that exploded into thousands of small stony meteorites over Russia in Feb. 2013.

Diagram showing the orbit of 2014 KH39. Yellow shows the portion of its orbit above the plane of Earth’s orbit (grey disk); blue is below the plane. When farthest, the asteroid travels beyond Mars into the asteroid belt. It passes closest to Earth around 3 p.m. CDT June 3. Credit: IAU Minor Planet Center
Diagram showing the orbit of 2014 KH39. Yellow shows the portion of its orbit above the plane of Earth’s orbit (grey disk); blue is below the plane. When farthest, the asteroid travels beyond Mars into the asteroid belt. It passes closest to Earth around 3 p.m. CDT June 3. Credit: IAU Minor Planet Center

Since this asteroid will safely miss Earth we have nothing to fear from the flyby. I only report it here to point out how common near-Earth asteroids are and how remarkable it is that we can spot them at all. While we’re a long ways from finding and tracking all potentially hazardous asteroids, dedicated sky surveys turn up dozens of close-approaches every year. On the heels of 2014 KH39, the Earth-approaching asteroid 2014 HQ124 will pass 3.3 LDs away 5 days later on June 8. With a diameter estimated at more than 2,100 feet (650-m) it’s expected to become as bright as magnitude +13.7. Southern hemisphere observers might track it with 8-inch and larger telescopes as its speeds across Horologium and Eridanus the morning before closest approach.

The chart shows the cumulative known total of near-Earth asteroids (NEAs) vs. time. The blue area shows all NEAs while the red shows those roughly 1 km and larger. Thanks to many surveys underway as well as help from space probes like the Wide-Field Infrared Explorer (WISE), discovery totals have been ramping up. Credit: NASA
The chart shows the cumulative known total of near-Earth asteroids (NEAs) vs. time. The blue area shows all NEAs while the red shows those roughly 1 km and larger. Thanks to many ground-based surveys underway as well as space probes like the Wide-field Infrared Survey Explorer (WISE), discovery totals have ramped up in recent years. There are probably millions of NEOs smaller than 140 meters waiting to be discovered. Credit: NASA

Perusing the current list of upcoming asteroid approaches, these two will be our closest visitors at least through early August. Near-Earth objects (NEOs) are comets and asteroids whose original orbits have been re-worked by the gravity of the planets – primarily Jupiter – into new orbits that allow them to approach relatively close to Earth. The ones we’re most concerned about are a subset called Potentially Hazardous Asteroids or PHAs, defined as objects that approach within 4.65 million miles (7.48 million km) of Earth and span 500 feet (150-m) across or larger. The key word here is ‘potential’. PHAs won’t necessarily hit the Earth – they only have the potential to do so over the vastness of time. On the bright side, PHAs make excellent targets for sampling missions.

Most near-Earth asteroids fall into three classes named after the first asteroid discovered in that class. Apollo and Aten asteroids cross Earth's orbit; Amors orbit just beyond Earth but cross Mars' orbit. Credit: Wikipedia
Most near-Earth asteroids fall into three classes named after the first asteroid discovered in that class. Apollo and Aten asteroids cross Earth’s orbit; Amors orbit just beyond Earth but cross Mars’ orbit. Credit: Wikipedia

As of May 30, 2014, 11,107 near-Earth objects have been discovered with 860 having a diameter of 1 km or larger. 1,481 of them have been further classified as potentially hazardous. NASA’s Near-Earth Object Program estimates that over 90% of NEOs larger than 1 km (the most potentially lethal to the planet) have been discovered and they’re now working to find 90% of those larger than 459 feet (140 meters) across. Little by little we’re getting to better know the neighborhood.

The probability that either 2014 KH39 and 2014 HQ124 will hit Earth on this round is zero. Nor do we know of any asteroid in the near future on a collision course with the planet. Enjoy the day.

