ESA Issues Invitation To Russia To Partner ExoMars Mission

Jean-Jacques Dordain. Credit: ESA photo by S. Corvaja

[/caption]

What’s new in the avenue of space exploration? Right now the European Space Agency (ESA) has issued a formal invitation to Russia to join the U.S.-European Mars exploration program in a last-ditch attempt to save the project from being cut in half, ESA Director-General Jean-Jacques Dordain said October 13th.

The appeal to Russia, which came in the form of a letter to the head of the Russian space agency, Roscosmos, is likely ESA’s only hope of saving the full U.S.-European Mars exploration project, which Europe calls ExoMars, Dordain said in an interview. At this point in time, the agency is hoping for a solid answer by the beginning of 2012. This will allow for planning for a two-launch mission of the ExoMars program and lead to a full partnership between the Russian Space Agency and NASA. What’s more, this partnership could mean additional support for the U.S.-European program and even incorporate a Proton rocket launch carrying a jointly-build Mars telecommunications orbiter and an entry, descent and landing system in 2016.

By cutting NASA’s budget, the U.S. contribution to world-wide space programs looks bleak… even with the planned 2018 launch, aboard a NASA-provided Atlas 5 rocket, of the Euro-American Mars rover. This lack of funds hurts everyone – including ESA – dashing hopes of of purchasing its own Ariane 5 rocket for the 2016 mission. Even though NASA appears to be committed at this point, there’s always the uncertainty of the U.S. economic picture.

“At this point I am becoming a Doubting Thomas in that I believe only what I can see,” Dordain said. “But NASA has said nothing that would lead me to believe the 2018 mission is not going forward. At this point I have only two options: Keep the mission as we would like it by finding an additional partner, or reduce the mission.”

This doesn’t mean that ESA isn’t trying. Even by cutting the budget to a single-launch isn’t totally the answer. By making such drastic changes in the middle of an already planned scenario means changing tactics when design teams are already on a tight schedule. Cutting the budget also means cutting jobs – and that’s a problem in its own right. At this point, ESA is even willing to release nations from their commitments to keep the program, with modifications, intact.

Dordain said his approach to Roscosmos is not simply a request for an in-kind contribution of a Proton rocket for the 2016 launch. He said he would like Russia involved in ExoMars as a full third participant with NASA and ESA, and that the Russian role could include provision of experiments. “This could end up being an even grander mission than it would have with a full Russian participation,” Dordain said. “It’s not simply a matter of asking the Russians, ‘Please provide us a launcher.’”

Dordain briefed ESA’s ruling council on the ExoMars situation October 13 and will give an update at the council’s mid-December meeting. The current ExoMars contract for the 2016 mission, which had already been extended while ESA waited for a NASA commitment that never came, runs through December and can be extended to January, Dordain said.

It will be a waiting game from here. With luck, the Russians will answer by January 2012 and NASA will have a clearer picture of its own financial responsibilities by February 2012. Let’s hope the ExoMars Mission doesn’t have to pay the price.

Original Story Source: Space News Release.

Phobos-Grunt: The Mission Poster

<>. Mission Poster for the Russian Phobos-Grunt soil sample return spacecraft set to launch to Mars and its moon Phobos in November 2011. Phobos-Grunt consistes Credit: Roskosmos - Russian Federal Space Agency

[/caption]

Russia is marking the upcoming blastoff of their dauntingly complex Phobos-Grunt sample return mission to the Martian moon Phobos with the release of a quite cool looking mission poster – see above. Phobos-Grunt translates as Phobos-Soil and is due to liftoff on or about November 7, 2011 from the Baikonur Cosmodrome atop a Zenit rocket.

The holy grail of Mars exploration has long been a sample return mission. But with severe cutbacks to NASA’s budget that goal is realistically more than a decade away. That’s why Phobos- Grunt is so exciting from a scientific standpoint.

Phobos-Grunt Orbiter/Lander
Russia's Phobos-Grunt is designed to land on Mars' moon Phobos, collect soil samples and return them to Earth for study. The lander will also carry scientific instrumetns to study Phobos and its environment. It will travel to Mars together with Yinghuo-1, China's first mission to the Red Planet. Credit: NPO Lavochkin

Phobos-Grunt Robotic sampling arm. Credit: Roskosmos

If successful, this audacious probe will retrieve about 200 grams of soil from the diminutive moon Phobos and accomplish the round trip in three years time by August 2014. Scientists speculate that martian dust may coat portions of Phobos and could possibly be mixed in with any returned samples.

