Astrobiologist, Nobel Prize Winner Baruch Blumberg Dies

A portrait of Dr. Baruch Blumberg in 1999. Image credit: NASA

[/caption]

NASA’s first director of the Astrobiology Insitute, and Nobel Prize winner Dr. Baruch “Barry” Blumberg has passed away at the age of 85. He suffered an apparent heart attack while attending a conference at Ames Research Center on Tuesday, April 5. Blumberg served as at the NASA Astrobiology Institute from 1999 to 2002, and is best known as the winner of the 1976 Nobel Prize in Medicine for identifying the Hepatitis B virus.

“Barry Blumberg was a great biochemist and researcher,” said Ames Center Director Pete Worden. “He was a leading light in the scientific community and a great humanitarian. He also was a loyal and supportive friend to NASA, Ames Research Center and the nation’s space program.”

Read more about Blumberg from NASA, and from the NASA Lunar Science Institute.

Coalition for Space Exploration Tasks us to “Think Outside the Circle”

The aerospace industry is typically filled with engineers, scientists and pilots. Hardly the segment of the population that is subject to expounding on the virtues of their trade in prose or through some other format. That said, every once and a while, a campaign, image or video comes along that simply nails what the men and women of the industry have been trying to say. Continue reading “Coalition for Space Exploration Tasks us to “Think Outside the Circle””

SpaceX Unveils Launch of Falcon Heavy, Worlds Most Powerful Rocket by 2013

The Falcon Heavy Rocket will be the most capable rocket in the world. only exceeded by the American Saturn V moon rocket which landed the first astronauts on the lunar surface in 1969. Credit: SpaceX

[/caption]Elon Musk, the CEO and chief rocket designer of Space Exploration Technologies (SpaceX) announced today (April 5) that SpaceX will build and launch the world’s most powerful rocket – dubbed the Falcon Heavy – within two years.

Musk said that he expects SpaceX will launch the first Falcon Heavy by late 2012 or early 2013 from Vandenberg Air Force Base, California.

“We are excited to announce the Falcon Heavy and only recently completed the design,” said Musk.

“Falcon Heavy will carry more payload to orbit or escape velocity than any vehicle in history, apart from the Saturn V moon rocket, which was decommissioned after the Apollo program. This opens a new world of capability for both government and commercial space missions.”

Musk unveiled the design plans for the privately developed, 227 foot tall heavy lift rocket at a briefing for reporters at the National Press Club in Washington, DC.

“This is a rocket of truly huge scale.”

Falcon Heavy would lift from 100,000 to 120,000 pounds to orbit, about three times the performance of the Falcon 9. It is comprised of three nine- engine Falcon 9 first stage booster cores and would utilize upgraded Merlin 1D engines currently being tested at the SpaceX rocket development facility in McGregor, Texas. The Falcon booster cores would be the first to have cross feed propellant capability enabling significant enhancements in payload performance, Musk explained.

“We expect to launch a lot, maybe 20 launches per year,” said Musk. He thinks that the launches would be spilt about equally between the current Falcon 9 and the new Falcon Heavy allowing SpaceX to compete in the full gamut of opportunities for commercial rocket providers. The Falcon Heavy could even be used for interplanetary science missions to Mars and elsewhere in the Solar System (watch for follow up article).

With over 3.8 million pounds of thrust at liftoff, Falcon Heavy will be the most capable rocket flying. By comparison, the liftoff thrust of the Falcon Heavy equals fifteen Boeing 747 aircraft at full power. Credit: SpaceX

The Falcon Heavy would also be launched from Cape Canaveral after upgrading the existing Falcon 9 pad at the Cape. Indeed a majority of launches is expected from Florida vs. California.

SpaceX is in discussions with NASA to also possibly use one of the shuttle pads at Launch Complex 39 at the Kennedy Space Center. Both launch pads will be vacant after the shuttle stops flying later this year.

“First launch from our Cape Canaveral launch complex is planned for late 2013 or 2014,” Musk said.

The new heavy lift booster will have twice the performance capability of NASA’s retiring Space shuttle fleet or the Delta IV Heavy according to Musk.

“The Falcon Heavy will have more payload capability than any rocket since the Saturn V moon rocket.”

Musk said the Falcon Heavy will be dramatically cheaper and more cost effective compared to current rockets and set new world records in affordability and cost per pound. “The cost will be about $1000 per pound to orbit.” That price is a long sought and near mythical goal. It is also a critical selling point during these times of flat, very tight and declining budgets.

SpaceX says they are offering the Falcon 9 for some $50-60M and the Falcon Heavy for $80-$125M per launch. They say this compares to the projected Air Force average cost of $435M per launch for the 2012 budget year.

“The Falcon Heavy will be about one third the cost of the Delta IV Heavy and with twice the performance. That’s about 6 times more cost effective,” Musk stated. “That’s a pretty huge leap in capability.”

