Behind the Scenes: Curiosity’s Rocket Prepared at Vertical Integration Facility

One of the most incredible things to see at United Launch Alliance's Vertical Integration Facility - is the surrounding area and the adjacent Space Launch Complex-41. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
CAPE CANAVERAL, Fla — One of the more dramatic buildings operated by United Launch Alliance (ULA) at Kennedy Space Center in Florida is the Vertical Integration Facility or VIF as it is more commonly known. It is in this facility that expendable launch vehicles are brought, lying on their sides – and then hoisted into the vertical position for launch. The current resident in the VIF is the Atlas V 541 (AV-028) that is slated to launch the Mars Science Laboratory (MSL).

At the top of the 292 –foot-tall structure is a 60 ton crane that initially is used to lift the Atlas’ first stage into the vertical position. The payload, ensconced in the protective fairing, is assembled elsewhere. Once it arrives at the VIF, it is hoisted high into the air using the same crane and then mated with the top of the launch vehicle. Given the delicate nature of this operation technicians take their time in lifting the precious cargo and maneuvering it over the rocket.

The U.S. flag and the interstage adapter are seen in the image to the left. The photo to the right helps to illustrate the scale needed to assemble the Atlas V. Photo Credits: Jason Rhian

“You get the most amazing view from the top of the VIF,” said Mike Woolley of United Launch Alliance. “From this level you can clearly see not just Launch Complex 41, but a great deal of Florida’s Space Coast.”

Once the fairing and its payload have been safely affixed to the top of the rocket, the doors are opened up and the Atlas V is then rolled out to the adjacent Space Launch Complex-41 (SLC-41).

At the Vertical Integration Facility's fifh level, the segment of the rocket where the payload (in this case the MSL rover) is attached is the only element of the rocket that is visible. Photo Credit: Alan Walters/awaltersphoto.com

“Once the Atlas V is fully assembled, the completed vehicle is rolled, in the vertical, out to the launch pad.” Woolley said.

Currently on the fifth level the upper part of the Centaur, the all-important rocket that will send the rover on its way to Mars, covered in a protective layer of white plastic, is visible.

One of the easiest ways to display the size of the Atlas - is to actually break up the images. To the left is the top portion, to the right the middle (note the Aerojet Solid Rocket Motors the the right). Photo Credit: Alan Walters/awaltersphoto.com

Descending down the length of the Atlas V, level by level one gains an appreciation for the sheer scale of the Atlas rocket, its solid rocket motors and the attention to detail needed to launch payloads out of Earth’s gravity well.

On Level One the top of the Atlas’ Solid Rocket Motors (SRMs) produced by Aerojet are visible. At the ground floor, one has the ability to look up (somewhat, platforms and rigging block your view) the length of the rocket. On the ground level, one can plainly see that the twin RD-180 engines are Russian-made – the Cyrillic lettering still grace the engines’ nozzles.

Just inside the VIF one can look up the side of the Atlas V, even though elements of the launch vehicle are obstructed - the sight is still impressive. Photo Credit: Jason Rhian

MSL is the next planetary mission on NASA’s docket, more commonly known as “Curiosity” is a nuclear-powered rover about the size of a compact automobile.

Curiosity is currently slated for a Nov. 25 launch date at 10:21 a.m. EDT from Cape Canaveral Air Force Station’s Space Launch Complex 41 (SLC-41). Members of the media (myself included) got to see the Atlas for this launch being lifted into the air in preparation for the November launch when we were being escorted back to the NASA/LSC press site after the GRAIL launch was scrubbed (GRAIL would go on to be launched two days later).

Assembling Curiosity’s Rocket to Mars

The first stage of the Atlas V rocket for NASA's Mars Science Laboratory (MSL) mission is lifted into an upright position for placement inside the Vertical Integration Facility at Space Launch Complex 41 on Cape Canaveral Air Force Station. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. NASA/Jim Grossmann

[/caption]

Assembly of the powerful Atlas V booster that will rocket NASA’s Curiosity Mars Science Laboratory rover to Mars is nearly complete. The Atlas V is taking shape inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

The rocket is built by United Launch Alliance under contract to NASA as part of NASA’s Launch Services Program to loft science satellites on expendable rockets.