Included here are more photos and graphics of the Phobos-Grunt spacecraft which is equipped with two robotic arms and a sampling device to transfer regolith and rocks to the Earth return vehicle and an on board array of some 15 science instruments, including lasers, spectrometers, cameras and a microscope. Readers please feel free to help with Russian translations.

Phobos-Grunt Model
This is a full-scale mockup of Russia's Phobos-Grunt. The spacecraft will collect samples of soil on Mar's moon Phobos and to bring the samples back to Earth for detailed study. Credit: CNES

Phobos-Grunt is the first of Earth’s two missions launching to the Red Planet in 2011. NASA’s Curiosity Mars Science Laboratory is due to lift off on Nov. 25, 2011 from Cape Canaveral, Florida.

Read Ken’s continuing features about Phobos-Grunt, Curiosity and Opportunity starting here:
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Opportunity spotted Exploring vast Endeavour Crater from Mars Orbit
Twin Towers 9/11 Tribute by Opportunity Mars Rover
NASA Robot arrives at ‘New’ Landing Site holding Clues to Ancient Water Flow on Mars
Opportunity Arrives at Huge Martian Crater with Superb Science and Scenic Outlook
Opportunity Snaps Gorgeous Vistas nearing the Foothills of Giant Endeavour Crater

America vs. Astronaut: The Case of the Lifted Lunar Camera

Apollo 14 astronaut Ed Mitchell on the Moon, February 5, 1971. Credit: NASA.

[/caption]

Imagine you’re an astronaut. You have what it takes to be selected to fly a mission to the Moon. You train, make the trip, and become one of literally a handful of humans ever to have walked on the lunar surface. And when you leave the desolate beauty of the Moon behind in your Landing Module, and are just about to re-enter the Lunar Orbiter and head for home, you see one of the cameras that you used on the surface. If you leave it where it is it’s going to be lost forever, crashing into the lunar surface with the rest of the lander. If you take it, you’ll be going against standard NASA operating procedure since you hadn’t filled out the proper paperwork beforehand for official mission items appropriated by astronauts. Leave a piece of history behind to be destroyed or salvage it as a souvenir… what do you do?

Apollo 14 astronaut Edgar Mitchell decided to bring the camera back, and now, 40 years later, his decision is going to land him in court.

Last June, the U.S. government brought a case against the 81-year-old moonwalker after he offered the 16-millimeter Data Acquisition Camera (DAC) up for sale at New York’s Bonhams auction house as part of their May “Space History Sale”. While it was common for Apollo astronauts to be able to keep various pieces of equipment and space suits as mementos after their missions, certain paperwork had to be filled out beforehand… it’s just the NASA way.

The late Donald “Deke” Slayton, head of the astronaut corps in 1971, mentioned this during an interview with the Tuscon Daily Citizen in 1972.

“They give me a list of things they’re going to bring back,” Slayton said. “I give it to the program office and they bring ’em back.”

This Data Acquisition Camera (DAC) was one of two 16mm cameras on the Apollo 14 lunar module "Antares" when it landed on the moon on Feb, 5, 1971. Credit: Bonhams.

The DAC, it seems, was not on any lists handed in by Mitchell. Yet it was never intended to be on the ride back to Earth, either. Rather its destination was to be in the bottom of a crater made by the landing module when it crashed back onto the Moon.

Must have seemed a rather wasteful end for a historic – and valuable – piece of equipment. Were it to go to auction it could have fetched between $60,000 to $80,000.

“We had an agreement with NASA management, that small items that didn’t exceed our weight limitations, we could bring back.”

– Edgar Mitchell to WPTV

Regardless of its value – sentimental or otherwise – NASA’s lawyer claims that Mitchell was contacted several times about returning the camera but never responded. Mitchell’s attorney, on the other hand, argues that too many years have passed for NASA to now claim the camera as stolen property.

