Human Mission to an Asteroid: Asteroid Field Testing

How will we work and set up a base camp on an asteroid? NASA is currently doing some field work to test technologies that could be used on future human missions to asteroids. The Desert Research And Technology Studies (D-R.A.T.S) crew is back in action, testing communication scenarios for near-Earth asteroids, and 2 new instruments from Goddard Spaceflight Center, the ExPED and VAPoR. The video shows more info.

The crew will be doing live webcasts the next few days. You can watch below, or at this link. Times of the webcast vary, so watch the side chat window for updates.
Continue reading “Human Mission to an Asteroid: Asteroid Field Testing”

Deadly and Destructive Path of Hurricane Irene seen in NASA Videos and Images

Irene Makes Landfall Over New York. This GOES-13 satellite image is of Hurricane Irene just 28 minutes before the storm made landfall in New York City. The image shows Irene's huge cloud cover blanketing New England, New York and over Toronto, Canada. Shadows in Irene's clouds indicate the bands of thunderstorms that surrounded the storm. Credit: NASA/NOAA GOES Project

NASA Video Caption: The Life of Hurricane Irene from the Caribbean to Canada from August 21 through August 29 seen by NASA/NOAA satellites. Credit: NASA/NOAA/GOES/MODIS

The new NASA animation above shows the birth and subsequent destructive and deadly path followed by Hurricane Irene from August 21 through August 29, 2011 starting in the Caribbean, and then tracking along the US East Cost and up into Canada. The observations combine images taken by NASA and NOAA Earth orbiting satellites.

The cloud images were captured by the NASA/NOAA GOES-13 satellite and overlaid on a true-color NASA MODIS map. Irene followed a lengthy course over Puerto Rico, Hispaniola, the Bahamas, and then along the entire US East with landfalls over North Carolina, New Jersey and New York.

NASA ISS astronaut Ron Garan and cameras flying overhead aboard the International Space Station (ISS) also photographed vivid images showing the magnitude of Irene slamming into the US East coast.

Irene caused widespread property damage. Massive and raging flooding in several US states destroyed houses, crushed businesses and washed away bridges and roads and more. The worst flooding is yet to come to some inland portions of Vermont, New Jersey, New York, Pennsylvania and elsewhere as uncontrollable waters continue to rise at numerous rivers, lakes and even ponds, threatening even more misery in their wake.

[/caption]

So far 41 fatalities in 12 states have been attributed to Irene and more may be expected as searches continue. Some communities have been entirely cut off due to washed out access. Airlifts of food and water have begun. More people are being evacuated from New Jersey towns today, Aug 30.

Brave emergency rescue workers have put their own lives at peril and saved the lives of countless others of all ages from babies to the elderly. Some 8 million customers, including my area, lost power due to extensive flooding, downed trees and electrical wires, and devastated infrastructure.

Hurricane Irene twitpic from the International Space Station on 8/27/11 by NASA Astronaut Ron Garan
Irene From Space and the ISS as it crossed the coast on August 27, 2011 at 3:32pm EST. Hope everyone is OK wrote NASA Astronaut Ron Garan with his twitpic from the ISS. Credit: NASA/Ron Garan aboard the ISS

Emergency crews are hard at work to restore power as quickly as possible, but many thousands of homes and businesses could be without power for up to a week or more. About 3.3 million customers are still without power today.

NASA’s GOES-13 satellite captured a dramatic view of Hurricane Irene just 28 minutes prior to making landfall over New York City. Today’s NASA Image of the day shows the humongous cloud cover spanning the US East coast from the Mid-Atlantic States up to New Jersey, New York, Pennsylvania, and New England and into Toronto, Canada.

This GOES-13 image from Monday, August 29 at 7:45 a.m. EDT shows an active Atlantic Ocean with the remnants of Hurricane Irene moving into Quebec and Newfoundland (left), Tropical Storm Jose (center) and newly formed Tropical Depression 12 (right). Credit: NASA/NOAA GOES Project
Irene slams into North Carolina. The GOES-13 satellite saw Hurricane Irene on August 27, 2011 at 10:10 a.m. EDT after it made landfall at 8 a.m. in Cape Lookout, North Carolina. Irene's outer bands had already extended into New England. Credit: NASA/NOAA GOES Project

Many transit systems and airports in Irene’s path were shutdown ahead of the storm.

Send me your photos of Irene’s destruction to post at Universe Today.

Opportunity Arrives at Huge Martian Crater with Superb Science and Scenic Outlook

Endeavour Crater Panorama from Opportunity, Sol 2681, August 2011. NASA’s Opportunity Mars rover arrived at the rim of huge Endeavour crater on Sol 2681, August 9, 2011 and climbed up the ridge known as Cape York. A small crater dubbed ‘Odyssey’ is visible in the foreground at left. The rover has now driven to the outskirts of Odyssey to investigate the ejecta blocks which may stem from an ancient and wetter Martian Epoch. Opportunity snapped this soaring panorama showing distant portions of Endeavour’s rim - as far as 13 miles away - in the background. This photo mosaic was stitched together from raw images taken by Opportunity on Sol 2681. Mosaic Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Kenneth Kremer

[/caption]NASA’s Mars Opportunity rover has finally arrived at the huge Martian crater named Endeavour that simultaneously offers a mother lode of superb scenery and potentially the “Mother of all Martian Science”. The epic journey took nearly three years.