At Launch Complex 41 at Cape Canaveral Air Force Station in Florida, workers guide an overhead crane as it lifts the Centaur upper stage for the United Launch Alliance Atlas V in the Vertical Integration Facility (VIF). Once in position, it will be attached to the Atlas V booster stage, already at the pad. Credit: NASA/Jim Grossmann

The Atlas V configuration for Curiosity is similar to the one used for Juno except that it employs one less solid rocket motor in a designation known as Atlas 541.

4 indicates a total of four solid rocket motors are attached to the base of the first stage vs. five solids for Juno. 5 indicates a five meter diameter payload fairing. 1 indicates use of a single engine Centaur upper stage.

Blastoff of Curiosity remains on schedule for Nov. 25, 2011, the day after the Thanksgiving holiday in the U.S. The launch window for a favorable orbital alignment to Mars remains open until Dec. 18 after which the mission would face a 26 month delay at a cost likely to be in the hundreds of millions of dollars.

Curiosity is set to touchdown on Mars at Gale Crater between August 6 & August 20, 2012. The compact car sized rover is equipped with 10 science instruments that will search for signs of habitats that could potentially support martian microbial life, past or present if it ever existed.

At the Vertical Integration Facility (VIF) at Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the Centaur upper stage for the United Launch Alliance Atlas V is in position in the Vertical Integration Facility (VIF). It then will be attached to the Atlas V booster stage, already at the pad. The Atlas V is slated to launch NASA's Mars Science Laboratory (MSL) mission - the compact car-sized Curiosity Mars rover. Credit: NASA
With a unique view taken from inside Vertical Integration Facility (VIF) at Launch Complex 41 at Cape Canaveral Air Force Station in Florida, an overhead crane lifts the Centaur upper stage for the United Launch Alliance Atlas V. Once in position in the VIF it will be attached to the Atlas V booster stage, already at the pad. NASA/Jim Grossmann
Workers guide an overhead crane as it lifts the Centaur upper stage for the United Launch Alliance Atlas V into the Vertical Integration Facility (VIF). NASA/Jim Grossmann
An overhead crane lifts the Centaur upper stage for the Atlas V. NASA/Jim Grossmann
The final solid rocket motor (SRM) hangs in an upright position for mating to a United Launch Alliance Atlas V rocket. NASA/Jim Grossmann
A crane lifts the 106.5-foot-long first stage of the Atlas V rocket for NASA's Mars Science Laboratory (MSL) mission through the open door of the Vertical Integration Facility at Space Launch Complex 41. Credit: NASA/Cory Huston
Curiosity Mars Science Laboratory Rover - inside the Cleanroom at KSC. Credit: Ken Kremer

Meanwhile NASA’s Opportunity Mars rover is nearing 8 continuous years of Exploration and Discovery around the Meridiani Planum region of the Red Planet.

Read Ken’s continuing features about Curiosity and Opportunity starting here:
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Opportunity spotted Exploring vast Endeavour Crater from Mars Orbit
Twin Towers 9/11 Tribute by Opportunity Mars RoverNASA Robot arrives at ‘New’ Landing Site holding Clues to Ancient Water Flow on Mars
Opportunity Arrives at Huge Martian Crater with Superb Science and Scenic Outlook
Opportunity Snaps Gorgeous Vistas nearing the Foothills of Giant Endeavour Crater
Opportunity Rover Heads for Spirit Point to Honor Dead Martian Sister; Science Team Tributes

Lost in Translation: Cyrillic, Semantics and SpaceX

Previous statements made by Roscosmos officials have been clarified. According to sources, Russia merely wanted to ensure that SpaceX followed the same requirements as all other entities working to dock to the International Space Station. Image Credit: SpaceX

[/caption]
Matters of space flight are no different than other international issues. What is said (or not said as the case may be) can suffer from being “lost in translation.” Such was the case recently when the media (this website included) reported on a Ria Novosti article that claimed that members within the Russian Space Agency had stated opposition to Space Exploration Technologies (SpaceX) docking their next Dragon spacecraft with the International Space Station.