When it was brought before a Florida district court judge to have the case dismissed, however, the judge had no option but to side with the government.

“‘It is well settled that the United States is not bound by state statutes of limitation or subject to the defense of laches in enforcing its rights,'” quoted Judge Daniel Hurley of an appeals court ruling. “Defendant’s allegations that NASA intended the camera to be destroyed after the mission or that it routinely awarded used mission equipment to astronauts do not preclude as a matter of law Plaintiff’s contrary allegation that Defendant impermissibly converted the camera.”

Bottom line: the case goes in front of a jury in October 2012.

Read more about this on collectSPACE.com.

NASA to Test New Solar Sail Technology

The Solar Sail demonstration mission. Credit: NASA

[/caption]
Solar sails, much like anti-matter and ion engines appear at first glance to only exist in science fiction. Many technologies from science fiction however, become science fact.

In the example of solar sails, perfecting the technology would allow spacecraft to travel through our solar system using very little fuel.

NASA has been making strides with solar sail technology. Using the NanoSail-D mission, NASA continues to gather valuable data on how well solar sails perform in space. The Planetary Society will also be testing solar sail technology with their LightSail-1 project sometime next year.

How will NASA (and others) test solar sail technology, and develop it into a common, reliable technology?

The second of three recently announced technology demonstrations, The Solar Sail Demonstration, will test the deployment of a solar sail in space along with testing attitude control. The solar sail will also execute a navigation sequence with mission-capable accuracy.

In order to make science fiction into reality, NASA engineers are testing solar sails that could one day provide the propulsion for deep space missions. Spacecraft using solar sails would travel in our solar system in a similar manner to a sailboat through water, except spacecraft using solar sails would rely on sunlight instead of wind. A spacecraft propelled by a solar sail would use the sail to capture photons emitted from the Sun. Over time, the buildup of the solar photons provides enough thrust for a small spacecraft to travel in space.

NASA’s solar sail demonstration mission will deploy and operate a sail area 7 times larger than ever flown in space. The technology used in the demonstration will be applicable to many future space missions, including use in space weather warning systems to provide timely and accurate warnings of solar flare activity. The solar sail demonstration is a collaborative effort between The National Oceanic and Atmospheric Administration (NOAA), NASA and contractor L’Garde Inc.

NASA lists several capabilities solar sails have to offer, such as:

  • Orbital Debris: Orbital debris can be captured and removed from orbit over a period of years using the small solar-sail thrust.
  • De-orbit of spent satellites: Solar sails can be integrated into satellite payloads so that the satellite can be de-orbited at the end of its mission.
  • Station keeping: Using the low propellantless thrust of a solar sail to provide station keeping for unstable in-space locations.
  • Deep space propulsion: Payloads free of the Earth’s pull can be continuously and efficiently accelerated to the other planets, or out of the solar system, such as proposed in Project Encounter.
  • As an example, the GeoStorm project considers locating solar storm warning satellites at pseudo Lagrange points three times further from the Earth by using the solar sail to cancel some solar gravitational pull, thus increasing warning time from ~15 minutes to ~45 minutes.

    Providing a satellite with a persistent view of northern or southern latitudes, i.e., a “pole-sitter” project. This allows the observational advantages of today’s geosynchronous satellites for orbits with view angles of the northern and southern high-latitudes.

    A solar sail system, measuring 66 feet on each side was tested in 2005 in the world's largest vacuum chamber. Image Credit: NASA

    If you’d like to learn more about solar sails, Caltech has a nice “Solar Sailing 101” page at: http://www.ugcs.caltech.edu/~diedrich/solarsails/intro/intro.html

    Source: NASA Technology Demonstration Mission Updates

    Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

    Russian Phobos-Grunt spacecraft set to Launch in November 2011.The flight version of the Phobos-Grunt spacecraft minus its main solar panels is being lowered into a vacuum chamber at NITs RKP test facility in Peresvet, north of Moscow, for thermal, vacuum and electric tests around beginning of June 2011. Credit: NPO Lavochkin

    [/caption]

    In just over 3 weeks’ time, Russia plans to launch a bold mission to Mars whose objective, if successful , is to land on the Martian Moon Phobos and return a cargo of precious soil samples back to Earth about three years later.