The intrepid robogirl is now climbing uphill on a Scientific quest that may well produce bountiful results towards the most important findings ever related to the search for life on Mars. Opportunity arrived at the western rim of the 13 mile (21 km) wide Endeavour crater on the 2681st Sol , or Martian day, of a mission only warrantied to last 90 Sols.

See our new Opportunity panoramic mosaics (Marco Di Lorenzo & Ken Kremer) illustrating the magnificent scenery and science targets now at hand on the surface of the Red Planet, thanks to the diligent work of the science and engineering teams who created the twin Mars Exploration Rover (MER) vehicles – Spirit & Opportunity.

Opportunity made landfall at Endeavour at a ridge of the discontinuous crater rim named Cape York and at a spot dubbed “Spirit Point” – in honor or her twin sister Spirit which stopped communicating with Earth about a year ago following more than six years of active science duty. See traverse map mosaic.

The martian robot quickly started driving northwards up the gnetle slopes of Cape York and has reached a small crater named “Odyssey” – the first science target, Dr. Matt Golembek told Universe Today. Golembek is a Senior Research Scientist with the Mars Exploration Program at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif.

“Large ejecta blocks are clearly visible on the rim of Odyssey crater,” said Golembek. The crater is about 66 feet (20 m) in diameter.

Odyssey is a small impact crater of interest to the team because it features exposed material from Mars ancient Noachian era that was ejected when the crater was excavated long ago. Opportunity carefully drove over several days to one of those ejecta blocks – a flat topped rock nicknamed Tisdale 2.

Endeavour Crater Panorama from Opportunity, Sol 2685, August 2011
NASA’s Opportunity Mars rover arrived at the rim of huge Endeavour crater on Sol 2681, August 9, 2011 and is climbed up the ridge known as Cape York. She drove to the flat topped Tisdale 2 rock at upper left to analyze it with the science instruments on the robotic arm. Opportunity snapped this soaring panorama showing distant portions of Endeavour’s rim - as far as 13 miles away - in the background. This photo mosaic was stitched together from raw images taken by Opportunity on Sol 2685.
Mosaic Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Kenneth Kremer

“Opportunity is at a block of Odyssey crater ejecta called Tisdale 2 and the rock appears different from anything else we have seen,” Golembek explained.

Starting on Sol 2688 (Aug. 16) the rover began a science campaign time to investigate the rock with the instruments at the terminus of its robotic arm or IDD (Instrument Deployment Device) that will continue for some period of time.

“We are about to start an IDD campaign,” Golembek stated.

The Long Journey of Opportunity form Eagle to Endeavour Crater (2004 to 2011).
This map mosaic shows Opportunity’s epic trek of nearly eight years from landing at Eagle crater on January 24, 2004 to arrival at the giant 13 mile (21 km) diameter Endeavour crater in August 2011. Opportunity arrived the Endeavour’s rim and then drove up a ridge named Cape York. The photomosaic at top right show the outlook from Cape York on Sol 2685 (August 2011).
Mosaic Credit: NASA/JPL/Cornell/Kenneth Kremer/Marco Di Lorenzo

The team reports that the soil at Cape York is also of a different texture than any that Opportunity has seen so far on her incredible 20 mile (33 km) trek across the Meridiani Planum region of Mars. So far they haven’t seen of the iron-rich concretions, nicknamed “blueberries,” which have been plentiful on the surface along the way at numerous locations Opportunity has stopped at and investigated over the past 90 months. Initially the prime mission was projected to last 3 months – the remainder has been a huge bonus.

The science team is directing Opportunity to hunt for clay minerals, also known as phyllosilicates, that could unlock the secrets of an ancient Epoch on Mars stretching back billions and billions of years ago that was far wetter and very likely more habitable and welcoming to life’s genesis.

Phyllosilicate minerals form in neutral water that would be vastly more friendly to any potential Martian life forms – if they ever existed in the past or present. Signatures for phyllosilicates were detected by the CRISM instrument aboard NASA’s powerful Mars Reconnaissance Orbiter (MRO) spacecraft circling Mars

Flat-topped Tisdale 2 rock. Credit: NASA/JPL-Caltech
'Ridout' Rock on Rim of Odyssey Crater. Opportunity looked across small Odyssey crater on the rim of much larger Endeavour crater to capture this raw image from its panoramic camera during the rover's 2,685th Martian day, or sol, of work on Mars (Aug. 13, 2011). From a position south of Odyssey, this view is dominated by a rock informally named "Ridout" on the northeastern rim of Odyssey. The rock is roughly the same size as the rover, which is 4.9 feet (1.5 meters) long. Credit: NASA/JPL-Caltech/Cornell/ASU

Read my continuing features about Mars starting here
Opportunity Snaps Gorgeous Vistas nearing the Foothills of Giant Endeavour Crater
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Opportunity Rover Heads for Spirit Point to Honor Dead Martian Sister; Science Team Tributes
Opportunity Rover Completes Exploration of fascinating Santa Maria Crater
Opportunity Surpasses 30 KM Driving and Snaps Skylab Crater in 3 D

Human Mission to an Asteroid: Why Should NASA Go?