World’s Largest Heat Shield Attached to NASA’s Orion Crew Capsule for Crucial Fall 2014 Test Flight

Lockheed Martin and NASA engineers are installing the largest heat shield ever built onto the Orion EFT-1 spacecraft’s crew module at the Kennedy Space Center. Liftoff is slated for late Fall 2014. Credit: Lockheed Martin

Lockheed Martin and NASA engineers are installing the largest heat shield ever built onto the Orion EFT-1 spacecraft’s crew module at the Kennedy Space Center. Liftoff is slated for late Fall 2014. Credit: Lockheed Martin
Story updated[/caption]

In a key milestone, technicians at the Kennedy Space Center (KSC) in Florida have attached the world’s largest heat shield to a pathfinding version of NASA’s Orion crew capsule edging ever closer to its inaugural unmanned test flight later this Fall on a crucial mission dubbed Exploration Flight Test-1 (EFT-1).

One of the primary goals of NASA’s eagerly anticipated Orion EFT-1 uncrewed test flight is to test the efficacy of the heat shield in protecting the vehicle – and future human astronauts – from excruciating temperatures reaching 4000 degrees Fahrenheit (2200 C) during scorching re-entry heating.

A trio of parachutes will then unfurl to slow Orion down for a splashdown in the Pacific Ocean.

Orion is NASA’s next generation human rated vehicle now under development to replace the now retired space shuttle. The state-of-the-art spacecraft will carry America’s astronauts on voyages venturing farther into deep space than ever before – past the Moon to Asteroids, Mars and Beyond!

“The Orion heat shield is the largest of its kind ever built. Its wider than the Apollo and Mars Science Lab heat shields,” Todd Sullivan told Universe Today. Sullivan is the heat shield senior manager at Lockheed Martin, Orion’s prime contractor.

The heat shield measures 16.5 feet (5 m) in diameter.

Lockheed Martin and NASA technicians mated the heat shield to the bottom of the capsule during assembly work inside the Operations and Checkout High Bay facility at KSC.

“Holes were drilled into the heat shield from the inside to the outside at the structural attached points at the underside of the crew module,” said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during a recent exclusive interview by Universe Today inside the Orion clean room at KSC.

“Then its opened up from the outside and bolted in place underneath. Closeout plugs made of Avcoat are then installed to close it up and seal the gaps,” Schneider explained.

The heat shield is constructed from a single seamless piece of Avcoat ablator, that was applied by engineers at Textron Defense System near Boston, Mass.

“They applied the Avcoat ablater material to the outside. That’s what protects the spacecraft from the heat of reentry,” Sullivan explained.

The ablative material will wear away as it heats up during the capsules atmospheric re-entry thereby preventing the 4000 degree F heat from being transferred to the rest of the capsule and saving it and the human crew from utter destruction.

Coming together! Orion's heat shield and crew module in position for mating operations at NASA KSC. Credit: NASA
Coming together! Orion’s heat shield and crew module in position for mating operations at NASA KSC. Credit: NASA

Orion EFT-1 is slated to launch in December 2014 atop the mammoth, triple barreled United Launch Alliance (ULA) Delta IV Heavy rocket, currently the most powerful booster in America’s fleet.

The Delta IV Heavy is the only rocket with sufficient thrust to launch the Orion EFT-1 capsule and its attached upper stage to its intended orbit of 3600 miles altitude above Earth – about 15 times higher than the International Space Station (ISS) and farther than any human spacecraft has journeyed in 40 years.

At the conclusion of the two-orbit, four- hour EFT-1 flight, the detached Orion capsule plunges back and re-enters the Earth’s atmosphere at 20,000 MPH (32,000 kilometers per hour).

“That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told me during an interview at KSC.

“The big reason to get to those high speeds during EFT-1 is to be able to test out the thermal protection system, and the heat shield is the biggest part of that.”

“Numerous sensors and instrumentation have been specially installed on the EFT-1 heat shield and the back shell tiles to collect measurements of things like temperatures, pressures and stresses during the extreme conditions of atmospheric reentry,” Wilson explained.