SpaceX will finance the cost of the first demonstration launch. The rocket will only loft several small payloads unless some organization is willing to take a gamble for a reduced cost. Without being specific, Musk added that SpaceX has had “strong interest from U.S. government agencies and commercial entities” for the second launch and beyond. “No one wants to be first.”

Comparison of Falcon 9 and Falcon Heavy offerd by SpaceX. Credit: SpaceX

Ensuring reliability is key to SpaceX future. Musk explained that the Falcon Heavy is also designed to meet NASA human rating standards, unlike other satellite launch vehicles. The rocket is designed to meet higher structural safety margins of 40% above flight loads, rather than the 25% level of other rockets, and triple redundant avionics.

To date, SpaceX has launched two Falcon 9 rockets. NASA has awarded SpaceX with a $1.6 billion contract to conduct a minimum of twelve Falcon 9 flights with the Dragon spacecraft to deliver at least 20,000 kg of cargo to resupply the International Space Station (ISS) after the Space Shuttle is retired.

Musk said that there is a lot to be learned and applied from using high volume production techniques used in the automotive industry while maintaining stringent quality control.

The date of the frist Falcon Heavy launch is expected to depend greatly on regulatory requirements, just like the maiden launch of the Falcon 9.

The Falcon Heavy is SpaceX’s entry into the heavy lift launch vehicle category. Capable of lifting over 32,000 kg to Low Earth Orbit (LEO), and over 19,500 kg to Geostationary Transfer Orbit (GTO), the Falcon Heavy will compete with the largest commercial launchers now available. It consists of a standard Falcon 9 with two additional Falcon 9 first stages acting as liquid strap-on boosters. With the Falcon 9 first stage already designed to support the additional loads of this configuration and with common tanking and engines across both vehicles, development and operation of the Falcon Heavy will be highly cost-effective. Credit: SpaceX

Watch a SpaceX YouTube video about Falcon Heavy here:

Cartoon Commemorates Shuttle Program

"What A Ride It's Been!" Image Credit: Brian Basset

[/caption]

“Red and Rover” pay tribute to the space shuttle program, racing alongside the space shuttle as it lands for the final time later this year. Cartoonist and space exploration supporter Brian Basset created this commemorative drawing for NASA, to honor the shuttles. A poster commemorating the program’s 30th anniversary will feature Basset’s cartoon and a patch selected as part of a contest among NASA employees to honor the program.

“The U.S. space program has been the one constant throughout my entire life,” Basset said. “I was humbled and honored when given the opportunity to create the art for the commemorative Space Shuttle Program 30th anniversary poster.”

“Red and Rover” is a great cartoon series about the unconditional love between a boy and his dog. The two often dream of going to space together. But it won’t be on a space shuttle.

Download a copy of the cartoon/poster, and learn more about the it and Basset at this NASA link, and the press release.

STS-134 wraps up TCDT

The crew of STS-134 arrive at NASA's Kennedy Space Center in Florida. Photo Credit: Jason Rhian

[/caption]
CAPE CANAVERAL – The crew who will fly on the last flight of the space shuttle Endeavour, NASA’s youngest orbiter, arrived at NASA’s Kennedy Space Center at 5:15 p.m. EDT (slightly ahead of schedule and ahead of a weather front) to conduct the Terminal Countdown Demonstration Test (TCDT). This roughly week-long exercise trains the astronauts in launch-related elements that they will need to be aware of during launch.

Arriving in their T-38s – the crew’s commander, Mark Kelly, arrived last and made brief comments regarding the upcoming flight. The STS-134 mission is the next-to-last flight of the shuttle program.

The crew conduct safety drills at launch complex 39A. Photo Credit: NASA

The STS-134 commander, Mark Kelly, was not present for the entire training cycle for this mission due to the shootings in Tucson, Arizona that saw his wife, Congresswoman Gabrielle Giffords seriously injured. Kelly took some time off to be with her. During this time, Rick Sturckow was assigned as a backup commander for the flight.

Kelly eventually rejoined his crew as they prepared for the mission. This was because of the rapidly approving condition of his wife. He attributed this to some of the misfortune that befell space shuttle Discovery as she was prepared for her final flight. Discovery had several mechanical issues that needed to be addressed before the orbiter was cleared for its Feb. 24 launch.

“The timing of the incident coincided with the launch slip (of STS-133, Discovery’s last flight),” said Commander Mark Kelly. “When I rejoined the crew, I really had not missed that much training and managed to integrate myself fairly well back into the flow.”

The crew for this mission consists of Kelly as the flight’s commander, Pilot Greg Johnson and Mission Specialists, Mike Fincke, Greg Chamitoff, Andrew Feustel and ESA astronaut (but under the Italian Space Agency for this mission) Roberto Vittori.

Weather played a big part during this TCDT. It determined that the crew arrived early; it also required that the crew hold one of the scheduled press conferences indoors (it was originally planned to have it at the launch pad) and it cut short the flight time that the commander and pilot had in the Shuttle Training Aircraft (STA).