A human mission to an asteroid. Credit: Lockheed Martin

Imagine, if you can, the first time human eyes see Earth as a distant, pale blue dot. We’ve dreamed of deep space missions for centuries, and during the Apollo era, space enthusiasts assumed we’d surely be out there by now. Nevertheless, given the current state of faltering economies and potential budget cuts for NASA and other space agencies, sending humans beyond low Earth orbit might seem as impossible and unreachable as ever, if not more.

But NASA has been given a presidential directive to land astronauts on an asteroid by 2025, a mission that some say represents the most ambitious and audacious plan yet for the space agency.

“The human mission to an asteroid is an extremely important national goal,” Apollo astronaut Rusty Schweickart told Universe Today. “It will focus both NASA’s and the nation’s attention on we humans extending our capability beyond Earth/Moon space and into deep space. This is an essential capability in order to ultimately get to Mars, and a relatively short mission to a near-Earth asteroid is a logical first step in establishing a deep space human capability.”

And, Schweickart added, the excitement factor of such a mission would be off the charts. “Humans going into orbit around the Sun is pretty exciting!” said Schweickart, who piloted the lunar module during the Apollo 9 mission in 1969. “The Earth will be, for the first time to human eyes, a small blue dot.”

But not everyone agrees that an asteroid is the best destination for humans. Several of Schweickart’s Apollo compatriots, including Neil Armstrong, Jim Lovell and Gene Cernan, favor returning to the Moon and are concerned that President Obama’s directive is a “grounding of JFK’s space legacy.”

Compounding the issue is that NASA has not yet decided on a launch system capable of reaching deep space, much less started to build such a rocket.

Can NASA really go to an asteroid?

NASA Administrator Charlie Bolden has called a human mission to an asteroid “the hardest thing we can do.”

Excited by the challenge, NASA chief technology officer Bobby Braun said, “This is a risky, challenging mission. It’s the kind of mission that engineers will eat up.”

A human mission to an asteroid is a feat of technical prowess that might equal or exceed what it took for the US to reach the Moon in the 1960’s. Remember scientists who thought the moon lander might disappear into a “fluffy” lunar surface? That reflects our current understanding of asteroids: we don’t know how different asteroids are put together (rubble pile or solid surface?) and we certainly aren’t sure how to orbit and land on one.

“One of the things we need to work on is figuring out what you actually do when you get to an asteroid,” said Josh Hopkins from Lockheed Martin, who is the Principal Investigator for Advanced Human Exploration Missions. Hopkins leads a team of engineers who develop plans and concepts for a variety of future human exploration missions, including visits to asteroids. He and his team proposed the so-called “Plymouth Rock” mission to an asteroid (which we’ll discuss more in a subsequent article), and have been working on the Orion Multi-purpose Crew Vehicle (MPCV), which would be a key component of a human mission to an asteroid.

“How do you fly in formation with an asteroid that has a very weak gravitational field, so that other perturbations such as slight pressure from the Sun would affect your orbit,” Hopkins mused, in an interview with Universe Today. “How do you interact with an asteroid, especially if you don’t know exactly what its surface texture and composition is? How do you design anchors or hand-holds or tools that can dig into the surface?”

Hopkins said he and his team have been working on developing some technologies that are fairly “agnostic” about the asteroid – things that will work on a wide variety of asteroids, rather than being specific to an iron type- or carbonaceous-type asteroid.

Hypothetical astronaut mission to an asteroid. Credit: NASA Human Exploration Framework Team

A weak gravity field means astronauts probably couldn’t walk on some asteroids – they might just float away, so ideas include installing handholds or using tethers, bungees, nets or jetpacks. In order for a spaceship to stay in orbit, astronauts might have to “harpoon” the asteroid and tether it to the ship.

Hopkins said many of those types of technologies are being developed for and will be demonstrated on NASA’s OSIRIS-REx mission, the robotic sample return mission that NASA recently just selected for launch in 2016. “That mission is very complimentary to a future human mission to an asteroid,” Hopkins said.

Benefits

What benefits would a human asteroid mission provide?

“It would add to our body of knowledge about these interesting, and occasionally dangerous bodies,” said Schweickart, “and benefit our interest in protecting the Earth from asteroid impacts. So the human mission to a NEO is a very high priority in my personal list.”

Space shuttle astronaut Tom Jones says he thinks a mission to near Earth objects is a vital part of a planned human expansion into deep space. It would be an experiential stepping stone to Mars, and much more.