Orion heat shield attached to the bottom of the capsule by engineers during assembly work inside the  Operations and Checkout High Bay facility at KSC.  Credit: NASA
Orion heat shield attached to the bottom of the capsule by engineers during assembly work inside the Operations and Checkout High Bay facility at KSC. Credit: NASA

The heat shield arrived at KSC in December 2013 loaded inside NASA’s Super Guppy aircraft while I was onsite. Read my story – here.

The data gathered during the unmanned EFT-1 flight will aid in confirming. or refuting, design decisions and computer models as the program moves forward to the first flight atop NASA’s mammoth SLS booster in late 2017 on the EM-1 mission and more human crewed missions thereafter.

Orion EFT-1 heat shield is off loaded from NASA’s Super Guppy aircraft after transport from Manchester, N.H., and arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com
Orion EFT-1 heat shield is off loaded from NASA’s Super Guppy aircraft after transport from Manchester, N.H., and arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com

Recently, the EFT-1 launch was postponed three months from its long planned slot in mid-September to December 2014 when NASA was ordered to make way for the accelerated launch of recently declassified US Air Force Space Surveillance satellites that were given a higher priority.

The covert Geosynchronous Space Situational Awareness Program, or GSSAP, satellites were only unveiled in Feb. 2014 during a speech by General William Shelton, commander of the US Air Force Space Command.

Despite the EFT-1 launch postponement, Kennedy Space Center Director Bob Cabana said technicians are pressing forward and continue to work around the clock at KSC in order to still be ready in time to launch by the original launch window that opens in mid- September 2014.

“The contractor teams are working to get the Orion spacecraft done on time for the December 2017 launch,” said Cabana.

“They are working seven days a week in the Operations and Checkout High Bay facility to get the vehicle ready to roll out for the EFT-1 mission and be mounted on top of the Delta IV Heavy.”

“I can assure you the Orion will be ready to go on time, as soon as we get our opportunity to launch that vehicle on its first flight test and that is pretty darn amazing.”

“Our plan is to have the Orion spacecraft ready because we want to get EFT-1 out so we can start getting the hardware in for Exploration Mission-1 (EM-1) and start processing for that vehicle that will launch on the Space Launch System (SLS) rocket in 2017,” Cabana told me

Concurrently, new American-made private crewed spaceships are under development by SpaceX, Boeing and Sierra Nevada – with funding from NASA’s Commercial Crew Program (CCP) – to restore US capability to ferry US astronauts to the International Space Station (ISS) and back to Earth by late 2017.

Read my exclusive new interview with NASA Administrator Charles Bolden explaining the importance of getting Commercial Crew online – here.

Two of the three United Launch Alliance (ULA) Delta IV heavy boosters for NASA’s upcoming Orion Exploration Flight Test-1 (EFT-1) mission were unveiled during a media event inside the Horizontal Integration Facility at Launch Complex 37 at Cape Canaveral Air Force Station in Florida.  Kennedy Space Center Director Bob Cabana spoke to the media along with NASA Associate Administrator Robert Lightfoot and Tony Taliancich, ULA director of East Coast Launch Operations. Credit: Ken Kremer- kenkremer.com
Two of the three United Launch Alliance (ULA) Delta IV heavy boosters for NASA’s upcoming Orion Exploration Flight Test-1 (EFT-1) mission were unveiled during a media event inside the Horizontal Integration Facility at Launch Complex 37 at Cape Canaveral Air Force Station in Florida. Kennedy Space Center Director Bob Cabana spoke to the media along with NASA Associate Administrator Robert Lightfoot and Tony Taliancich, ULA director of East Coast Launch Operations. Credit: Ken Kremer- kenkremer.com

Stay tuned here for Ken’s continuing Orion, Boeing, SpaceX, Orbital Sciences, commercial space, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken KremerDelta 4 Heavy rocket and super secret US spy satellite roar off Pad 37 on June 29, 2012 from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com Delta 4 Heavy rocket and super secret US spy satellite roar off Pad 37 on June 29, 2012 from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com[/caption]

Why Commercial Crew is Critical for Future Exploration: One-on-One Interview with NASA Administrator Charles Bolden

NASA Administrator Charles Bolden discusses future of NASA human spaceflight at NASA Headquarters, Washington, DC. Credit: Ken Kremer- kenkremer.com

NASA Administrator Charles Bolden discusses future of NASA human spaceflight during exploration forum at NASA Headquarters, Washington, DC. Credit: Ken Kremer- kenkremer.com
Story updated[/caption]

NASA GODDARD SPACE FLIGHT CENTER, MD – Why is NASA’s Commercial Crew Program to develop private human transport ships to low Earth orbit important?