    The purpose is to determine the origin and evolution of Phobos and how that relates to Mars and the evolution of the solar system.

    Liftoff of the Phobos-Grunt space probe will end a nearly two decade long hiatus in Russia’s exploration of the Red Planet following the failed Mars 96 mission and is currently scheduled to head to space just weeks prior to this year’s other Mars mission – namely NASA’s next Mars rover, the Curiosity Mars Science Laboratory (MSL).

    Blastoff of Phobos-Grunt may come as early as around Nov. 5 to Nov. 8 atop a Russian Zenit 3-F rocket from the Baikonur Cosmodrome in Kazakhstan. The launch window extends until about Nov. 25. Elements of the spacecraft are undergoing final prelaunch testing at Baikonur.

    Flight version of the Phobos-Grunt spacecraft during assembly in preparation for critical testing in thermal and vacuum chamber at NITs RKP facility closely imitating harsh conditions of the real space flight. Credit: NPO Lovochkin

    Baikonur is the same location from which Russian manned Soyuz rockets lift off for the International Space Station. Just like NASA’s Curiosity Mars rover, the mission was originally intended for a 2009 launch but was prudently delayed to fix a number of technical problems.

    “November will see the launch of the Phobos-Grunt interplanetary automatic research station aimed at delivering samples of the Martian natural satellite’s soil to Earth’” said Vladimir Popovkin, head of the Russian Federal Space Agency, speaking recently at a session of the State Duma according to the Voice of Russia, a Russian government news agency.

    Phobos-Grunt spacecraft

    The spacecraft will reach the vicinity of Mars after an 11 month interplanetary cruise around October 2012. Following several months of orbital science investigations of Mars and its two moons and searching for a safe landing site, Phobos-Grunt will attempt history’s first ever touchdown on Phobos. It will conduct a comprehensive analysis of the surface of the tiny moon and collect up to 200 grams of soil and rocks with a robotic arm and drill.

    Russian Phobos-Grunt spacecraft prepares for testing inside the vacuum chamber. Credit: NPO Lavochkin

    After about a year of surface operations, the loaded return vehicle will blast off from Phobos and arrive back at Earth around August 2014. These would be the first macroscopic samples returned from another body in the solar system since Russia’s Luna 24 in 1976.

    “The way back will take between nine and 11 months, after which the return capsule will enter Earth’s atmosphere at a speed of 12 kilometers per second. The capsule has neither parachute nor radio communication and will break its speed thanks to its conical shape,” said chief spacecraft constructor Maksim Martynov according to a report from the Russia Today news agency. He added that there are two soil collection manipulators on the lander because of uncertainties in the characteristics of Phobos soil.

    Phobos-Grunt was built by NPO Lavochkin and consists of a cruise stage, orbiter/lander, ascent vehicle, and Earth return vehicle.

    The spacecraft weighs nearly 12,000 kg and is equipped with a sophisticated 50 kg international science payload, in particular from France and CNES, the French Space Agency.

    Also tucked aboard is the Yinghou-1 microsatellite supplied by China. The 110 kg Yinghou-1 is China’s first probe to launch to Mars and will study the Red Planet’s magnetic and gravity fields and surface environment from orbit for about 1 year.

    “It will be the first time such research [at Mars] will be done by two spacecraft simultaneously. The research will help understand how the erosion of Mars’ atmosphere happens,” said Professor Lev Zelyony from the Space Research Institute of the Russian Academy of Science, according to Russia Today.

    Phobos-Grunt mission scenario. Credit: CNES
    Phobos seen by Mars Express. Credit: ESA

    Read Ken’s continuing features about Phobos-Grunt, Curiosity and Opportunity starting here:
    Assembling Curiosity’s Rocket to Mars
    Encapsulating Curiosity for Martian Flight Test
    Dramatic New NASA Animation Depicts Next Mars Rover in Action
    Opportunity spotted Exploring vast Endeavour Crater from Mars Orbit
    Twin Towers 9/11 Tribute by Opportunity Mars Rover
    NASA Robot arrives at ‘New’ Landing Site holding Clues to Ancient Water Flow on Mars
    Opportunity Arrives at Huge Martian Crater with Superb Science and Scenic Outlook
    Opportunity Snaps Gorgeous Vistas nearing the Foothills of Giant Endeavour Crater
    Opportunity Rover Heads for Spirit Point to Honor Dead Martian Sister; Science Team Tributes