“This was never a SpaceX issue,” said NASA Spokesman Rob Navias during a recent interview. “This was an International Space Program issue – which has final approving authority for any spacecraft set to dock with the International Space Station – be it the HTV, ATV or even Soyuz, they all have to go through the exact same process.”

SpaceX is prepping the next Falcon 9 for launch, liftoff is currently slated to occur no-earler-than Dec. 19. Photo Credit: Alan Walters/awaltersphoto.com

Navias stated emphatically that the Russian Space Agency never stated that they would not allow SpaceX to dock with the ISS – only that they wanted to ensure that the NewSpace firm followed the same procedure required of all other participants on the station (both a Stage Readiness Review as well as a Flight Readiness Review).

“This is basically an issue of semantics, of interpretation,” Navias said. “The Russian media wrote this article and when it was translated – it appeared as if that Russia was saying something – which they simply weren’t.”

The Ria Novosti report is now widely being disputed, by NASA, SpaceX and several other organizations. Photo Credit: Alan Walters/awaltersphoto.com

The partners involved in the International Space Station Program, the United States, Russia, the European Union, Japan and Canada all comprise a committee that determines matters concerning the orbiting laboratory. No one partner has a ‘controlling authority’ over the ISS. A good example of this is when Russia flew Dennis Tito to the ISS in 2001 – over initial U.S. objections.

If all goes according to plan SpaceX will launch the next Falcon 9 rocket with its Dragon spacecraft payload no-earlier-than Dec. 19, 2011 (although technically that launch is still on the books for Nov. 30). The Dragon, if cleared, will conduct station-keeping alongside the ISS where the station’s mobile servicing system (Canadarm 2) will grab it and then it will be docked to the ISS.

This mission could see both COTS 2 and COTS 3 mission objectives combined. Cargo from the International Space Station would then be placed into the Dragon which would return to Earth, splashing down in the Pacific Ocean, off the Coast of California.

If all goes according to plan, the next Dragon spacecraft to be launched will rendezvous with the ISS, where the Canadarm 2 will grapple it and attach it to the orbiting laboratory. Image Credit: SpaceX

Buried Treasure: Astronomers Find Exoplanets Hidden in Old Hubble Data

The left image shows the star HR 8799 as seen by Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in 1998. The center image shows recent processing of the NICMOS data with newer, sophisticated software. The processing removes most of the scattered starlight to reveal three planets orbiting HR 8799. Based on the reanalysis of NICMOS data and ground-based observations, the illustration on the right shows the positions of the star and the orbits of its four known planets. (Credit: NASA; ESA; STScI, R. Soummer)

[/caption]

Over the past 21 years, the Hubble Space Telescope has gathered boatloads of data, with the Hubble archive center filling about 18 DVDs for every week of the telescope’s life. Now, with improved data mining techniques, an intense re-analysis of HST images from 1998 has revealed some hidden treasures: previously undetected extrasolar planets.

Scientists say this discovery helps prove a new method for planet hunting by using archived Hubble data. Also, discovering the additional exoplanets in the Hubble data helps them compare earlier orbital motion data to more recent observations.

How did astronomers detect the previously unseen exoplanets, and can the methods used be applied to other HST data sets?

This isn’t the first time hidden exoplanets have been revealed in HST data – In 2009 David Lafreniere of the University of Montreal recovered hidden exoplanet data in Hubble images of HR 8799. The HST images Lafreniere studied were taken in 1998 with the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The outermost planet orbiting HR 8799 was identified and demonstrated the power of a new data-processing technique which could tease out faint planets from the glow of their central star.