That’s the question I posed to NASA Administrator Charles Bolden when we met for an exclusive interview at NASA Goddard.

The Commercial Crew Program (CCP) is the critical enabler “for establishing a viable orbital infrastructure” in the 2020s, NASA Administrator Charles Bolden told Universe Today in an exclusive one-on-one interview at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Bolden, a Space Shuttle commander who flew four time to space, says NASA wants one of the new American-made private crewed spaceships under development by SpaceX, Boeing and Sierra Nevada – with NASA funding – to be ready to ferry US astronauts to the International Space Station (ISS) and back to Earth by late 2017. Flights for other commercial orbital space ventures would follow later and into the next decade.

Since the shutdown of NASA’s space shuttle program following the final flight by STS-135 in 2011 (commanded by Chris Ferguson), America has been 100% dependent on the Russians to fly our astronauts to the space station and back.

“Commercial crew is critical. We need to have our own capability to get our crews to space,” Bolden told me, during a visit to the NASA Goddard cleanroom with the agency’s groundbreaking Magnetospheric Multiscale (MMS) science probes.

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017.  Ferguson is now  Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding.  Credit: NASA/Boeing
Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

Administrator Bolden foresees a huge shift in how the US will conduct space operations in low earth orbit (LEO) just a decade from now. The future LEO architecture will be dominated not by NASA and the ISS but rather by commercial entrepreneurs and endeavors in the 2020s.

“There are going to be other commercial stations or other laboratories,” Bolden excitedly told me.

And the cash strapped Commercial Crew effort to build new astronaut transporters is the absolutely essential enabler to get that exploration task done, he says.

“Commercial Crew is critical to establishing the low Earth orbit infrastructure that is required for exploration.”

“We have got to have a way to get our crews to space.”

“You know people try to separate stuff that NASA does into nice little neat packages. But it’s not that way anymore.”

Bolden and NASA are already looking beyond the ISS in planning how to use the new commercial crew spaceships being developed by SpaceX, Boeing and Sierra Nevada in a public- partnership with NASA’s Commercial Crew Program.

“Everything we do [at NASA] is integrated. We have to have commercial crew [for] a viable low Earth orbit infrastructure – a place where we can do testing – for example with what’s going on at the ISS today.”

“And in the out years you are going to be doing the same type of work.”

“But it’s not going to be on the ISS.”

“After 2024 or maybe 2028, if we extend it again, you are going to see the people on commercial vehicles. There are going to be other stations or other laboratories.”

“But there won’t be NASA operated laboratories. They will be commercially viable and operating laboratories.”

SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014.  Credit:  Robert Fisher/America Space
SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014. Credit: Robert Fisher/America Space

Private NewSpace ventures represent a revolutionary departure from current space exploration thinking. But none of these revolutionary commercial operations will happen if we don’t have reliable and cost effective human access to orbit from American soil with American rockets on American spaceships.

“We need to have our own capability to get our crews to space – first of all. That’s why commercial crew is really, really, really important,” Bolden emphasized.

The ongoing crises in Ukraine makes development of a new US crew transporter to end our total reliance on Russian spaceships even more urgent.

“Right now we use the Russian Soyuz. It is a very reliable way to get our crews to space. Our partnership with Roscosmos is as strong as it’s ever been.”

“So we just keep watching what’s going on in other places in the world, but we continue to work with Roscosmos the way we always have,” Bolden stated.

The latest example is this week’s successful launch of the new three man Russian-US- German Expedition 40 crew to the ISS on a Soyuz.

Of course, the speed at which the US develops the private human spaceships is totally dependent on the funding level for the Commercial Crew program.