    Sierra Nevada’s Dream Chaser to Conduct Drop Test Next Summer

    Sierra Nevada Corporation is set to conduct a high-altitude free-flight test of the company's dream Chaser space plane as early as this summer. Image Credit: SNC

    [/caption]

    It looks as though the efforts to get commercial space taxis off the ground – is succeeding. Sierra Nevada Corporation’s (SNC) “Dream Chaser” space plane is slated to conduct its first test flight as early as next summer. SNC is one of four companies that have had proposals selected by NASA under the Commercial Crew Development Program – 02 (CCDev2).

    The test flight, what is known as a high-altitude free-flight test or “drop-test” will see Dream Chaser lifted high into the air, where the craft will then be released from its carrier aircraft and attempt an unmanned landing. During the course of this flight test program SNC will test out the space plane’s autoland and other capabilities.

    The Dream Chaser space plane is derived from the HL-20 lifting body developed by NASA. Photo Credit: SNC

    “Sierra Nevada Space Systems is honored to be awarded an additional $25.6 million by NASA as part of the second round of the Commercial Crew Development Program (CCDev2), bringing the total award to $105.6 million for this round of the competition,” said Mark Sirangelo, head of Sierra Nevada Space Systems. “As part of CCDev2, the Program has already completed four of the planned milestones, on time and on budget. The now thirteen CCDev2 milestones will culminate in a high-altitude free-flight test of our vehicle in the summer of 2012. ”

    With NASA’s fleet of orbiters retired and being prepared to go on display in museums, NASA is dependent on the Russian Soyuz for access to the International Space Station (ISS). NASA currently pays Russia $63 million per seat for trips to the orbiting laboratory.

    If all goes according to plan, the Dream Chaser could be one of many 'space-taxis' that would supply transportation services to the International Space Station. Image Credit: SNC

    Many within both NewSpace and established space companies have stated their intent on reducing the amount of time that the U.S. is in such a position. NASA also has worked to assist companies that are working on CCDev2 to either meet or exceed their deadlines.
    NASA is hopeful that these developments will allow the space agency to turn over transportation to the ISS to commercial firms by 2016.

    In the case of SNC, NASA increased what the company was paid by an added $25.6 million. SNC had already been awarded $80 million as their part of the CCDev2 contract. After this boost in funding, SNC announced that the drop test would be held next summer.
    The Dream Chaser design is based primarily off of the HL-20 lifting body design and is capable of carrying seven astronauts to orbit. Dream Chaser is designed to launch from Cape Canaveral Air Force Station located in Florida atop a United Launch Alliance (ULA) Atlas V 402.

    Sierra Nevada Corporation is working steadily to test out and prove the Dream Chaser's various systems. Photo Credit: SNC

    If everything goes according to how it is currently planned, the test flight will take place at either Edwards Air Force Base, located in California or White Sands Missile Range in New Mexico. Virgin Galactic’s WhiteKnightTwo will carry the Dream Chaser space plane aloft for the test. Virgin Galactic, another NewSpace firm, is based in the U.S. and owned by Sir Richard Branson.

    The ISS is viewed by the U.S, and the 15 other nations involved with the project as a crucial investment and having only one way to send crew to and from the ISS as being unacceptable. Sierra Nevada’s Dream Chaser is joined by Space Exploration Technologies’ (SpaceX) Dragon spacecraft, Boeing’s CST-100 and Blue Origin’s as-yet unnamed spacecraft in the CCDev2 contract.

    The Dream Chaser space plane atop a United Launch Alliance Atlas V rocket. Image Credit: SNC

    NASA to Test Laser Communications System

    Conceptual image of The Laser Communications Relay Demonstration. Credit: NASA

    [/caption]Quite often, communication rates with remote spacecraft have been a limiting factor when exploring our solar system. For example, it can take up to 90 minutes to transfer one high-resolution image from the Mars Reconnaissance Orbiter to scientists on Earth.