Four giant planets are now known to orbit HR 8799, the first three of which were discovered in 2007/2008 in near-infrared images taken with instruments at the W.M. Keck Observatory and the Gemini North telescope by Christian Marois of the National Research Council in Canada. In 2010 Marois and his team uncovered a fourth, innermost, planet. What makes the HR 8799 system so unique is that it is the only multi-exoplanet star system that has been directly imaged.

The new analysis by Remi Soummer of the Space Telescope Science Institute has found all three of the outer planets. Unfortunately, the fourth, innermost planet is close to HR 8799 and cannot be imaged due obscuration by the the NICMOS coronagraph that blocks the central star’s light.

When astronomers study exoplanets by directly imaging them, they study images taken several years apart – not unlike methods used to find Pluto and other dwarf planets in our solar system like Eris. Understanding the orbits in a multi-planet system is critical since massive planets can affect the orbits of their neighboring planets in the system. “From the Hubble images we can determine the shape of their orbits, which brings insight into the system stability, planet masses and eccentricities, and also the inclination of the system,” says Soummer.

Making the study difficult is the extremely long orbits of the three outer planets, which are approximately 100, 200, and 400 years, respectively. The long orbital periods require considerable time to produce enough motion for astronomers to study. In this case however, the added time span from the Hubble data helps considerably. “The archive got us 10 years of science right now,” Soummer says. “Without this data we would have had to wait another decade. It’s 10 years of science for free.”

Given its 400 year orbital period, in the past ten years, the outermost planet has barely changed position. “But if we go to the next inner planet we see a little bit of an orbit, and the third inner planet we actually see a lot of motion,” Soummer added.

When the original HST data was analyzed, the methods used to detect exoplanets such as those orbiting HR 8799 were not available. Techniques to subtract the light from a host star still left residual light that drowned out the faint exoplanets. Soummer and his team improved on the previous methods and used over four hundred images from over 10 years of NICMOS observations.

The improvements on the previous technique included increasing contrast and minimizing residual starlight. Soummer and his team also successfully removed the diffraction spikes, a phenomenon that amateur and professional telescope imaging systems suffer from. With the improved techniques, Soummer and his team were able to see two of HR 8799’s faint inner planets, which are about 1/100,000th the brightness of the host star in infra-red.

Soummer has made plans to next analyze 400 more stars in the NICMOS archive with the same technique, which demonstrates the power of the Hubble Space Telescope data archive. How many more exoplanets are uncovered is anyone’s guess.

Finding these new exoplanets proves that even after the HST is no longer functioning, Hubble’s data will live on, and scientists will rely on Hubble’s revelations for years as they continue in their quest to understand the cosmos.

Source: Hubble Space Telescope Mission Updates

Encapsulating Curiosity for Martian Flight Test

NASA’s Curiosity Mars Science Laboratory Rover inside the entry aeroshell. At the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the "back shell powered descent vehicle" configuration, containing NASA's Mars Science Laboratory rover, Curiosity, is being placed on the spacecraft's heat shield. Credit: NASA/JPL-Caltech

[/caption]

With just over 6 weeks to go until the liftoff of Curiosity – NASA’s next Mars rover – prelaunch processing at the Kennedy Space Center (KSC) in Florida is rapidly entering the home stretch. Technicians placed the folded rover inside the complete aeroshell to match the Martian entry configuration components together and conduct preflight testing of the integrated assembly at the Payload Hazardous Servicing Facility at KSC. The aeroshell is comprised of the heat shield and back shell and encapsulates Curiosity during the long voyage to Mars.

The job of the aeroshell is to protect the Curiosity Mars Science Laboratory (MSL) from the intense heat of several thousand degrees F(C) generated by friction as the delicate assemblage smashes into the Martian atmosphere during the terrifying entry and descent to the surface.

Curiosity Mars Science Laboratory Rover - inside the Cleanroom at KSC. Credit: Ken Kremer

The rover itself has been mated to the back shell powered descent vehicle, known as the PDV or sky crane. The rocket powered descent stage (PDV) is designed to maneuver through the Martian atmosphere, slow the descent and safely set Curiosity down onto the surface at a precise location inside the chosen landing site of Gale Crater.