Unfortunately, progress in getting the space taxis actually built and flying has been significantly slowed because the Obama Administration CCP funding requests for the past few years of roughly about $800 million have been cut in half by a reluctant US Congress. Thus forcing NASA to delay the first manned orbital test flights by at least 18 months from 2015 to 2017.

And every forced postponement to CCP costs US taxpayers another $70 million payment per crew seat to the Russians. As a result of the congressional CCP cuts more than 1 Billion US Dollars have been shipped to Russia instead of on building our own US crew transports – leaving American aerospace workers unemployed and American manufacturing facilities shuttered.

I asked Bolden to assess NASA’s new funding request for the coming fiscal year 2015 currently working its way through Congress.

“It’s looking better. It’s never good. But now it’s looking much better,” Bolden replied.

“If you look at the House markup that’s a very positive indication that the budget for commercial crew is going to be pretty good.”

The pace of progress in getting our crews back to orbit basically can be summed up in a nutshell.

“No Bucks, No Buck Rogers,” Chris Ferguson, who now leads Boeing’s crew effort, told me in a separate exclusive interview for Universe Today.

NASA Administrator Charles Bolden and Ken Kremer (Universe Today) inspect NASA’s Magnetospheric Multiscale (MMS) mated quartet of stacked spacecraft at the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden and Ken Kremer (Universe Today) inspect NASA’s Magnetospheric Multiscale (MMS) mated quartet of stacked spacecraft at the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

The Boeing CST-100, Sierra Nevada Dream Chaser and SpaceX Dragon ‘space taxis’ are all vying for funding in the next round of contracts to be awarded by NASA around late summer 2014 known as Commercial Crew Transportation Capability (CCtCap).

All three company’s have been making excellent progress in meeting their NASA mandated milestones in the current contract period known as Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.

Altogether they have received more than $1 Billion in NASA funding under the current CCiCAP initiative. Boeing and SpaceX were awarded contracts worth $460 million and $440 million, respectively. Sierra Nevada was given what amounts to half an award worth $212.5 million.

SpaceX CEO Elon Musk just publicly unveiled his manned Dragon V2 spaceship on May 29.

Boeing’s Chris Ferguson told me that assembly of the CST-100 test article starts soon at the Kennedy Space Center.

NASA officials have told me that one or more of the three competitors will be chosen later this year in the next phase under CCtCAP to build the next generation spaceship to ferry astronauts to and from the ISS by 2017.

In order to certify the fitness and safety of the new crew transporters, the CCtCAP contracts will specify that “each awardee conduct at least one crewed flight test to verify their spacecraft can dock to the space station and all its systems perform as expected.”

Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS
Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS

Concurrently, NASA is developing the manned Orion crew vehicle for deep space exploration. The state-of-the-art capsule will carry astronauts back to the Moon and beyond on journeys to Asteroids and one day to Mars.

“We need to have our own capability to get our crews to space. Commercial Crew is critical to establishing the low Earth orbit infrastructure that is required for exploration,” that’s the bottom line message from my interview with NASA Administrator Bolden.

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com

Elon Musk Premiers SpaceX Manned Dragon V2 Astronaut Transporter – 1st Photos

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX

Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX
Story updated[/caption]

SpaceX CEO and billionaire founder Elon Musk gushed with excitement as he counted down the seconds and literally pulled the curtain away to unveil his company’s new manned Dragon V2 astronaut transporter for all the world to see during a live streaming webcast shortly after 10 p.m. EST (7 p.m. PST, 0200 GMT) this evening, Thursday, May 29, from SpaceX HQ.

The first photos from the event are collected herein. And I’ll be adding more and updating this story as they flow in.

Musk’s Dragon V2 unveiling was brimming with excitement like a blockbuster Hollywood Science Fiction movie premiere – with lights, cameras and action.

But this was the real deal and hopefully gets America moving again back to thrilling, real space adventures in orbit and beyond – reaching for the stars.

“The Dragon V2 is a 21st century spacecraft,” Musk announced to a wildly cheering crowd. “As it should be.”