    Improving data communication rates would allow scientists to collect additional data from future missions to Mars, Titan or other destinations in our solar system.

    How does NASA plan to overcome the current limitations in communication with spacecraft outside Earth orbit?

    One of three recently announced technology demonstrations, The Laser Communications Relay Demonstration, will help demonstrate and validate laser-based communications. One of many goals for the LCRD is to provide spacecraft in Earth orbit ( and beyond ) a faster and reliable method of communication than standard radio communications currently in use.

    A laser-based communication will allow NASA and other government agencies to perform missions that require higher data rates. In the cases where less data is required, the laser-based systems would consume less power, mass and precious volume inside a spacecraft. Given roughly equal mass, power, and volume, the laser-based communications system offers much higher data rates than a radio-based communications system.

    NASA’s goals for the LCRD are to:

    Enable reliable, capable, and cost effective optical communications technologies for near earth applications and provide the next steps required toward optical communications for deep space missions

    Demonstrate high data rate optical communications technology necessary for:

  • Near-Earth spacecraft (bi-directional links supporting hundreds of Mbps to Gbps)
  • Deep Space missions (tens to hundreds of Mbps from distances such as Mars and Jupiter)
  • Develop, validate and characterize operational models for practical optical communications
  • Identify and develop requirements and standards for future operational optical communication systems
  • Establish a strong partnership with multiple government agencies to facilitate crosscutting infusion of optical communications technologies
  • Develop the industrial base and transfer technology for future space optical communications systems
  • High-rate communications 10-100 times more capable than current radio systems will also allow for greatly improved connectivity and enable new generations of remote missions that are far more capable than today’s missions. NASA’s LCRD will also provide the satellite communication industry with technology not available today. Laser-based space communications will enable missions to use high-definition video and and pave the way for a possible “virtual presence” on a remote planet or other bodies in the solar system.

    While the laser-based communications technology featured in the LCRD will allow more data to be sent from spacecraft to scientists on Earth, the communication delays (a few seconds for the Moon, and over twenty minutes for Mars) will still require careful mission planning.

    Diagram of LCRD mission. Image Credit: NASA

    The Laser Communications Relay Demonstration (LCRD) is led by the NASA Goddard Space Flight Center. Space Communications and Navigation (SCaN) office in the Human Exploration and Operations Mission Directorate is collaborating with the NASA Office of the Chief Technologist in sponsoring this technology demonstration.

    If you’d like to learn more about NASA’s LCRD, you can read more at: http://www.nasa.gov/topics/technology/features/laser-comm.html

    Source: NASA Technology Demonstration Updates

    Bolden Visits Kennedy Space Center, Talks SLS and the Future

    Kennedy Space Center Director Bob Cabana introduces NASA Administrator Charles Bolden in front of the Mobile Launch Platform at Kennedy Space Center in Florida. Photo Credit: Suresh Atapattu

    [/caption]
    CAPE CANAVERAL, Fla – NASA Administrator Charles Bolden stopped by Kennedy Space Center in Florida to tour NASA’s Mobile Launch Platform. Bolden was joined by fellow former shuttle astronaut and current Kennedy Space Center Director Robert Cabana. The duo toured the 355-foot-tall structure Tuesday, Oct. 11 at 11 a.m. EDT.

    The Mobile Launcher’s future was in doubt after the Constellation Program was cancelled. Although nothing definite was stated – everything from scrapping the structure, using it as a platform for tourists at the Kennedy Space Center Visitor Center to just keeping it in reserve was suggested. The space agency now plans to use the structure to launch the Space Launch System or SLS rocket.

    NASA Kennedy Space Center Director Bob Cabana (far left) gestures while discussing how the MLP will be used in upcoming missions. To his left is NASA Administrator Charles Bolden and they are surrounded by members of the local media. Photo Credit: Suresh Atapattu

    The NASA administrator’s visit was designed to help promote NASA’s recently-unveiled SLS heavy-lift rocket. The launch vehicle somewhat resembles a cross between the cancelled Ares V and the Saturn V moon rockets that launched Apollo astronauts to the moon. It is slated to begin conducting flights by 2017. SLS is comprised primarily of so-called “legacy hardware” – proven technology derived from the space shuttle and Saturn systems.