Technicians still have several more weeks of hardware testing and planetary protection checks ahead before NASA’s minivan sized Martian robot is encapsulated inside the aeroshell for the final time.

Rotating Curiosity's Back Shell Powered Descent Vehicle
At the Payload Hazardous Servicing Facility at the Kennedy Space Center in Florida, the "back shell powered descent vehicle" configuration of NASA's Mars Science Laboratory is being rotated for final closeout actions. At this time Curiosity and its rocket-powered descent stage have already been integrated, and are now encapsulated inside the spacecraft's back shell. The configuration of rover integrated with the descent stage is the "powered descent vehicle." The back shell, a protective cover, carries the parachute and several other components used during descent. The yellow disks visible at the top of the configuration are the descent stage's radar antennas that will be used to calculate the rover's descent speed and altitude. Credit: NASA/JPL-Caltech

Another major task still to be completed is mating the aeroshell to the cruise stage and then fueling of the cruise stage, which guides MSL from the Earth to Mars, according to Guy Webster, press spokesman for NASA’s Jet Propulsion Laboratory which manages the MSL project for NASA.

The launch of the $2.5 Billion Curiosity rover atop an Atlas V rocket is slated for Nov. 25, the day after Thanksgiving, and the launch window extends until Dec. 18. Arrival at Gale crater is set for August 2012.

Curiosity is by far the most scientifically advanced surface robotic rover ever sent beyond Earth and will search for environmental conditions that could have been favorable to support Martian microbial life forms if they ever existed in the past or present.

Final Closeout Actions for Curiosity's Heat Shield and Back Shell
At the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the "back shell powered descent vehicle" configuration, containing NASA's Mars Science Laboratory rover, Curiosity, is being rotated for final closeout actions. The flat, circular object in the foreground of the image is the spacecraft's heat shield. The heat shield and the back shell will together form an encapsulating aeroshell that will protect the rover from the intense heat and friction that will be generated as the flight system descends through the Martian atmosphere.Credit: NASA/JPL-Caltech

Watch for my upcoming report from inside the cleanroom with Curiosity.
Read Ken’s continuing features about Curiosity and Opportunity starting here:
Opportunity spotted Exploring vast Endeavour Crater from Mars Orbit
Twin Towers 9/11 Tribute by Opportunity Mars RoverNASA Robot arrives at ‘New’ Landing Site holding Clues to Ancient Water Flow on Mars
Opportunity Arrives at Huge Martian Crater with Superb Science and Scenic Outlook
Opportunity Snaps Gorgeous Vistas nearing the Foothills of Giant Endeavour Crater
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Opportunity Rover Heads for Spirit Point to Honor Dead Martian Sister; Science Team Tributes

Building the Future of Spaceflight

Here’s a very cool “music video” showing the ongoing progress being made on the Orion Multi-Purpose Crew Vehicle, the next-generation vehicle for human space travel beyond low-Earth orbit.

Although the MPCV may resemble Apollo-era capsules, its technology and capability are light years apart. The MPCV features dozens of technology advancements and innovations incorporated into the spacecraft’s subsystem and component design.

From careful assembly of the smallest parts to the dramatic tests of the rocket launch abort system, this video shows how much expertise, talent and just plain hard work is being invested in the future of human spaceflight by NASA as well as many industry-leading experts around the country!

Read more about the Orion MPCV program here.

In Focus: Aerospace Photojournalist Mike Killian

Mike Killian is an aerospace journalist who jumped at the opportunity to cover space events at Kennedy Space Center and Cape Canaveral Air Force Station. Photos Courtesy of Mike Killian

[/caption]CAPE CANAVERAL, Fla – The photographers that cover the events that take place in and around Florida’s Space Coast come from diverse backgrounds. However, when it comes to the passion that attracts so many to Cape Canaveral Air Force Station and Kennedy Space Center – their origins are very similar.