“We wanted to take a big step in spacecraft technology. It is a big leap forward in technology and takes things to the next level.”

“An important characteristic of that is its ability to land anywhere on land, propulsively. It can land anywhere on Earth with the accuracy of a helicopter.”

“I think that’s what a spaceship should be able to do.”

“It will be capable of carrying seven astronauts. And it will be fully reusable.”

Dragon V2, SpaceX's next generation spacecraft designed to carry astronauts to space is unveiled by CEO Elon Musk on May 29, 2014. Credit: SpaceX
Dragon V2, SpaceX’s next generation spacecraft designed to carry astronauts to space is unveiled by CEO Elon Musk on May 29, 2014. Credit: SpaceX

The sleek gleaming spaceship looks decidedly different from the current cargo Dragon V1.

Read my “Dragon V2” preview articles leading up to the May 29 event – here and here.

Elon Musk seated inside Dragon V2 explaining consoles at unveiling on May 29, 2014  Credit: SpaceX
Elon Musk seated inside Dragon V2 explaining consoles at unveiling on May 29, 2014. Credit: SpaceX

This new manrated Dragon is aimed at restoring US human launch access to space from American soil by carrying crews of up to seven US astronauts to low Earth orbit and eventually perhaps Mars – starting as soon as 2017.

Musk unveiled the gumdrop-shaped Dragon V2, or Version 2, to an overflow crowd of employees and media at SpaceX headquarters and design and manufacturing facility in Hawthorne, CA.

SpaceX Dragon V2 next generation astronaut spacecraft unveiled May 29, 2014.  Credit: NASA
SpaceX Dragon V2 next generation astronaut spacecraft unveiled May 29, 2014. Credit: NASA

But Musk and SpaceX are not alone in striving to get Americans back to space.

Two other US aerospace firms – Boeing and Sierra Nevada – are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s Commercial Crew Program in a public/private partnership.

Altogether they have received more than $1 Billion in NASA funding.

SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014.  Credit:  Robert Fisher/America Space
SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014. Credit: Robert Fisher/America Space

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

The ‘Dragon V2’ is an upgraded, man-rated version of the unmanned Dragon cargo spaceship that just completed its third operational resupply mission to the ISS with a successful splashdown in the Pacific Ocean on May 18.

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX Dragon V2 next generation astronaut spacecraft unveiled May 29, 2014.  Credit: NASA
SpaceX Dragon V2 next generation astronaut spacecraft unveiled May 29, 2014. Credit: NASA

Watch Live Here – SpaceX Founder Elon Musk Unveils Manned “Dragon V2” Spaceship on May 29

SpaceX Dragon cargo freighter berthed to the International Space Station during recently concluded SpaceX-3 mission in May 2014. An upgraded, manrated version will carry US astronauts to space in the next two to three years. Credit: NASA



SpaceX
is hosting a worldwide live premiere event tonight, May 29, unmasking the veil from the company’s commercial “Dragon V2” manned spaceship, the next step in US human spaceflight at 7 p.m. PST (10 p.m. EST, 0200 GMT).

And none other than billionaire entrepreneur Elon Musk, SpaceX CEO and founder, will be the master of ceremonies for the live show direct from SpaceX’s state-of-the-art design and manufacturing facility and Headquarters in Hawthorne, CA!

You can watch LIVE here – via the embedded player above.

Alternatively you can watch courtesy of a streaming webcast courtesy of SpaceX at: www.spacex.com/webcast

Read my “Dragon V2” or “Dragon Version 2” preview story – here.

Musk’s (and NASA’s) goal is to restore America’s capability to launch US astronauts to low Earth orbit and the International Space Station (ISS) by 2017 and to put an end total US dependency on Russia’s Soyuz for astronaut rides to orbit and back.

“SpaceX’s new Dragon V2 spacecraft is a next generation spacecraft designed to carry astronauts into space,” says SpaceX.

“Cover drops on May 29. Actual flight design hardware of crew Dragon, not a mockup,” Musk tweeted recently to build anticipation.

