Google Lunar X-Prize’s ‘college team’ gaining steam, attention and support

The Google Lunar X-PRIZE team, Omega Envoy, consists primarily of college students and is working to land a rover on the lunar surface. Image Credit: ESI

[/caption]
ORLANDO – The Google Lunar X-PRIZE (GLXP) recently announced the 29 official teams that will be vying for the $30 million grand prize. One group in particular stands out amongst the list however – Omega Envoy. This team is comprised primarily by college students from the University of Central Florida, working on engineering and other degrees. However, while they may be relatively young, they have drawn the attention of the media, numerous sponsors, NASA and the space industry.

NASA has inked a deal with the tiny band of potential explorers to purchase data from their spacecraft. The space agency awarded the Innovative Lunar Demonstration Data contract to Omega Envoy. This contract is worth up to $10 million. However, while this contract and the growing list of sponsors is impressive, the feat that the team is trying to accomplish is daunting. What they are attempting to do, only nations have done before.

The GLXP requires that to win, the team must safely land a robot on the lunar surface, have it travel 1,500 feet and send back both images and data to Earth. Given the fact that, to date, only the U.S. and Russia have accomplished this before – this is no small task.

Different views of Omega Envoy's proposed lunar rover. Image Credit: ESI

The Google Lunar X-PRIZE is another effort by the X-PRIZE Foundation. The impetus behind this organization is to accelerate space exploration efforts much in the same way that the Orteig Prize accelerated air travel in the 20th Century. That prize was a paltry (by today’s standards) $25,000 for the first person to fly non-stop from New York to Paris (or vice-versa). Its winner, Charles Lindbergh, would go down in history as one of the most famous aviators of all time. It is with this premise in mind that the X-PRIZE Foundation works to inspire today’s explorers and innovators.

The Omega Envoy team under Earthrise Space Inc., has been growing, gaining experience and the attention of major aerospace players - including NASA. Photo Credit: ESI

For the original Ansari X-PRIZE it took an established (if somewhat outside of the mainstream) aerospace company with years of experience to finally accomplish the objectives laid out. Scaled Composites, renowned for their kit aircraft; successfully sent a manned spacecraft into sub-orbital space, returned safely and then sent the same spacecraft, SpaceShipOne; back into space within the required two weeks.

The non-profit organization that oversees all aspects of Omega Envoy, Earthrise Space Inc. (ESI), works to provide services to private companies, government agencies, as well as educational institutions that currently have the resources to explore space and are looking for low cost products that will accomplish their requirements. They feel that this will enhance the accessibility of technology and increase educational interest amongst the workforce that drives the space.

“Aside from the GLXP, ESI intends to continuously schedule lunar deliveries for scientific payloads and robotics,” said Earthrise Space Institute’s Project Director Ruben Nunez. “Other mission objectives for Omega Envoy entail the visual feedback of a scientific payload that will analyze the lunar terrain.”

This illustration displays what Omega Envoy's lunar lander craft might look like. Image Credit: ESI

Through the Google Lunar X-PRIZE and government contracts such as the contract with NASA, it is hoped that this initiative will enable the creation of a new economic system to support lunar exploration as well as Technology Readiness Level (TRL) advancement of innovative, commercial space systems.

“I am fortunate in that I had the opportunity to witness what Omega Envoy is capable of producing when I field tested their prototype rover during the 2009 FMARS (Flashline Mars Arctic Research Station) Expedition,” said Joseph Palaia 4Frontiers’ Vice President. “There is little doubt in my mind that this team is fully capable of accomplishing the objectives laid out in the GLXP.”