Many amateur photographers like Mike Killian have always been interested in spaceflight, in capturing the spectacle of launch. Like Killian, these photographers start out not knowing how to get onto Kennedy Space Center to shoot the launches and other events that take place there. They work out arrangements with NASA friends to get close and then, finally, they get affiliated with an accredited news organization (in Killian’s case the ARES Institute).

“I have loved the space program since I was a child,” Killian said. “Most folks that come out here and do this I doubt very highly that they do it thinking they will get rich. They do it because what they are showing the world is so important, so awe-inspiring…and so beautiful.”

Killian caught the reflection of space shuttle Atlantis as it was towed back to its OPF after completing the final mission of the space shuttle era - STS-135. Photo Courtesy of Mike Killian

Killian has only covered the space program as a photographer for a relatively short time, about three years. During that time however – he has covered some pivotal points in space flight history. The last flights of the space shuttle era, the launch of spacecraft to Earth orbit, the Moon and soon Mars. Killian, also like his compatriots, sacrifices long hours and endures low pay to capture images of these events. But when he gets that perfect shot of solid rocket boosters separating from an Atlas V on its way to orbit, or the final landing of the space shuttle – it is all worth it.

“Photography is pretty much like anything else,” said Killian during a recent interview. “It’s all about timing – being at the right place – at the right time.”

Whether static or in dramtic motion, Killian has captured the space shuttle program's final days. Photo Courtesy of Mike Killian

One recurring theme that occurs in aerospace photography is – progression. Photographers will come out to KSC/CCAFS with their digital cameras, then they will buy a more powerful camera and then they move on to remote cameras. When one hears remote they think the cameras are far away – the truth is that these cameras are extremely close. “Remote” means that they are remotely activated – generally by either a sound or light sensor.

Killian employs 2 Canon Rebel XSi cameras due to the camera’s affordability and versatility.

The 27-year-old, unlike many of his colleagues, does have a favorite image – and it isn’t even one that he took on Kennedy Space Center proper.

Killian's favorite shot shows Launch Complex 39A in the distance, a Shuttle Training Aircraft or STA checking weather conditions - and a very active thunderstorm. Photo Courtesy of Mike Killian

“My favorite shot thus far is of a lightning storm over KSC for the night launch of Discovery on STS-128. That storm scrubbed the launch attempt, but the images I captured that night were unreal,” said Killian. “This particular photo has so much going on – Discovery basking in xenon lights atop launch pad 39A fully fueled with her crew onboard, lightning racing through the clouds directly above KSC, & the shuttle training aircraft flying over the storm (upper left of photo) on weather recon trying to determine if there would be any chance the storm could let up in time to support a launch that night. It’s very unique, not your typical launch photo.”

For Killian photographing the space program allows him to both combine his love of photography with the driving interest that he has for space flight. Killian has no plans to stop photographing the space program anytime soon. For him this is not about the money, it’s about the history of thunder and the wonder of light and like so many of his fellow photojournalists he feels privileged to be able to do what he does.

Killian has covered many different events at Kennedy Space Center. His camera has captured events as stirring as the final launch of the shuttle era - and as poignant as the final rollout of space shuttle Discovery (seen here). Images Courtesy of Mike Killian

NASA is Looking for a Few Good Astronauts — Like You?

Could this be you one day? Credit: NASA

[/caption]

NASA is looking for applicants for its next class of astronaut candidates who will support long-duration missions to the International Space Station and future deep space exploration activities.

“We hope to have a lot of interest and applications so we can have a great class in 2013,” Duane Ross of the NASA Astronaut Selection Office told Universe Today. “This is a pretty fun job.”

So, do you have the right stuff to be an astronaut in today’s changing space environment?

NASA says that a bachelor’s degree in engineering, science or math and three years of relevant professional experience are required in order to be considered. Typically, successful applicants have significant qualifications in engineering or science, or extensive experience flying high-performance jet-aircraft.