A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com

Dragon is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the ISS by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

The gumdrop-shaped ‘Dragon V2’ is an upgraded, man rated version of the unmanned Dragon spaceship that will carry a mix of cargo and up to a seven crewmembers to the International Space Station (ISS).

The cargo Dragon just successfully completed its third operational resupply mission to the ISS with a successful splashdown in the Pacific Ocean on May 18.

Dragon V2 – SpaceX’s next generation spacecraft designed to carry astronauts to space.  Credit: SpaceX
Dragon V2 – SpaceX’s next generation spacecraft designed to carry astronauts to space. Credit: SpaceX

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX founder and CEO Elon Musk briefs reporters including Ken Kremer/Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including ken Kremer/Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

spaceX May 29 event

How Much Can Titan’s Sunsets Teach Us About Alien Planets?

An illustration of a Titanic lake by Ron Miller. All rights reserved. Used with permission.

Titan — that smoggy, orangy moon circling Saturn — is of great interest to exobiologists because its chemistry could be good for life. It has a thick atmosphere of nitrogen and methane and likely has lakes filled with liquid hydrocarbons, and scientists believe there is enough light filtering down into the atmosphere to drive chemical reactions.

It turns out the moon could also be a good analog to help us understand the atmospheres of exoplanets far beyond our solar system. From looking at sunsets on the moon, scientists led by NASA believe that a thick atmosphere could influence how we perceive a planet from afar.

First, a bit of information about how scientists learn about planet atmospheres in the first place. When a distant planet passes in front of its parent star, the light from the star passes through the atmosphere and gets distorted.

The spectra that telescopes pick up can then tell scientists information about what the atmosphere is made of, what temperature it is, and how it is structured. (This science, it should be noted, is in its very early stages and works best on very large exoplanets that are relatively close to Earth, since the planets are so small and far away.)

“Previously, it was unclear exactly how hazes were affecting observations of transiting exoplanets,” stated Tyler Robinson, a postdoctoral research fellow at NASA’s Ames Research Center who led the research. “So we turned to Titan, a hazy world in our own solar system that has been extensively studied by Cassini.”

Titan's surface is almost completely hidden from view by its thick orange "smog" (NASA/JPL-Caltech/SSI. Composite by J. Major)
Titan’s surface is almost completely hidden from view by its thick orange “smog” (NASA/JPL-Caltech/SSI. Composite by J. Major)

To do this, Robinson’s team used data from the Cassini spacecraft during four solar occultations, or times when Titan passed in front of our own sun from the perspective of the spacecraft. They found out that the moon’s hazy atmosphere makes it difficult to figure out what is in its spectra.

“The observations might be able to glean information only from a planet’s upper atmosphere,” NASA stated. “On Titan, that corresponds to about 90 to 190 miles (150 to 300 kilometers) above the moon’s surface, high above the bulk of its dense and complex atmosphere.”

The haze is even more powerful in the shorter (bluer) wavelengths of light, which contradicts previous studies assuming that all wavelengths of light would have the same distortions. Models of exoplanet atmospheres usually have simplified spectra because hazes are complex to model, requiring a lot of computer power.

Researchers hope to take these observations of Titan and then use them to better inform how exoplanet models are created.

The research was published May 26 in the Proceedings of the National Academy of Science.

Source: NASA

Will an Asteroid Smack Jupiter in 2022?

PHA asteroid 2014 KM4 on approach to Jupiter in late 2021. Credit: the Solar System Dynamics JPL Small-Body Database Browser.

A recent space rock discovery has sent a minor buzz through the community that tracks such objects. And as usual, it has also begun to attract the dubious attention of those less than honorable sites — we won’t dignify them with links — that like to trumpet gloom and doom, and we thought we’d set the record straight, or at very least, head the Woo off at the pass as quickly as possible.

The asteroid in question is 2014 KM4. Discovered earlier this month, this 192 metre space rock safely passed by the Earth-Moon system at 0.17 A.U.s distant on April 21st. No real biggie, as asteroids pass lots closer all the time. For example, we just had a 6-metre asteroid named 2014 KC45 pass about 48,000 miles (about 80,000 kilometres) from the Earth yesterday morning. That’s about twice the distance of the orbit of geosynchronous satellites and 20% the distance to the Moon.