“Planning 6-month round trips to these ancient bodies will teach us a great deal about the early history of the solar system, how we can extract the water known to be present on certain asteroids, techniques for deflecting a future impact from an asteroid, and applying this deep space experience toward human Mars exploration,” Jones told Universe Today.

“Because an asteroid mission will not require a large, expensive lander, the cost might be comparable to a shorter, lunar mission, and NEO expeditions will certainly show we have set our sights beyond the Moon,” he said.

But Jones – and others – are concerned the Obama administration is not serious about such a mission and that the president’s rare mentions of a 2025 mission to a nearby asteroid has not led to firm NASA program plans, realistic milestones or adequate funding.

“I think 2025 is so far and so nebulous that this administration isn’t taking any responsibility for making it happen,” Jones said. “They are just going to let that slide off the table until somebody else takes over.”

Jones said he wouldn’t be surprised if nothing concrete happens with a NASA deep space mission until there is an administration change.

“The right course is to be more aggressive and say we want people out of Earth orbit in an Orion vehicle in 2020, so send them around the Moon to test out the ship, get them to the LaGrange points by 2020 and then you can start doing asteroid missions over the next few years,” Jones said. “Waiting for 2025 is just a political infinity in terms of making things happen.”

Jones said politics aside, it is certainly feasible to do all this by 2020. “That is nine years from now. My gosh, we are talking about getting a vehicle getting out of Earth orbit. If we can’t do that in nine years, we probably don’t have any hope of doing that in longer terms.”

Can NASA do such a mission? Will it happen? If so, how? Which asteroid should humans visit?

In a series of articles, we’ll take a closer look at the concepts and hurdles for a human mission to an asteroid and attempt to answer some of these questions.

Next: The Orion MPCV

For more reading: Tom Jones’ op-ed in Popular Mechanics, “50 Years After JFK’s Moon Declaration, We Need a New Course in Space”; More info on OSIRIS_REx,

First JWST Instrument Passes Tests

MIRI, ( Mid InfraRed Instrument ), during ambient temperature alignment testing in RAL Space's clean rooms. Image Credit: STFC/RAL Space

[/caption]

One of many instruments that will fly aboard the James Webb Space Telescope (JWST) has just passed critical testing at ESA facilities in the UK. “MIRI”, the Mid-InfraRed Instrument, is being developed by the ESA as a vital part of the JWST mission. Researchers will use MIRI to study exoplanets, distant galaxies, comets and dust-shrouded star forming regions.  In order to work correctly and provide useful data, MIRI needs to consistently operate at temperatures of around 7 kelvin. (-266° C). How do engineers test these components to make sure they work properly in harsh conditions of space?

At the UK Science and Technology Facilities Council’s RAL Space in Oxfordshire, engineers performed tests to ensure the entire instrument assembly works as designed.  Inside the test chamber, special “targets” were used to help simulate scientific observations. The simulated observations will scientists develop the software necessary to calibrate MIRI after JWST’s launch. Based on the initial results of testing, the engineers believe MIRI is working properly and will perform all required science functions extremely well.

Peter Jakobsen, ESA JWST Project Scientist, said,  “Future users of JWST and MIRI are looking forward to learning more about the detailed performance of the instrument once the test results are analysed further in the coming months. The experience gained by the MIRI test team throughout this campaign has sown the seeds for a rich scientific harvest from the JWST mission.”

In the same ESA press release,  Gillian Wright, Principal Investigator and lead of the MIRI European Science Team added, “It is inspiring to see MIRI working extremely well at its operating temperature after so many years in development. The test campaign has been a resounding success and the whole MIRI team can be very proud of this magnificent achievement.”

Sean Keen making adjustments to MIRI during environmental testing in RAL Space's thermal vacuum chamber on August 16th. 2011.

This past July, the U.S House of Representatives’ appropriations committee on Commerce, Justice, and Science proposed a budget for fiscal year 2012 that would cancel JWST’s funding. In a testament to the dedication of the teams involved in JWST’s construction, work continues despite the uncertain fate of the JWST mission.

Aside from the MIRI instrument passing testing, over half of JWST’s mirrors have been polished and coated. Several of the mirror segments have passed rigorous testing, and at this time, nearly three-quarters of JWST’s hardware is being built or tested.

A screenshot of a JWST mirror segment in the laser testing facility at Ball Aerospace in Boulder, Colorado. Credit: John O'Connor, NASA Tech.

Above is a screenshot of a larger panoramic image from the NASA Tech website, showing one of the JWST mirror segments being tested in a laser testing facility at Ball Aerospace in Boulder, Colorado. You can see several panoramic views of the mirror testing at NASA Tech. These are big files, but are well worth the view! Just go to the main page and scroll down for the JWST panoramas.

If you’d like to learn more about the James Webb Space Telescope, visit: http://www.jwst.nasa.gov or: http://webbtelescope.org/webb_telescope

Resources on how you can contact your representative to express support for JWST can be found at: http://savethistelescope.blogspot.com.