One of the Omega Envoy team members, Joseph Palaia; took a prototype of the rover to be field tested during the 2009 FMARS Expedition. Photo Credit: Joseph Palaia

NASA Lunar Reconnaissance Orbiter Delivers Treasure Trove of Data

LOLA data give us three complementary views of the near side of the moon: the topography (left) along with new maps of the surface slope values (middle) and the roughness of the topography (right). All three views are centered on the relatively young impact crater Tycho, with the Orientale basin on the left side. The slope magnitude indicates the steepness of terrain, while roughness indicates the presence of large blocks, both of which are important for surface operations. Lunar topography is the primary measurement being provided, while ancillary datasets are steadily being filled in at the kilometer scale. Credit: NASA/LRO/LOLA Science Team

[/caption]

NASA’s Lunar Reconnaissance Orbiter (LRO) has completed its initial phase of operations during the exploration phase which lasted one year from Sept. 15, 2009 through Sept. 15, 2010 and has now transitioned to the science phase which will last for several more years depending on the funding available from NASA, fuel reserves and spacecraft health. The exploration phase was in support of NASA’s now cancelled Project Constellation

To mark this occasion NASA released a new data set that includes an overlap of the last data from the exploration phase and the initial measurements from the follow on science mapping and observational phase.

This is the fifth dataset released so far. All the data is accessible at the Planetary Data System (PDS) and the LROC website and includes both the raw data and high level processed information including mosaic maps and images.

LRO was launched on June 18, 2009 atop an Atlas V/Centaur rocket as part of a science satellite duo with NASA’s Lunar Reconnaissance Orbiter & Lunar Crater Observation and Sensing Satellite (LCROSS) from Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

After achieving elliptical orbit, LRO underwent a commissioning phase and the orbit was lowered with thruster firings to an approximately circular mapping orbit at about 50 km altitude.

LRO spacecraft (top) protected by gray colored blankets is equipped with 7 science instruments located at upper right side of spacecraft. Payload fairing in background protects the spacecraft during launch and ascent. Credit: Ken Kremer
LRO was equipped with 7 science instruments that delivered more than 192 terabytes of data and with an unprecedented level of detail. Over 41,000 DVDs would be required to hold the new LRO data set.

“The release of such a comprehensive and rich collection of data, maps and images reinforces the tremendous success we have had with LRO in the Exploration Systems Mission Directorate and with lunar science,” said Michael Wargo, chief lunar scientist of the Exploration Systems Mission Directorate at NASA Headquarters in Washington according to a NASA statement.

The new data set includes a global map produced by the onboard Lunar Reconnaissance Orbiter Camera (LROC) that has a resolution of 100 meters. Working as an armchair astronaut, anyone can zoom in to full resolution with any of the mosaics and go an exploration mission in incredible detail because the mosaics are humongous at 34,748 pixels by 34,748 pixels, or approximately 1.1 gigabytes.

Browse the Lunar Reconnaissance Orbiter Camera (LROC) Image Gallery here:

The amount of data received so far from LRO equals the combined total of all other NASA’s planetary missions. This is because the moon is nearby and LRO has a dedicated ground station.

Topographic map from LRO data. Credit: NASA

Data from the other LRO instruments is included in the release including visual and infrared brightness, temperatures maps from Diviner; locations of water-ice deposits from the Lyman-Alpha Mapping Project (LAMP) especially in the permanently shadowed areas and new maps of slope, roughness and illumination conditions from the Lunar Orbiter Laser Altimeter team.

Additional new maps were generated from data compilations from the Lunar Exploration Neutron Detector (LEND), the Cosmic Ray Telescope for the Effects of Radiation and the Miniature Radio Frequency (mini RF) instruments

The combined result of all this LRO data is to give scientists the best ever scientific view of the moon.

“All these global maps and other data are available at a very high resolution — that’s what makes this release exciting,” said Goddard’s John Keller, the LRO deputy project scientist. “With this valuable collection, researchers worldwide are getting the best view of the moon they have ever had.”

Slope image. Credit: NASA
The Atlas V/Centaur carrying NASA's Lunar Reconnaissance Orbiter & Lunar Crater Observation and Sensing Satellite hurtles off Launch Complex 41 at Cape Canaveral Air Force Station in Florida on June18, 2009. Credit: NASA/Tom Farrar, Kevin O'Connell

Source: NASA Press Release

Touching the Tarantula: Hubble Gets in Close

Credit: NASA, ESA

[/caption]

Hubble has edged in close to the Tarantula Nebula, peering into its bright center of ionized gases, dust and still-forming stars. The Tarantula is already a go-to celestial marvel, because its hydrogen-fueled young stars shine with such intense ultraviolet light that they ionize and redden the surrounding gas — making the nebula visible without a telescope for Earth-bound observers 170,000 light-years away. The new image may make this popular beacon, in our neighboring galaxy the Large Magellanic Cloud, even more famous.