Sure, it’s a dangerous universe out there… you only have to stand in the Barringer Meteor Crater in Arizona outside of Flagstaff or watch the videos of a meteor exploding over Chelyabinsk last year the day after Valentine’s Day to know that. But what makes 2014 KM4 interesting is its orbit and its potential to approach Jupiter in about seven years.

Or not. One dilemma with orbital mechanics is that the precision of a known orbital path relies on the number of observations made and that position gets more and more uncertain as we project an object’s position ahead in space and time. 2014 KM4 is on a 5.08 year orbit inclined 5.2 degrees to the ecliptic plane that brings it juuusst inside the Earth’s orbit — hence the Apollo designation — and out to an aphelion point very near Jupiter at 5.2 A.U.s from the Sun. But that’s only based on 14 observations made over a span of 5 days. The current nominal trajectory sees 2014 KM4 pass about 0.1 A.U. or 15.5 million kilometres from Jupiter on January 16th 2022. That’s inside the orbit of Jupiter’s outermost moons, but comfortably outside of the orbit of the Galilean moons. The current chance of 2014 KM4 actually impacting Jupiter sits at around 1% and the general trend for these kinds of measurements is for the probability to go down as better observations are made. This is just what happened last year when comet 2013 A1 Siding Spring was discovered to pass very close to Mars later this year on October 19th.

We caught up with JPL astronomer Amy Mainzer, Principal Investigator on the NEOWISE project currently hunting for Near Earth Asteroids for her thoughts on the subject.

“The uncertainty in this object’s orbit is huge since it only has a 5 day observational arc,” Mainzer told Universe Today. “A quick check of the JPL NEO orbit page shows that the uncertainty in its semi-major axis is a whopping 0.47 astronomical units! That’s a huge uncertainty.”

“At this point, any possibility of impact with Jupiter is highly uncertain and probably not likely to happen. But it does point out why it’s so important to extend observational arcs out so that we can extend the arc far enough out so that future observers can nab an object when it makes its next appearance.”

Jupiter takes a beating from Comet Shoemaker-Levy 9. Credit: NASA/Hubble Space Telescope team.
Jupiter takes a beating from Comet Shoemaker-Levy 9. Credit: NASA/Hubble Space Telescope team.

IF (that less than 1% “IF”) 2014 KM4 were to hit Jupiter, it would represent the most distant projection ahead in time of such an event. About two decades ago, humanity had a front row seat to the impact of comet Shoemaker-Levy 9 into Jupiter in July 1994. At an estimated 192 metres in size, 2014 KM4 is about the size of the “D” fragment that hit Jupiter on July 17th 1994. 2014 KM4 has an absolute magnitude (for asteroids, this is how bright they’d appear at 1 A.U. distant) of +21.3 and is currently well placed for follow up observations in the constellation Virgo.

And astronomer Nick Howes mentioned to Universe Today that the Faulkes Telescope North may soon be used to make further observations of 2014 KM4. In the meantime, you can enjoy the animation of their observations of another Near-Earth Asteroid, 2014 KP4.

An animation of the motion of PHA asteroid 2014 KP4. Credit: Remanzacco Observatory.
An animation of the motion of PHA asteroid 2014 KP4. Credit: Remanzacco Observatory.

And yes, the 2022 pass of 2014 KM4 near Jupiter will modify the orbit of the asteroid… but not in our direction. Jupiter is a great “goal tender” in this regard, protecting the inner solar system from incoming hazards.

2014 KM4 is well worth keeping an eye on, but will most likely vanish from interest until it returns to our neck of the solar system in 2065. And no, a killer asteroid won’t hit the Earth in 2045, as a CNN iReport (since removed) stated earlier this week… on “March 35th” no less. Pro-tip for all you conspiracy types out there that think “Big NASA” is secretly hiding the next “big one” from the public: when concocting the apocalypse, please refer to a calendar for a fictional date that at least actually exists!