You can also read a statement by the American Astronomical Society regarding JWST at: http://aas.org/node/4483 Source: ESA News Release

No, NASA is Not Predicting We’ll be Destroyed by Aliens

Movie poster from 'Aliens Attack," via getfilm.co.uk

[/caption]

There were some interesting, if not shocking headlines this week regarding a study supposedly put out by NASA, with the articles saying that aliens might come and destroy Earth because of our global warming problems. Headlines such as:

Aliens Could Attack Earth to End Global Warming, NASA Frets (Fox News)

Global Warming Could Provoke Alien Attack: NASA (International Business Times)

NASA: Aliens might destroy us because of our gases, (CNET)

and this one, which started the whole thing:

Aliens may destroy humanity to protect other civilizations, say scientists (The Guardian — The subheadline for this article originally said it was a NASA report, but has since been amended)

While the report is real, and one of the authors was a NASA intern, NASA in no way sponsored or endorsed the article, which was basically an enjoyable thought-experiment, and was titled: “Would Contact with Extraterrestrials Benefit or Harm Humanity? A Scenario Analysis.”

(Available as pdf here.)

By comparing the title of the paper to the splashy headlines, as you can imagine, most of the news articles don’t accurately describe the paper’s content and conclusions — over-blowing just a tad the part about alien invasions — and the headlines portray NASA as being behind the paper and the research. But NASA didn’t really have a thing to do with the very speculative, if not fun paper.

After receiving some razzing from Keith Cowing at NASAWatch about how NASA just quietly allows the tabloids to determine the space agency’s public image, NASA used their social media presence to try and rectify the misconceptions. This morning @NASA twittered: Yes, @drudge & @guardiannews are mistaken about an “alien” report. It’s not NASA research. Ask the report’s author http://go.nasa.gov/nRI8Lf

Here’s the abstract from the paper: “While humanity has not yet observed any extraterrestrial intelligence (ETI), contact with ETI remains possible. Contact could occur through a broad range of scenarios that have varying consequences for humanity. However, many discussions of this question assume that contact will follow a particular scenario that derives from the hopes and fears of the author. In this paper, we analyze a broad range of contact scenarios in terms of whether contact with ETI would benefit or harm humanity. This type of broad analysis can help us prepare for actual contact with ETI even if the details of contact do not fully resemble any specific scenario.”

The paper was written by Seth Baum, Jacob Haqq-Misra, and Shawn Domagal-Goldman. Domagal-Goldman is a post-doc student working at NASA. Probably flustered, bewildered and a bit embarrassed, he wrote on NASA’s PaleBlue blog today to try and explain how this all got out of hand:

“So here’s the thing. This isn’t a “NASA report.” It’s not work funded by NASA, nor is it work supported by NASA in other ways. It was just a fun paper written by a few friends, one of whom happens to have a NASA affiliation.

A while ago, a couple good friends of mine (Seth Baum and Jacob Haqq-Misra) approached me about a paper they were writing, and asked if I wanted to join them on it. The paper was a review of all the different proposed situations for contact with an alien civilization. I didn’t think this was particularly important. After all, I consider the likelihood of contact with an alien civilization to be low. It certainly wasn’t urgent, as I don’t expect this to happen anytime soon. But… it sounded like fun and I decided to join in on it. So we wrote the paper, but I have to admit that Seth and Jacob put in the vast majority of the work on it. One of the scenarios we considered in the review was the possibility that an alien civilization would contact us because they were concerned about the exponential growth of our civilization, as evidenced by climate change. This isn’t an entirely new idea; remember, this was a review effort. Indeed, Keanu Reaves recently played a similar alien in the movie “The Day the Earth Stood Still.” There were lots of other ideas we reviewed, but this was probably the most provocative.

Well, the paper came out a couple months ago. Today, for some reason, The Guardian picked it up, publishing an article about it with the following title: “Aliens may destroy humanity to protect other civilizations, say scientist: Rising greenhouse emissions may tip off aliens that we are a rapidly expanding threat, warns a report for NASA.” That then was picked up by The Drudge Report, with this headline:

“NASA REPORT: Aliens may destroy humanity to protect other civilizations…”

UH OH. Now that is a bit problematic.

So here’s the deal, folks. Yes, I work at NASA. It’s also true that I work at NASA Headquarters. But I am not a civil servant… just a lowly postdoc. More importantly, this paper has nothing to do with my work there. I wasn’t funded for it, nor did I spend any of my time at work or any resources provided to me by NASA to participate in this effort. There are at least a hundred more important and urgent things to be done on any given work day than speculate on the different scenarios for contact with alien civilizations… However, in my free time (what precious little I have), I didn’t mind working on stuff like this every once in a while. Why? Well, because I’m a geek and stuff like this is fun to think about. Unfortunately, there is not enough time for fun. Indeed, I felt guilty at times because this has led to a lack of effort on my part in my interactions with Seth and Jacob. Beyond adding some comments here or there, I did very little for the paper.