Severe storms blew into Space Coast area shortly after the crew arrived. Launch Complex 39A, with Endeavour on it, was caught as the powerful, but brief storm passed by. NASA engineers thoroughly reviewed the orbiter and determined that there was minimal, if any, damage.

Weather played a big part in the TCDT for this mission. Photo Credit: Jason Rhian

‘In Flight’ Shuttle Orbiter retirement display planned by Kennedy Space Center Visitor Complex

Shuttle orbiter would be displayed like In Flight at Kennedy Space Center Visitor Complex. Credit: KSC Visitor Complex

[/caption]

‘In Flight’ …. That’s the heart of the dramatic plan to showcase a Space Shuttle Orbiter being proposed by the Kennedy Space Center Visitor Complex (KSCVC) as they seek to win the heated competition to become the permanent new home to one of NASA’s three soon to be retired Orbiters.

Honoring the past, embracing the future of human spaceflight and celebrating the spirit of human determination; this is the new theme planned by the Visitor Complex at Kennedy so that guests of all ages will feel like they are embarking on an interactive space expedition. See the ‘In Flight’ graphic illustration above.

Some 21 science centers and museums across the US are bidding for the once in a lifetime chance to house NASA’s surviving shuttle orbiters; Discovery, Atlantis and Endeavour.

“The Kennedy Space Center is the home of the Space Shuttle unlike all the other places,” said Bill Moore, Chief Operating Officer of KSCVC. I spoke to Moore at KSC in an exclusive interview for Universe Today.

“All of the shuttle missions have launched from here, not anywhere else. So Kennedy is their home. And they all eventually come back here at the end of each mission. So we have a compelling story to tell about their history at KSC and the future.”

Shuttle Endeavour and the White Room
Shuttle orbiter display at the Kennedy Space Center Visitor Complex will include many shuttle artifacts, including the White Room - shown here attached to shuttle Endeavour. Astronauts walk
through the white room to enter the shuttle crew cabin. Credit: Ken Kremer

The Smithsonian National Air & Space Museum, Washington, D.C., has long been expected to be picked as the retirement home for Space Shuttle Discovery, the oldest orbiter. That leaves Atlantis and Endeavour remaining in the bidding war. Since the Smithsonian currently displays the shuttle Enterprise, that unflown orbiter would also be up for grabs by another venue.

NASA Administrator Charles Bolden will decide the final site selections. He is scheduled to announce the winner of the nationwide competition on April 12, which is the 30th anniversary of the first shuttle flight (STS-1) by Columbia on April, 12, 1981.

Another location that plays a pivoital role in the U.S. space program is NASA’s Johnson Space Center in Houston, Texas, home to Mission Control. Johnson Space Center is also home base for the shuttle astronauts and houses the facilities where they train for space missions. The Johnson Visitor Center – Space Center Houston – has proposed a 53,000 square foot pavilion with interactive exhibits.

The proposed new 53,000-square-foot space shuttle exhibit located at the Visitor Center at the NASA Johnson Space Center in Houston will be an interactive, educational experience that encourages student interest and commitment to science, technology, engineering and math (STEM) education. NASA’s Johnson Space Center plays a vital role in the US Space program. Johnson is home to Mission Control, the shuttle astronauts and the astronauts training base. Credit: Space Center Houston

Many of those who work on space projects feel strongly that two of the orbiters should unquestionably be awarded to the Kennedy Space Center (KSC) and the Johnson Space Center JSC) since these are the two locations most intimately involved with the Space Shuttle program. All the crews were trained at JSC and blasted off to space from KSC.

Among the other contenders in the running to house an orbiter are; the Intrepid Sea-Air-Space Museum in New York City; the Adler Planetarium in Chicago; the National Museum of the Air Force in Dayton, Ohio; the U.S. Space & Rocket Center in Huntsville, Alabama; the Museum of Flight in Seattle.

The Adler envisions a dynamic exhibition of the Space Shuttle Orbiter in which visitors will have an opportunity to get up close to this national treasure. Proposed exhibition elements including a simulator will help families experience space exploration first-hand. Credit: Adler Planetarium

At the Kennedy Visitor Complex, a brand new 64,000 square-foot hall would be constructed to display the orbiter “In Flight”. The exhibit would engage viewers in an up close experience to see how the vehicle actually worked in space and also feature its major accomplishments; such as building the International Space Station (ISS) and upgrading the Hubble Space Telescope.

The orbiter home is projected to cost some $100 million and would be the marquee element of the master plan entailing a transformative overhaul of the entire visitor complex at Kennedy, according to Moore.

The KSCVC concept is outlined in a thick book with extensively detailed story boards and drawings. Clearly, a lot of hard work and thought has gone into designing KSCVC’s proposal to house an orbiter and integrate it with a complete renovation and update of the spaceport tour facilities. The goal is to satisfy the interests of the whole family- not just hard core space geeks.