    Bolden spent some time chatting with reporters and working to reassure Kennedy Space Center’s remaining workforce, as well as several hundred Space Coast community and business leaders and elected officials that the area’s future was bright. Bolden used the visit to state that this was a sign that things were improving in the region. He highlighted the fact that new capabilities, such as the placement of the Commercial Crew program office at Kennedy, will help to maintain aerospace skills and capabilities.

    NASA Administrator Charles Bolden descends the steps of the MLP during his visit to Kennedy Space Center on Oct. 11, 2011. Photo Credit: Suresh Atapattu

    “As our nation looks for ways to compete and win in the 21st century, NASA continues to be an engine of job growth and economic opportunity,” Bolden said. “From California to Florida, the space industry is strong and growing. The next generation of explorers will
    not fly a space shuttle, but they may be able to walk on Mars. And those journeys are starting at the Kennedy Space Center today.”

    The shuttle elements of SLS include the RS-25 engines (Space Shuttle Main Engines) along with modified versions of the Solid Rocket Boosters that were employed on the space shuttle. The Saturn elements (descendent) are the J-2X engines, which are simpler variants of the J-2 engines employed during the Apollo era.

    A few up the massive Mobile Launch Platform and Mobile Launch Tower (the combined structure is generally called the Mobile Launcher). Photo Credit: Julian Leek/Blue Sawtooth Studios

    NASA made its plans for the SLS public in September, just one day after Alliant Techsystems (ATK) and NASA announced that an unfunded Space Act Agreement deal to study the viability of using the Liberty rocket to ferry astronauts to orbit. If all goes according to plan, SLS will eventually be utilized to launch the Orion Multi-Purpose Crew Vehicle. It is hoped that the introduction of SLS and other space systems will help to stem the flow of highly-trained and experienced workers from the space agency.

    Amazing New View of the Mt. Everest of Vesta

    Oblique View of Vesta's South Polar Region - Rheasilvia. This image of the asteroid Vesta, calculated from a shape model, shows a tilted view of the topography of the south polar region. The image has a resolution of about 1,000 feet (300 meters) per pixel, and the vertical scale is 1.5 times that of the horizontal scale. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

    [/caption]

    NASA has just released an amazing new view of the mysterious south pole of Vesta that offers an oblique perspective view of the central mountain peak which is three times as high as Mt Everest. This topographic view , shown above,is completely unique to viewers from Earth and is provided courtesy of NASA’s exotic Dawn Asteroid Orbiter – newly arrived in July 2011.

    The mountain peak rises about 15 miles (22 km) above the average height of the surrounding pockmarked terrain at Vesta’s south polar region – formally named Rheasilvia – and is located in the foreground, left side of the new image. A portion of the crater rim with a rather steep slope – known as a scarp – is seen at the right and may show evidence of Vestan landslides.

    This oblique image derived from the on board Framing Camera was created from a shape model of the 530 km diameter asteroid. It has been flattened to remove the curvature of Vesta and has a vertical scale adjusted to 1.5 times that of the horizontal scale.

    The origin of Vesta’s south polar region is hotly debated among the mission’s science team who will reveal their current theories at a briefing set for October 12 – watch for my upcoming report.

    Dawn will remain in orbit at Vesta for 1 year until July 2012 and then fire up its revolutionary ion propulsion system to depart for Ceres, the largest Asteroid in the main belt between Mars and Jupiter.

    Asteroid Vesta from Dawn
    NASA's Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on July 24, 2011. It was taken from a distance of about 3,200 miles (5,200 kilometers). Dawn entered orbit around Vesta on July 15, and will spend a year orbiting the body. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

    Read Ken’s continuing features about Dawn and Vesta starting here
    Dramatic 3 D Imagery Showcases Vesta’s Pockmarked, Mountainous and Groovy Terrain
    Rheasilvia – Super Mysterious South Pole Basin at Vesta
    Space Spectacular — Rotation Movies of Vesta
    3 D Alien Snowman Graces Vesta
    NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn
    Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin
    First Ever Vesta Vistas from Orbit – in 2D and 3D
    Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta

    Book Review: The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane

    The Space Shuttle: Celebating Thirty Years Of NASA's First Space Plane is chocked full of great imagery and works to cover each of the shuttle's 135 missions. Photo Credit: Zenith Press

    [/caption]

    The space shuttle program is over. The orbiters are being decommissioned, stripped of the components that allowed them to travel in space. For those that followed the program, those that wished they did and those with only a passing interest in what the program accomplished a new book has been produced covering the entirety of the thirty years that comprised NASA’s longest human space flight program. The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane is written by aerospace author Piers Bizony and weighs in at 300 pages in length.