 

Credit: NASA, ESA

The wispy arms of the Tarantula Nebula (RA 05h 38m 38s dec -69° 05.7?) were originally thought to resemble spindly spider legs, giving the nebula its unusual name. The part of the nebula visible in the new image is criss-crossed with tendrils of dust and gas churned up by recent supernovae. These remnants include NGC 2060, visible above and to the left of the center of the image, which contains the brightest known pulsar.

The tarantula’s bite goes beyond NGC 2060. Near the edge of the nebula, outside the frame, below and to the right, lie the remains of supernova SN 1987a, the closest supernova to Earth to be observed since the invention of telescopes in the 17th century. Hubble and other telescopes have been returning to spy on this stellar explosion regularly since it blew up in 1987, and each subsequent visit shows an expanding shockwave lighting up the gas around the star, creating a pearl necklace of glowing pockets of gas around the remains of the star. SN 1987a is visible in wide field images of the nebula, such as that taken by the MPG/ESO 2.2-meter telescope.

A compact and extremely bright star cluster called RMC 136 lies above and to the left of this field of view, providing much of the radiation that powers the multi-coloured glow. Until recently, astronomers debated whether the source of the intense light was a tightly bound cluster of stars, or perhaps an unknown type of super-star thousands of times bigger than the sun. It is only in the last 20 years, with the fine detail revealed by Hubble and the latest generation of ground-based telescopes, that astronomers have been able to conclusively prove that it is, indeed, a star cluster.

But even if the Tarantula Nebula doesn’t contain this hypothetical super-star, it still hosts some extreme phenomena, making it a popular target for telescopes. Within the bright star cluster lies star RMC 136a1, which was recently found to be the heaviest ever discovered: the star’s mass when it was born was around 300 times that of the sun. This heavyweight is challenging astronomers’ theories of star formation, smashing through the upper limit they thought existed on star mass.

Source: ESA press release at the Hubble site. See also previous releases on the Large Magellanic Cloud and RMC 136.

Japan Quake May Have Shortened Earth Days, Moved Axis

TerraSAR-X Change Analysis of Sendai Area, Japan. Map show coastal area of Sendai effected by 9,0 magnitude Earthquake that triggered ensuing destructive Tsunami. Credit: Deutsches Zentrum fur Luft- und Raumfahrt (DLR) - German Aerospace Center

[/caption]

The terribly destructive magnitude 9.0 earthquake which struck Japan on March 11, may have had another effect – Shortening the length of each Earth day and shifting its axis. Did you notice any change ?

Well according to NASA, the changes are so small that you won’t notice the difference.

Based on initial calculations conducted by Richard Gross, a research scientist at NASA’s Jet Propulsion Laboratory, the earthquake should have caused Earth to rotate just slightly faster, shortening the length of the day by about 1.8 microseconds (a microsecond is one millionth of a second), according to a statement released by NASA.

A reader posted this link to before and after photos

Gross used complex modeling and estimates of fault slippage to perform a preliminary theoretical calculation of how the earth’s rotation may have been affected.

Calculations by Gross also indicate that the position of Earth’s figure axis could have shifted by about 17 centimeters (6.5 inches), towards 133 degrees east longitude. The figure axis is the axis about which Earth’s mass is balanced.
Earth’s figure axis is therefore different and offset from the north-south axis by about 10 meters.

“This shift in Earth’s figure axis will cause Earth to wobble a bit differently as it rotates, but it will not cause a shift of Earth’s axis in space-only external forces such as the gravitational attraction of the sun, moon and planets can do that,” according to the NASA statement.

The estimates for both the shortening in the Earth’s rotation and shift in the figure axis are preliminary and will very likely change as more data is collected and the calculations are refined.

The March 11 earthquake was the fifth largest since 1900. So far, over 4000 people are confirmed dead and the overall death total may exceed 10,000.