“We (KSCVC) will display the orbiter tilted, like it is flying in space and at work. Because that’s the way people think about the orbiter – working in space. Not sitting on the ground on three wheels,” Moore explained to me.

“So, our job at KSC is to show the shuttle’s working time as it is flying in space. The payload bay doors will be open and the robotic arm will be extended. Some type of cargo will be inside. We will also show the Hubble and the ISS with models, giant video screens and murals, because we think that’s key to understanding the role of the shuttle.”

Tilted Endeavour 'In Flight'
This tilted view of Space Shuttle Endeavour ‘In Flight’ may give an impression of what visitors might experience in the shuttle orbiter exhibit planned by the Kennedy Space Center Visitor Complex if they are selected as a permanent home for the retired vehicle. I snapped this photo inside the Vehicle Assembly Building while Endeavour was vertically tilted and being hoisted by cables in mid-air. The photo has been rotated 90 degrees to look as though it were horizontal. Credit: Ken Kremer

Moore told me that this will be the largest building ever constructed at KSCVC, even bigger than the popular Shuttle Launch Experience completed a few years back.

“When people come into the exhibit, their first view will be to see the orbiter as though someone would see it by looking out from the ISS, up against a gorgeous backdrop of the Earth, the Sky and the Universe.”

“The point is to make you believe that you are actually seeing the orbiter in space. Visitors will be able to view the orbiter from many different angles,” said Moore.

The shuttle will be shown as it really looks and is flown with the heat shield tiles, with all its scorch marks, pits, scars and imperfections.

“We do not want the orbiter to be polished to a pristine state,” Moore stated firmly.

“We want to expose as many people as possible from around the world to this wonderful vehicle and to what’s happened up there in space.”

“The vehicle is just part of the story. The story is much bigger.

Historic Final Landing of Space Shuttle Discovery
Space Shuttle Discovery concluded her magnificent final journey with a safe landing on March 9, 2011 at the Kennedy Space Center in Florida. Discovery is the first shuttle to be retired and will likely be housed at the Smithsonian National Air and Space Museum in Washington, DC. Credit: Ken Kremer

“The purpose of the display building is that we want to show the whole story of what the shuttle has done and all the major milestones. The people who processed and cared for the orbiters are also part of the story,” Moore amplified.

“We will remember and show the story of those who made the ultimate sacrifice, what we learned from the accidents and then fixed lots of issues to get to a better flight system.”

I asked Moore, when will the exhibit open ? “I would like to open the exhibit by mid to late 2013,” he replied.

The orbiter will be showcased with components from the shuttle’s history. “We have the beanie cap, the white room and a fairly large collection of many other artifacts, parts and items beyond just the orbiter that will be used to tell the story of the shuttle program.”

“The shuttle story covers 30 remarkable years,” said Moore.

Only two flights remain until the shuttles are forcibly retired for lack of many and some say willpower to continue exploring.

The final flight of Endeavour on the STS-134 mission is set for April 19. Atlantis is honored with the shuttle programs very last mission, STS-135, slated for late June 2011.

Discovery just landed on her historic final mission on March 9 – a thrilling and bittersweet experience for all who work and report on the shuttle program. Discovery is being decommissioned and now belongs to history although she has a lot of life left in her.

Stay tuned for the April 12 announcement of the Orbiter homes selected.

Space Shuttle Atlantis at Pad 39 A at the Kennedy Space Center.
Atlantis will blast off on the final mission of the shuttle era in late June 2011. Credit: Ken Kremer
Space Shuttle at Intrepid. The Intrepid states it has plenty of room at Pier 86 to house a space shuttle. The shuttle would be displayed in a dedicated building with plenty of viewing platforms to give guests an up close look into one of these orbiters. Credit: Intrepid Museum
The National Museum of the United States Air Force is in the midst of a multi-phase, long-term expansion plan. The next major program initiative is a new Space Gallery which would house the orbiter in a new climate controlled Iindoor display hanger. The Air Force is most interested in Atlantis due to it being the primary Air Force/Department of Defense shuttle. Atlantis has included more than 30 Air Force astronauts among its crews. The Air Force and DoD also play critical roles in shuttle launch and recovery operations in a continuous, decades-long partnership with NASA. Credit: USAF
The proposed Shuttle Gallery at the Seattle Museum of Flight features a glass room for the Space Shuttle with a view of the stars. Credit: Seattle Museum of Flight

NASAs First Orion Capsule and New Space Operations Center Unveiled

Lockheed Martin’s Space Operations Simulation Center in Littleton, Colorado, simulates on-orbit docking maneuvers with full-scale Orion and International Space Station mockups. The spacious center includes an 18,000 square-foot high bay area used to validate Orion’s new relative navigation system (STORRM), which will be tested on orbit during the STS-134 mission set to blast off on April19, 2011. Credit: Lockheed Martin

[/caption]

The inaugural version of NASA’s new Orion human space exploration capsule was unveiled by Lockheed Martin at the company’s new state-of-the-art Space Operation Simulation Center (SOSC) located in Denver, Colorado. Orion is designed to fly human crews to low Earth orbit (LEO) and the International Space Station, the Moon, Asteroids, Lagrange Points and beyond to deep space and Mars.