But I do admit to making a horrible mistake. It was an honest one, and a naive one… but it was a mistake nonetheless. I should not have listed my affiliation as “NASA Headquarters.” I did so because that is my current academic affiliation. But when I did so I did not realize the full implications that has. I’m deeply sorry for that, but it was a mistake born out of carelessness and inexperience and nothing more. I will do what I can to rectify this, including distributing this post to the Guardian, Drudge, and NASA Watch. Please help me spread this post to the other places you may see the article inaccurately attributed to NASA.

One last thing: I stand by the analysis in the paper. Is such a scenario likely? I don’t think so. But it’s one of a myriad of possible (albeit unlikely) scenarios, and the point of the paper was to review them. But remember – and this is key – it’s me standing for the paper… not the full weight of the National Aeronautics and Space Administration. For anything I have done to mis-convey that to those covering this story, to the public, or to the fine employees of NASA, I apologize.”

GRAIL Lunar Twins Mated to Delta Rocket at Launch Pad

GRAIL Lunar Twins hoisted to top of Launch Pad 17B at Cape Canaveral. NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft are lifted to the top of their launch pad at Space Launch Complex 17B at Cape Canaveral Air Force Station in Florida and were mated to their Delta II Heavy Booster Rocket. They are wrapped in plastic to prevent contamination outside the clean room. Launch is scheduled for Sept. 8. Credit: NASA/Kim Shiflett

[/caption]

With blastoff just 2 ½ weeks away, NASA’s GRAIL lunar twins completed a major milestone towards launch today (Aug. 18) when they were mated to the top of the Delta II Heavy rocket that will boost them to the moon. Launch is slated for Sept. 8 at 8:37 a.m. EDT.

This morning the tightly wrapped $496 Million duo took their last trip on Earth before beginning their nearly four month journey to the Moon. GRAIL A & GRAIL B were carefully transported 15 miles (25 km) from the clean room processing facility at the Astrotech Space Operation’s payload processing facility in Titusville, Fla to Space Launch Complex 17B (SLC-17B) at Cape Canaveral Air Force Station in Florida.

“The GRAIL spacecraft transportation convoy to SLC-17B departed Astrotech at 11:55 p.m. EDT on Wednesday, Aug. 17, “ said Tim Dunn, NASA’s Delta II Launch Director in an interview with Universe Today. “The spacecraft, inside the handling can, arrived at the launch pad, SLC-17B, at 4:00 a.m. this morning.”

“The spacecraft was then hoisted by the Mobile Service Tower crane onto the Delta II launch vehicle and the spacecraft mate was complete at 9:30 a.m.”

Crane lifts GRAIL A & B to the top of the Mobile Service Tower on Aug. 18. The probes are wrapped in protective plastic sheeting inside the handling can. Credit: NASA/Kim Shiflett

Technicians joined the nearly identical and side by side mounted spacecraft onto the top of the guidance section adapter of the Delta’s second stage. The Delta II was built by United Launch Alliance (ULA).

“Tomorrow, the GRAIL spacecraft team will perform functional testing on both the GRAIL A and GRAIL B spacecraft,” Dunn told me.

“The next major milestone will be performance of the Integrated Systems Test (IST) on Monday, (8/22/11).

“Today’s spacecraft mate operation was flawlessly executed by the combined ULA and NASA Delta II Team,” said Dunn.

These tests will confirm that the spacecraft is healthy after the fueling and transport operations. After further reviews of the rocket and spacecraft systems the GRAIL team will install the payload fairing around the lunar probes.

NASA’s twin GRAIL Science Probes ready for Lunar Expedition
GRAIL B (left) and GRAIL A (right) spacecraft are mounted side by side on top of a payload adapter inside the clean room at Astrotech Space Operations facility. The spacecraft await lunar launch on Sept. 8, 2011. Credit: Ken Kremer

NASA’s dynamic duo will orbit the moon to determine the structure of the lunar interior from crust to core and to advance understanding of the thermal evolution of the moon.

“We are about to finish one chapter in the GRAIL story and open another,” said Maria Zuber, GRAIL’s principal investigator, based at the Massachusetts Institute of Technology in Cambridge in a statement. “Let me assure you this one is a real page-turner. GRAIL will rewrite the book on the formation of the moon and the beginning of us.”

The GRAIL launch will be the last for a Delta II in Florida.

GRAIL A & B lunar twins arrive at Pad 17B. Credit: NASA/Kim Shiflett

Technicians hoist GRAIL A & B lunar twins inside the handling can at Pad 17B. Credit: NASA/Kim Shiflett

Read my prior features about GRAIL
GRAIL Twins ready for NASA Science Expedition to the Moon: Photo Gallery

3 D Alien Snowman Graces Vesta

3D Snowman craters and Vesta’s Equatorial Region from Dawn. This anaglyph image of Vesta's equator with the crater feature named “snowman” (center, right) was put together from two clear filter images, taken on July 24, 2011 by the framing camera instrument aboard NASA's Dawn spacecraft. The anaglyph image shows hills, troughs, ridges and steep craters. The framing camera has a resolution of about 524 yards (480 meters) per pixel. Use red-green (or red-blue) glasses to view in 3-D (left eye: red; right eye: green [or blue]). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

[/caption]

An alien ‘Snowman’ on an alien World.