    Bizony is a prolific author who has focused a lot of his work on space flight. Some of the books that he has written include (but definitely are not limited to) include: One Giant Leap: Apollo 11 Remembered, Space 50, The Man Who Ran the Moon: James E. Webb, NASA, and the Secret History of Project Apollo and Island in the Sky: The International Space Station.

    Bizony pulls out all the stops in detailing the shuttle era. From thunder and light - to tragedy, the full spectrum of the shuttle program is highlighted here. Photo Credit: NASA

    The book contains 900 color images, detailing the entire history of NASA’s fleet of orbiters. From the first launches and the hope that those initial flights were rich in, to the Challenger tragedy and the subsequent realization that the space shuttles would never be what they were intended to be.

    The next phase of the book deals with the post-Challenger period and how NASA worked to find a balance with its fleet of orbiters, while at the same time worked to regain the trust of the America public. The path was both hindered and helped by a single payload – the Hubble Space Telescope.

    The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane - has stunning imagery on every page, allowing the reader to once again view the majesty that the shuttle program provided. Photo Credit: NASA

    When the images the orbiting telescope beamed back turned out fuzzy, NASA was a laughing stock. Hubble would become a sensation and NASA redeemed its name after the first servicing mission to Hubble corrected the problem with the telescope’s mirror.

    Hubble was not the only telescope or probe that the shuttle placed in the heavens. It would however, be the only one that NASA’s fleet of orbiters would visit during several servicing missions. Besides Hubble the shuttle also sent the Chandra X-Ray telescope, Galileo probe to Jupiter and the Magellan probe to Venus during the course of the program’s history.

    It is currently unknown when the U.S. will launch crews into orbit again. Some aerospace experts have even suggested that the shuttles be pulled out of retirement to help fill this gap - but this is highly unlikely to happen. Photo Credit: NASA

    NASA was now on course to begin construction of the most ambitious engineering feat in human history – the International Space Station. The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane details this period, as well as the tragic loss of the shuttle Columbia in 2003 with great care and attention to detail. Many never-before-seen images are contained within and Bizony uses them to punctuate the history that the space shuttle accomplished with every flight.

    With a chance of catastrophic failure estimated by some as being as high as one chance in 53 - the shuttle was a risky endeavor. However, given all of the program's accomplishments - it is not a stretch to say that the shuttle made fact out of last century's science fiction. Photo Credit: NASA

    The book also contains a detailed diagram of the orbiter (it is long and therefore was produced as a pull-out section. This element is included near the end and acts as a nice punctuation mark to the stream of imagery contained within.

    While it required the combined effort of 16 different nations to make the International Space Station work - the space shuttle made the orbiting laboratory a reality. Photo Credit: NASA

    The book is not perfect (but what book is). If one did not know better, upon reading this book one would assume that the Delta Clipper (both DC-X and DC-XA) flew once and upon landing caught fire. DC-X flew eight times – not once. Bizony also describes the lunar element of the Vision for Space Exploration (VSE) as being a repeat of Apollo. Apollo 17 was the longest duration that astronauts roamed the Moon’s surface – they were there for about three days. The VSE called for a permanent crewed presence on the moon.

    For those out there that consider themselves “shuttle huggers” this book is simply a must-have. It is perfect to take to autograph shows to be signed by astronauts (as every mission is detailed, it is a simple matter to have crew members sign on the pages that contain their missions). It is also a perfect gift for space aficionados this holiday season. Published by Zenith Press and retailing for $40.00, The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane is a welcome addition to your home library.

    How will the shuttle be remebered? According to Bizony, given the technological restraints and the numerous accomplishments that the orbiter accomplished - it will be remembered in a positive light. Photo Credit: NASA