Lockheed Martin is aiming for a first unmanned orbital test flight of Orion as soon as 2013, said John Karas, vice president and general manager for Lockheed Martin’s Human Space Flight programs in an interview with Universe Today . The first operational flight with humans on board is now set for 2016 as stipulated in the NASA Authorization Act of 2010.

Orion manned capsule could launch in 2016 atop proposed NASA heavy lift booster from the Kennedy Space Center

This Orion prototype capsule was assembled at NASA’s Michoud Assembly Facility (MAF) in New Orleans, LA and shipped by truck to Denver. At Denver, the capsule will be put through a rigorous testing program to simulate all aspects of a space mission from launch to landing and examine whether the vehicle can withstand the harsh and unforgiving environment of deep space.

Orion was originally designed to be launched by the Ares 1 booster rocket, as part of NASA’s Project Constellation Return to the Moon program, now cancelled by President Obama. The initial Orion test flight will likely be atop a Delta IV Heavy rocket, Karas told me. The first manned flight is planned for the new heavy lift rocket ordered by the US Congress to replace the Project Constellation architecture.

The goal is to produce a new, US-built manned capsule capable of launching American astronauts into space following the looming forced retirement of NASA’s Space Shuttle orbiters later this year. Thus there will be a gap of at least three years until US astronauts again can launch from US soil.

“Our nation’s next bold step in exploration could begin by 2016,” said Karas in a statement. “Orion was designed from inception to fly multiple, deep-space missions. The spacecraft is an incredibly robust, technically advanced vehicle capable of safely transporting humans to asteroids, Lagrange Points and other deep space destinations that will put us on an affordable and sustainable path to Mars.”

Jim Bray, Director, Orion Crew & Service Module, unveils the first Orion crew module to guests and media at the Lockheed Martin Space Systems Company Waterton Facility in Denver, CO. The vehicle is temporarily positioned in the composite heat shield before installation begins. Following installation of the heat shield and thermal backshell panels, the spacecraft will undergo rigorous testing to validate Orion’s ability to endure the harsh environments of deep space. Credit: Lockheed Martin

Lockheed Martin is the prime contractor for Orion under a multiyear contract awarded by NASA worth some $3.9 Billion US Dollars.

The SOSC was built at a cost of several million dollars. The 41,000 square foot facility will be used to test and validate vehicles, equipment and software for future human spaceflight programs to ensure safe, affordable and sustainable space exploration.

Mission scenarios include docking to the International Space Station, exploring the Moon, visiting an Asteroid and even journeying to Mars. Lockheed has independently proposed the exploration of several challenging deep space targets by astronauts with Orion crew vehicles which I’ll report on in upcoming features.

Orion capsule and Abort rocket mockups on display at Kennedy Space Center.
Full scale mockups of the Orion capsule and emergency abort rocket are on public display at the Kennedy Space Center Visitor Complex in Florida. Orion crew capsule mockup (at left) and Launch Abort System (LAS) at right. The emergency rocket will be bolted atop an Orion spaceship for the initial orbital test flight currently slated for 2013 launch. The LAS mockup was used in launch pad exercises at the New Mexico launch site of the LAS rocket blast-off in May 2010. Credit: Ken Kremer

The SOSC facility provides the capability for NASA and Lockheed Martin engineers to conduct full-scale motion simulations of many types of manned and robotic space missions. Demonstrations are run using laser and optically guided robotic navigation systems.
Inside the SOSC, engineers can test the performance of a vehicles ranging, rendezvous, docking, proximity operations, imaging, descent and landing systems for Earth orbiting mission as well as those to other bodies in our solar system.

“The Orion spacecraft is a state-of-the-art deep space vehicle that incorporates the technological advances in human life support systems that have accrued over the last 35 years since the Space Shuttle was designed.” says Karas. “In addition, the Orion program has recently been streamlined for additional affordability, setting new standards for reduced NASA oversight. Orion is compatible with all the potential HLLVs that are under consideration by NASA, including the use of a Delta IV heavy for early test flights.”

Orion approaches the ISS

At this moment, the SOSC is being used to support a test of Orion hardware that will be flying on the upcoming STS-134 mission of Space Shuttle Endeavour. Orion’s Relative Navigation System – dubbed STORRM (Sensor Test for Orion RelNav Risk Mitigation) – will be put through its paces in several docking and navigation tests by the shuttle astronauts as they approach and depart the ISS during the STS-134 flight slated to launch on April19, 2011.

The Orion flight schedule starting in 2013 is however fully dependent on the level of funding which NASA receives from the Federal Government.