The ‘Snowman’ is a string of three craters and is among the most strange and prominent features discovered on a newly unveiled world in our solar system – the giant asteroid Vesta. It reminded team members of the jolly wintertime figure – hence its name – and is a major stand out in the 3 D image above and more snapshots below.

Until a few weeks ago, we had no idea the ‘Snowman’ even existed or what the rest of Vesta’s surface actually looked like. That is until NASA’s Dawn spacecraft approached close enough and entered orbit around Vesta on July 16 and photographed the Snowman – and other fascinating Vestan landforms.

“Each observation of Vesta is producing incredible views more exciting than the last”, says Dawn’s Chief Engineer, Dr. Marc Rayman of the Jet Propulsion Laboratory. “Every image revealed new and exotic landscapes. Vesta is unlike any other place humankind’s robotic ambassadors have visited.”

‘Snowman’ craters on Vesta. What is the origin of the ‘Snowman’?
The science team is working to determine how the ‘Snowman’ formed. This set of three craters is nicknamed ‘Snowman” and is located in the northern hemisphere of Vesta. NASA’s Dawn spacecraft obtained this image with its framing camera on August 6, 2011. This image was taken through the framing camera’s clear filter aboard the spacecraft. The framing camera has a resolution of about 280 yards (260 meters). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The Snowman is located in the pockmarked northern hemisphere of Vesta – see the full frame image below. The largest of the three craters is some 70 km in diameter. Altogether the trio spans roughly 120 km in length. See Image at Left

“Craters, Craters, Craters Everywhere” – that’s one thing we can now say for sure about Vesta.

And soon we’ll known a lot more about the mineralogical composition of the craters and Vesta because spectral data is now pouring in from Dawn’s spectrometers.

After being captured by Vesta, the probe “used its ion propulsion system to spiral around Vesta, gradually descending to its present altitude of 2700 kilometers (1700 miles),” says Chief Engineer Rayman. “As of Aug.11, Dawn is in its survey orbit around Vesta.”

Dawn has now begun its official science campaign. Each orbit currently last 3 days.

Dawn’s scientific Principal Investigator, Prof. Chris Russell of UCLA, fondly calls Vesta the smallest terrestrial Planet !

I asked Russell for some insight into the Snowman and how it might have formed. He outlined a few possibilities in an exclusive interview with Universe Today.

“Since there are craters, craters, craters everywhere on Vesta it is always possible that these craters struck Vesta in a nearly straight line but many years apart,” Russell replied.

“On the other hand when we see ‘coincidences’ like this, we are suspicious that it is really not a coincidence at all but that an asteroid that was a gravitational agglomerate [sometimes called a rubble pile] struck Vesta.”

“As the loosely glued together material entered Vesta’s gravity field it broke apart with the parts moving on slightly different paths. Three big pieces landed close together and made adjacent craters.”

So, which scenario is it ?

“Our science team is trying to figure this out,” Russell told me.

“They are examining the rims of the three craters to see if the rims are equally degraded, suggesting they are of similar age. They will try to see if the ejecta blankets interacted or fell separately”

“The survey data are great but maybe we will have to wait until the high altitude mapping orbit [HAMO] to get higher resolution data on the rim degradation.”

Dawn will descend to the HAMO mapping orbit in September.

Close-up View of 'Snowman' craters.
This image of the set of three craters informally nicknamed ‘Snowman’ was taken by Dawn’s framing camera on July 24, 2011 after the probe entered Vesta’s orbit. Snowman is located in the northern hemisphere of Vesta. The image was taken from a distance of about of about 3,200 miles (5,200 kilometers). The framing camera was provided by Germany. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Russell and the Dawn team are elated with the fabulous results so far, some of which have been a total surprise.

How old is the Snowman ?

“We date the age of the surface by counting the number of craters on it as a function of size and compare with a model that predicts the number of craters as a function of size and as a function of time from the present,” Russell responded.

“However this does not tell us the age of a crater. If the crater destroyed all small craters in its bowland and left a smooth layer [melt] then the small crater counts would be reset at the impact.”

“Then you could deduce the age from the crater counts. You can also check the degradation of the rim but that is not as quantitative as the small crater counts in the larger crater. The team is doing these checks but they may have to defer the final answer until they obtain the much higher resolution HAMO data,” said Russell.

Besides images, the Dawn team is also collecting spectral data as Dawn flies overhead.

“The team is mapping the surface with VIR- the Visible and Infrared Mapping Spectrometer – and will have mineral data shortly !”, Russell told me.

At the moment there is a wealth of new science data arriving from space and new missions from NASA’s Planetary Science Division are liftoff soon. Juno just launched to Jupiter, GRAIL is heading to the launch pad and lunar orbit and the Curiosity Mars Science Laboratory (MSL) is undergoing final preflight testing for blastoff to the Red Planet.