“For scientists, engineers and other professionals who have always dreamed of experiencing spaceflight, this is an exciting time to join the astronaut corps,” said Janet Kavandi, director of flight crew operations at the Johnson Space Center in Houston. “This next class will support missions to the station and will arrive via transportation systems now in development. They also will have the opportunity to participate in NASA’s continuing exploration programs that will include missions beyond low Earth orbit.”

Ross said that this upcoming class will be rather small. “The last class of 2009 we had nine NASA folks and they were joined by five international partner astronauts. I think our goal would be something in the eight to twelve range. The actual number doesn’t get decided until we know better what our requirements are and what our loses have been.”

So, how will these astronauts be trained, since the space shuttle is no longer flying and future astronauts may be flying on spacecraft that haven’t been built yet?

“For the last class we picked we actually picked them to be long duration crew members for space station. They didn’t train for the space shuttle and that is exactly what we are going to do with this class,” Ross said. “The new class will train for learning the International Space Station systems, the Russian language, spacewalk and robotics training, and several other disciplines and other things that will come online such as the MultiPurpose Crew Vehicle. For the things that mature downstream, there will be training for those when the time is right but right now we are going to concentrate on the space station.”

After applicant interviews and evaluations, NASA expects to announce the final selections in 2013, and training to begin that August.

NASA will begin accepting applications in November 2011. Additional information about the Astronaut Candidate Program is available by calling the Astronaut Selection Office at 281-483-5907.

For more information, visit:
http://astronauts.nasa.gov/

Bizarre Video: China’s Tiangong 1 Space Lab Animation set to ‘America the Beautiful’ Soundtrack

A Long March-2FT1 carrier rocket loaded with Tiangong-1 unmanned space lab module blasts off from the launch pad at the Jiuquan Satellite Launch Center in northwest China's Gansu Province, Sept. 29, 2011. (Xinhua/Wang Jianmin)


The Guardian newspaper in England is reporting that China’s state run television, CCTV, and China’s space agency released a video animation of the just launched Tiangong 1 miniature space station showing extensive footage of rendezvous and docking maneuvers in Earth orbit that is inexplicably set to the tune of “America the Beautiful”, a patriotic hymn that many American’s regard as a second, unofficial national anthem. Watch the YouTube video above and decide yourself.

The Guardian writes; “While China’s leaders were celebrating the triumphant launch of Tiangong-1 space lab on Thursday (Sept 29) , viewers of state television footage [CCTV] were treated to a bizarre choice of soundtrack: America the Beautiful”.

Selecting “America the Beautiful’ for the Tiangong-1 (Heavenly Palace 1) launch sound track seems rather questionable, says the Guardian, and it’s hard to tell if this was choice was intentional or an error by the propaganda department

“Is this the work of an idealist seeking to usher in a new era of trans-Pacific co-operation, a nationalist who wants to colonise American culture as well as outer space, or simply a propaganda gaffe?” – wrote the Guardian

A CCTV official quoted by the Guardian could not offer any clarification.

“I don’t know how to answer your question,” Chen Zhansheng of the CCTV propaganda department said. “I cannot help you.”

[/caption]

The CCTV website states that the animation was provided by the Jiuquan Satellite Launch Center and provides a detailed description. Since the Guardian’s story, the animation has been deleted by CCTV.

The animation itself begins with a simulated launch of Tiangong-1 aboard the Long March 2F rocket and then shows the upcoming rendezvous and docking sequence with the Shenzhou-8 unmanned capsule that is set to launch in early November

Two days after blastoff of Shenzhou-8, it will complete China’s first rendezvous and docking in space. After about 12 days, the two spacecraft are due to uncouple.

China will then attempt another docking to gain more practice ahead of the launch of two manned Shenzhou capsules scheduled for 2012 (Shenzhou-9 and 10) with crews of two or three Chinese astronauts, one of whom may be a woman.

Check this action packed alternate version I found, in Chinese, which is set to different music and with even more extensive animation of the Tiangong 1/Shenzhou-8 joint mission.

One thing absolutely clear is that China is aggressively pushing forward with its manned space program, while the US space program retrenches due to continual budget cutbacks.