This past year the, Orion work was significantly slowed by large budget cuts and the future outlook is murky. Project Orion is receiving about half the funding originally planned by NASA.

And more deep cuts are in store for NASA’s budget – including both manned and unmanned projects – as both political parties wrangle about priorities as they try to pass a federal budget for this fiscal year. Until then, NASA and the entire US government are currently operating under a series of continuing resolutions passed by Congress – and the future is anything but certain.

Orion prototype crew cabin with crew hatch and windows
built at NASA Michoud Assembly Facility, New Orleans, LA. Credit: Ken Kremer
Lockheed Martin team of aerospace engineers and technicians poses with first Orion crew cabin after welding into one piece at NASA Michoud Assembly Facility, New Orleans, LA. Credit: Ken Kremer
Orion and ISS simulated docking

Opportunity Rover Completes Exploration of fascinating Santa Maria Crater

Yuma Outlook at Santa Maria Crater on Sol 2476, Jan 10, 2011. Opportunity arrived at the hydrated mineral deposits located here at the southeast rim of the crater. Self portrait of Opportunity at left, casts shadow of rover deck and mast at right. Credit: NASA/JPL/Cornell, Marco Di Lorenzo, Kenneth Kremer High resolution version on APOD, Jan. 29, 2011 ; http://apod.nasa.gov/apod/ap110129.html

[/caption]

NASA’s long lived Opportunity Mars rover has completed a three month long exploration of Santa Maria crater along the trail towards its biggest target ever, Endeavour crater, some 22 kilometers in diameter. Santa Maria has simultaneously offered a series of stunning vistas and a scientific bonanza as a worthy way station in the rovers now seven year long overland expedition across the Martian plains of Meridiani Planum.

Opportunity made landfall at the western edge of Santa Maria on Dec. 15, 2010 (Sol 2450) after a long and arduous journey of some 19 kilometers since departing from Victoria Crater nearly two and one half years ago in September 2008. Santa Maria is the largest crater that the rover will encounter on the epic trek between Victoria and Endeavour.

Robotic arm at work on Mars on Sol 2513, Feb 17, 2011. Opportunity grinds into rock target Luis De Torres’ with the RAT. Credit: NASA/JPL/Cornell
The science team decided that Santa Maria would be the best location for an intermediate stop as well as permit a focused science investigation because of the detection of attractive deposits of hydrated minerals. The stadium sized and oval shaped crater is some 80 to 90 meters wide (295 feet) and about nine meters in depth.

Opportunity has since been carefully driven around the lip of the steep walled crater in a counterclockwise direction to reach the very interesting hydrated sulfates on the other side. The rover made several stops along the way to collect long baseline high resolution stereo images creating 3 D digital elevation maps and investigate several rocks in depth.

Opportunity was directed to Santa Maria based on data gathered from Mars orbit by the mineral mapping CRISM spectrometer – onboard the Mars Reconnaissance Orbiter (MRO) – which indicated the presence of exposures of water bearing sulfate deposits at the southeast rim of the crater.

Opportunity rover panoramic photomosaic near lip of Santa Maria Crater on Sol 2519, Feb. 23, 2011. Opportunity drove to exposed rock named Ruiz Garcia to investigate hydrated mineral deposits located here at southeast portion of crater. Credit: NASA/JPL/Cornell, Kenneth Kremer, Marco Di Lorenzo

“Santa Maria is a relatively fresh impact crater. It’s geologically very young, hardly eroded at all, and hard to date quantitatively,” said Ray Arvidson from Washington University in St. Louis. Arvidson is the deputy principal investigator for the Spirit and Opportunity rovers.

The rover had to take a pause anyway in its sojourn to Endeavour because of a restrictive period of solar conjunction. Conjunction is the period when the Sun is directly in between the Earth and Mars and results in a temporary period of communications disruptions and blackouts.

During conjunction – which lasted from Jan. 28 to Feb. 12 – the rover remained stationary. No commands were uplinked to Opportunity out of caution that a command transmission could be disrupted and potentially have an adverse effect.

Advantageously, the pause in movement also allows the researchers to do a long-integration assessment of the composition of a selected target which they might not otherwise have conducted.

By mid-January 2011, Opportunity had reached the location – dubbed ‘Yuma’ – at the southeast rim of the crater where water bearing sulfate deposits had been detected. A study of these minerals will help inform researchers about the potential for habitability at this location on the surface of Mars.

Opportunity at rim of Santa Maria crater as imaged from Mars orbit on March 1, 2011, Sol 2524.
Rover was extending robotic arm to Ruiz Garcia rock as it was imaged by NASA’s MRO orbiter.
Credit: NASA/JPL-Caltech/Univ. of Arizona

Opportunity snapped a collection of raw images from ‘Yuma’ which Marco Di Lorenzo and myself assembled into a panoramic photo mosaic (shown above) to illustrate the location. The high resolution version was selected to appear at Astronomy Picture of the Day on Jan. 29, 2011.