Russell had these words of encouragement to say to his fellow space explorers;

“Dawn wishes GRAIL and MSL successful launches and hopes its sister missions join her in the exploration of our solar system very shortly.”

“This year has been and continues to be a great one for Planetary Science,” Russell concluded.

Detailed 'Snowman' Crater
Dawn obtained this image with its framing camera on August 6, 2011. This image was taken through the camera’s clear filter. The camera has a resolution of about 260 meters per pixel. This image shows a detailed view of three craters, informally nicknamed 'Snowman' by the camera’s team members. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Dawn snaps First Full-Frame Image of Asteroid Vesta – Snowman at Left
NASA's Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on July 24, 2011. It was taken from a distance of about 3,200 miles (5,200 kilometers). Dawn entered orbit around Vesta on July 15, and will spend a year orbiting the body. The Dawn mission to Vesta and Ceres is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The framing cameras were built by the Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany, and the German Aerospace Center (DLR) Institute of Planetary Research, Berlin. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Read my prior features about Dawn
NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin
First Ever Vesta Vistas from Orbit – in 2D and 3D
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta
Dawn Closing in on Asteroid Vesta as Views Exceed Hubble
Dawn Begins Approach to Asteroid Vesta and Snaps First Images
Revolutionary Dawn Closing in on Asteroid Vesta with Opened Eyes

SpaceX: Dragon ISS Bound

The next Dragon spacecraft is prepped for its mission. If all goes according to plan this Dragon will be headed to the International Space Station. Photo Credit: Roger Gilbertson/SpaceX

[/caption]
Space Exploration Technologies (SpaceX) is preparing its next Dragon spacecraft for a trip to the International Space Station (ISS). SpaceX has worked over the last several months to make sure that the spacecraft is set for the Nov. 30 launch date that has been given to the commercial space company. If all goes according to plan, a little more than a week after launch – the Dragon will dock with the ISS.

NASA has technically agreed to allow SpaceX to combine all of the tests and demonstration activities that were originally slated to take place on two separate flights (COTS demo missions 2 and 3). SpaceX is working to further maximize the cost-effectiveness of this mission by including additional payloads in the Falcon 9’s second stage. These will be deployed after the Dragon separates from the rocket.

The Falcon 9 rocket that will ferry the Dragon spacecraft to orbit sits waiting its launch date at SpaceX's hangar at Cape Canaveral. Photo Credit: SpaceX

“SpaceX has been making steady progress towards our next launch,” said SpaceX’s Communications Director Kirstin Brost-Grantham. “There are a number of challenges associated with berthing with the International Space Station, but challenges are the norm here. With each mission we are making history.”

NASA is waiting to provide final approval of the mission’s combined objectives once any and all potential risks that are associated with the secondary payloads have been worked out.

The Dragon spacecraft needs extra electrical power to conduct station operations. That power is provided via two solar arrays, one of which is seen in this image. Photo Credit: SpaceX

There is a lot riding on the Commercial Orbital Transportation Services (COTS) contract. If crew members on the orbiting laboratory can access the Dragon’s contents and the spacecraft conducts all of its requirements properly – it will go a long way to proving the viability of NASA’s new path toward using commercial spacecraft and it could usher in a new era of how space flight is conducted.

It is hoped that private-public partnerships could lower the cost related to access-to-orbit and in so doing also help to increase the reliability, safety and frequency of space flight.

Clockwise from upper left: The Falcon 9's first stage tank, with domes and barrels for the second stage; the nine Merlin engines in a test stand, the pressure vessel for the CRS-1 Dragon spacecraft; composite interstage structure that joins the stages together. Photo Credit: Roger Gilbertson / SpaceX

SpaceX has been working from milestone to milestone in getting the next mission ready to launch. Just this week the company conducted what is known as a wet dress rehearsal or WDR of the Falcon 9 rocket out at Cape Canaveral Air Force Station’s Space Launch Complex 40 (SLC 40). The Falcon 9 was loaded with propellant and went through all of the operations that lead up to launch – right down to T-1 second. At that point, the launch team stands down and the Falcon 9 is detanked.

SpaceX last launched from SLC 40 last December, during the intervening months the company has worked to upgrade the launch pad. New liquid oxygen or LOX tanks have been installed. These new tanks should streamline loading time from 90 minutes – to under 30 minutes. It is hoped that these efforts will allow the Falcon 9 to move from the hangar to liftoff – in under an hour.

SpaceX has launched the Falcon 9 twice and the Dragon spacecraft once – each completed the primary objectives successfully and helped to establish SpaceX as a leader in the NewSpace movement. SpaceX has inked many lucrative contracts, both domestic and foreign as a result. Besides the COTS contract, SpaceX is also one of the companies that has a contract under the Commercial Crew Development contract (phase-02) or CCDev-02.

This scene might play out for real in the coming months as SpaceX prepares to launch one of its Dragon spacecraft to the International Space Station. Image Credit: SpaceX