China plans to orbit a 60 ton, 3 module manned space station by 2020, about the time when the lifetime of the ISS may be coming to an end, unless the international partners agree to fund an extension of its orbital research activities.

The Chinese space station would be about the size of America’s first space station – Skylab.

In the meantime, officials at the Beijing Aerospace Flight Control Center report that they continue adjusting the orbit of the 10 meter long Tiangong-1 space lab module.

Read Ken’s related features about Tiangong 1
China Blasts First Space Lab Tiangong 1 to Orbit
China set to ‘Leap Forward in Space’ as Tiangong 1 Rolls to Launch Pad

United Launch Alliance’s Delta II Approved for Potentially Five More Launches

United Launch Alliance's Delta II rocket has been added to the National Launch Services II contract by NASA. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
NASA announced that it has added the Delta II rocket, a launch vehicle that appeared to be slipping into history, to the NASA Launch Services (NLS) II contract. The Delta II, produced by United Launch Alliance, is one of the most successful expendable launch vehicles that has ever been produced.

This modification of the contract will allow ULA to add the Delta II rocket as part of the contract’s on-ramp provision. The modification allows United Launch Services to offer as much as five Delta II rockets.

The Delta II was most recently utilized to launch the GRAIL mission to study the Moon's composition. Photo Credit: Mike Killian/ARES Institute

“We are extremely pleased NASA has added the reliable Delta II to the NLS II contract and look forward to continuing the legacy of the program,” said Michael Gass, ULA’s president and CEO. “ULA has demonstrated its ability to fully integrate Atlas V, Delta IV and Delta II product lines allowing us to continue offering medium launch capability at the best value for our customers.”

The Delta II rocket, in its various configurations has been launched 150 times and has a success rate of 98.7 percent. The one notable failure was the 1997 launch of a U.S. Air Force Global Positioning IIR-1 satellite (GPS IIR-1). Within 13 seconds of launch the Delta II exploded causing severe destruction to the surrounding area. The cause of this mishap was determined to be a crack within one of the GEM-40 solid rocket boosters that are affixed to the base of the Delta II.

The Delta II rocket has a very extensive history of success and has been used to launch many famous missions. Image Credit: NASA/JPL

“While we count success one mission at a time, we have been able to count on the Delta II’s success 96 times in a row over the last decade,” Gass said. “This is a tribute to our dedicated ULA employees, our supplier teammates and our NASA Launch Services Program customer who ensures mission success is the focus of each and every launch.”

The planetary science missions that the rocket has sent into space reads like a “Who’s Who” of space exploration missions. The Mars Exploration Rovers Spirit and Opportunity, Mars Phoenix Lander, Genesis, Stardust, Mars Pathfinder, Mars Global Surveyor, Messenger, Deep Impact, Dawn, Kepler, Wise and the recent GRAIL mission to the Moon – all thundered to orbit atop a Delta II.

The Delta II rocket is launched from either Vandenberg Air Force Base in California or Cape Canaveral Air Force Station located in Florida. Photo Credit: NASA.gov

ULA’s next planned launch of a Delta II will carry the NPOESS Preparatory Project (NPP) mission for NASA. It is currently slated to launch Oct. 25, 2011 from Space Launch Complex-2 at Vandenberg Air Force Base, located in California. ULA launches from both Vandenberg as well as Cape Canaveral Air Force Station, located in Florida.

While this change does allow for at least five more launches of the Delta II, after those launches, the rocket will no longer be utilized and will be phased out of service.

The NLS II contracts are designed to provide for payloads weighing about 550 pounds or more to be sent to a minimum 124-mile-high circular orbit. The launch service providers signed into these contracts also may offer different launch vehicles to NASA to meet other requirements. NASA can also provide launch services to other agencies, such as the National Oceanic and Atmospheric Administration or NOAA.

Spirit and Opportunity, Pathfinder, Deep Impact, Dawn, Kepler, Stardust, Genesis and Wise - were all launched on the Delta II rocket. Photo Credit: NASA/George Shelton