The rover turned a few degrees to achieve a better position for deploying Opportunity’s robotic arm, formally known as the instrument deployment device or IDD, to a target within reach of the arms science instruments.

“Opportunity is sitting at the southeast rim of Santa Maria,” Arvidson told me. “We used Opportunity’s Rock Abrasion Tool (RAT) to brush a selected target and the Moessbauer spectrometer was placed on the brushed outcrop. That spot was named ‘Luis De Torres’, said Arvidson.

Ruiz Garcia rock imaged by pancam camera on Sol 2419. Credit: NASA/JPL/Cornell
‘Luis De Torres’ was chosen based on the bright, extensive outcrop in the region in which CRISM sees evidence of a hydrated sulfate signature.”

Opportunity successfully analyzed ‘Luis De Torres’ with all the instruments located at the end of the robotic arm; including the Microscopic Imager (MI), the alpha particle X-ray spectrometer (APXS) and then the Moessbauer spectrometer (MB) for a multi-week integration of data collection.

After emerging in fine health from the conjunction, the rover performed a 3-millimeter deep grind on ‘Luis De Torres’ with the RAT in mid-February 2011 to learn more about the rocks interior composition. Opportunity then snapped a series of microscopic images and collected spectra with the APXS spectrometer.

The rover then continued its counterclockwise path along the eastern edge of the crater, driving northwards some 30 meters along the crater rim to a new exposed rock target – informally named ‘Ruiz Garcia’ to collect more APXS spectra and microscopic images. See our mosaic showing “Ruiz Garcia” at the lip of the crater (above).

Opportunity finished up the exploration of the eastern side of Santa Maria in March by snapping a few more high resolution panoramas before resuming the drive to Endeavour crater which lies some 6.5 kilometers (4 miles) away.

Endeavour is Opportunity’s ultimate target in the trek across the Martian dunes because it possesses exposures of a hitherto unexplored type of even more ancient hydrated minerals, known as phyllosilicates, that form in neutral water more conducive to the formation of life.

Raw image from Opportunity's front hazard-avoidance camera on Sol 2524 ( March 1, 2011)
showing the robotic arm extended to Ruiz Garcia rock target. Credit: NASA/JPL/Cornell

Stardust-NExT sees Jets and impact crater at Comet Tempel 1 and says Farewell !

Stardust-NExT photographed jets of gas and particles streaming from Comet Tempel 1 during Feb 14, 2011 flyby. The raw image taken during closest approach has been extensively enhanced by outside analysts to visibly show the jets. Annotations show the location of the jets and the man-made crater created by a projectile hurled by NASA’s prior Deep Impact mission in 2005. Credit: NASA/JPL-Caltech/University of Maryland/Post process and annotations by Marco Di Lorenzo/Kenneth Kremer

[/caption]Farewell Stardust-NExT !

Today marks the end to the final chapter in the illustrious saga of NASA’s Stardust-NExT spacecraft, a groundbreaking mission of cometary exploration.

Mission controllers at NASA’s Jet Propulsion Laboratory commanded the probe to fire the main engines for the very last time today at about 7 p.m. EDT (March 24). The burn will continue until the spacecraft entirely depletes the tiny amount of residual fuel remaining in the propellant tanks. The Stardust probe is now being decommissioned and is about 312 million kilometers away from Earth.

This action will effectively end the life of the storied comet hunter, which has flown past an asteroid (Annefrank), two comets (Wild 2 and Tempel 1) and also returned the first ever pristine samples of a comet to Earth for high powered analysis by the most advanced science instruments available to researchers.

NASA’s Stardust space probe completed her amazing science journey on Feb. 14, 2011 by streaking past Comet Tempel 1 at 10.9 km/sec, or 24,000 MPH and successfully sending back 72 high resolution images of the comets nucleus and other valuable science data. Tempel 1 became the first comet to be visited twice by spacecraft from Earth.

During the Feb. 14, 2011 flyby of Comet Tempel 1, Stardust-NExT discovered the man-made crater created back in 2005 by NASA’s Deep Impact mission and also imaged gas jets eminating from the comet. My imaging partner Marco Di Lorenzo and myself prepared two posters illustrating the finding of the jets and the Deep Impact crater included in this article.

6 Views of Comet Tempel 1 and Deep Impact crater from Stardust-NExT spacecraft flyby on Feb. 14, 2011. Arrows show location of man-made crater created in 2005 by NASA’s prior Deep Impact comet smashing mission and newly imaged as Stardust-NExT zoomed past comet in 2011.
The images progress in time during closest approach to comet beginning at upper left and moving clockwise to lower left. Credit: NASA/JPL-Caltech/University of Maryland/Post process and annotations by Marco Di Lorenzo/Kenneth Kremer

The rocket burn will be the last of some 2 million rocket firings all told since the Stardust spacecraft was launched back in 1999. Over a dozen years, Stardust has executed 40 major flight path maneuvers and traveled nearly 6 billion kilometers.

The rocket firing also serves another purpose as a quite valuable final contribution to science. Since there is no fuel gauge on board or precise method for exactly determining the quantity of remaining fuel, the firing will tell the engineers how much fuel actually remains on board.

To date the team has relied on several analytical methods to estimate the residual fuel. Comparing the results of the actual firing experiment to the calculations derived from estimates will aid future missions in determining a more accurate estimation of fuel consumption and reserves.

“We call it a ‘burn to depletion,’ and that is pretty much what we’re doing – firing our rockets until there is nothing left in the tank,” said Stardust-NExT project manager Tim Larson of NASA’s Jet Propulsion Laboratory in Pasadena, Calif in a statement. “It’s a unique way for an interplanetary spacecraft to go out. Essentially, Stardust will be providing us useful information to the very end.”

Just prior to the burn, Stardust will turn its medium gain antenna towards Earth and transmit the final telemetry in real time. Stardust is being commanded to fire the thrusters for 45 minutes but the team expects that there is only enough fuel to actually fire for up to perhaps around ten minutes.

On March 24, at about 4 p.m. PDT, four rocket motors on NASA's Stardust spacecraft, illustrated in this artist's concept, are scheduled to fire until the spacecraft's fuel is depleted. Image credit: NASA/JPL-Caltech

As its final act, the transmitters will be turned off (to prevent accidental transmissions to other spacecraft), all communications will cease and that will be the end of Stardust’s life.

With no more fuel available, the probe cannot maintain attitude control, power its solar array or point its antenna. And its far enough away from any targets that there are no issues related to planetary protection requirements.

“I think this is a fitting end for Stardust. It’s going down swinging,” Larson stated in the press release.

Stardust-NExT website

Read more about the Stardust-NExT Flyby and mission in my earlier stories here, here, here, here, here, here and here

Relive the Feb. 14 Flyby of Comet Tempel 1 in this movie of NASA/JPL images

Stardust-NExT: 2 Comet Flybys with 1 Spacecraft.
Stardust-NExT made history on Valentine’s Day - February, 14, 2011 – Tempel 1 is the first comet to be visited twice by spacrecraft from Earth. Stardust has now successfully visited 2 comets and gathered science data: Comet Wild 2 in 2004 (left) and Comet Tempel 1 in 2011 (right).
Artist renderings Credit: NASA. Collage: Ken Kremer.
Stardust-NExT location on March 11, 2011 just prior to farewell transmission. Credit: NASA/JPL

“How Apollo Flew To The Moon” Second Edition Set For Summer Release

The second edition of "How Apollo Flew To The Moon" is set to be released this summer. Image Credit: Springer/Praxis

[/caption]
Apollo: the name conjures up images of spacesuit-clad astronauts riding fantastic machines to the surface of another world. But when it comes to the brass tacks, the mechanics of how it was accomplished – the image gets a little fuzzy.

It is with that in mind that author, engineer and historian David Woods has written: How Apollo Flew to the Moon. Now while this book is written by someone that has sat down with those involved with the Apollo Program and is an engineer himself – it doesn’t read that way. This appears to be one of Woods’ key considerations from the outset.

“I believe that the essential elements of any technology can be understood by any reasonably intelligent person, provided that the words can be found to explain it,” said Woods during an interview regarding the second edition of his book which was recently released. “This was the basis for this book. There’s no point in getting into the function of every electronic component or each equation used to describe a trajectory to the Moon, but I could see no reason why a person couldn’t come to understand the broad sweep of a mission and the many layers of technology and procedure that went into one.”

Many books that cover the Apollo Program delve a little too deeply into the technical aspects that made man’s first journey to another world possible. Novices, or those without engineering degrees get quickly bored and the books find themselves warming shelves.

How Apollo Flew To The Moon defeats this problem by breaking the technical hurdles, accomplishments and other aspects of the missions into bite-sized segments. It also avoids engineer-speak, explaining points in easy-to-understand language. It also is filled with color and black-and-white images as well as diagrams that explain how things happened, why other things were selected (and others weren’t) and so on.

The first edition of the book can be found on Amazon.com for around $30, whereas the newly updated second edition will set you back around $44.95. Given the attention to detail that is contained within this tome – it is well worth the additional cost to pick up the newer edition. How Apollo Flew To The Moon, second edition, is available for preorder from Amazon.com and other outlets. The book is scheduled to be released this summer.

“The book’s initial reception has been fantastic and I have been deeply humbled by folk’s kind words about it since it first came out,” Woods said. “The second edition is nearly ready and it expands on what was written in the first edition. At over 500 pages, it will be 25 percent larger with more color photographs throughout. There are additional stories of Apollo’s engineering triumphs both on the surface of the Moon as well as in flight, much of which reflects my continuing journey into the technical achievement that was Apollo.”

The first edition cover of "How Apollo Flew To The Moon." Image Credit: Springer/Praxis