Several heavily damaged nuclear reactors at the Fukushima plant are in danger of meltdown as hero workers inside put their lives on the line to avoid a catastrophic failure and try to prevent the spread of lethal radiation.

This view of Earth comes from NASA's Moderate Resolution Imaging Spectroradiometer aboard the Terra satellite

Previously, Gross had calculated the affects of the magnitude 8.8 Chilean quake in 2010 and found them to be slightly smaller compared to the Japanese quake. He calculated a shortening in the length of day of about 1.26 microseconds and shifting of Earth’s figure axis of about 8 centimeters (3 inches). These affects are dependent on the magnitude of the quake, exactly where it is located as well as how the particulars of how the fault slips.

In fact, Earth’s rotation is changing all the time as a result of continual changes in atmospheric winds and oceanic currents and these effects are about 550 times larger than the Japanese earthquake.

“Over the course of a year, the length of the day increases and decreases by about a millisecond,” says Gross. Indeed, the effects of earthquakes on changing rotation are so tiny that they are smaller than the margin of error in the measurements themselves.

By comparison, measurements of the figure axis are much more reliable and meaningful. Changes to the figure axis can be accurately measured to within about 5 centimeters. This means that the estimated 17 centimeter shift from the Japanese quake may be real after accounting for the effects of the atmospheric winds and ocean currents. Further research is needed as more data are collected and analyzed.

“These changes in Earth’s rotation are perfectly natural and happen all the time. People shouldn’t worry about them,” said Gross.

Source: NASA Press Release:

Bullseye: MESSENGER Gears Up For First-Ever Mercury Orbit

Planned footprint for the first image to be acquired from a spacecraft orbiting Mercury, on March 29, including a portion of Mercury's surface not previously seen by spacecraft. Over the subsequent six hours, MESSENGER will acquire 364 images in total before beginning to downlink the data to Earth. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

[/caption]

When MESSENGER streaked into the early morning sky over Cape Canaveral on Aug. 3, 2004, very little was known about Mercury.

That could soon change. This week, MESSENGER — which stands for MErcury Surface, Space ENvironment, GEochemistry and Ranging — will make history when it becomes the first spacecraft to orbit Mercury.

At 8:45 p.m. EDT on Thursday, MESSENGER will execute a 15-minute maneuver that will place it into orbit around Mercury, kicking off a year-long science campaign to understand the innermost planet. The craft will fly around Mercury 730 times in the first year, and may be extended for another year after that.

No spacecraft had approached Mercury since the Mariner 10 space probe performed three fly-by maneuvers over the course of 1974 and 1975, imaging the planet’s surface. However, Mariner 10 sent back photos of only one side of the planet, leaving the other shrouded in mystery.

The MESSENGER mission — led by NASA, the Applied Physics Laboratory at Johns Hopkins University and the Carnegie Institution — is an effort to study the geologic history, magnetic field, surface composition and other mysteries of the planet. The findings are expected to broaden our understanding of rocky planets, more and more of which are being discovered in other solar systems. One of the most compelling enigmas surrounds Mercury’s magnetic field. At a diameter only slightly larger than that of the moon (about 4,800 kilometers or 2,983 miles), Mercury should have solidified to the core. However, the presence of a magnetic field suggests the planet’s insides are partially molten.

During its journey toward Mercury, MESSENGER passed the planet several times, filling in the imaging gaps left by Mariner 10. Now, the entire planet with the exception of about five percent has been observed. MESSENGER will focus its cameras on getting the best possible images of the remaining portions, mostly in the polar regions.

The in-flight preparations for this historic injection maneuver began on Feb. 8, when several heaters on the spacecraft were configured to condition the bi-propellant used during the maneuver. Starting on March 8, antennas from each of the three Deep Space Network (DSN) ground stations began a round-the-clock vigil, allowing flight control engineers at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., to monitor MESSENGER on its final approach to Mercury. Also that day, the spacecraft began executing the last cruise command sequence of the mission.  The command load executed until today. Now, the command sequence containing the orbit-insertion burn has begun.

APL is hosting a live webcast about the orbit insertion maneuver starting at 7:55 p.m. EDT on Thursday, March 17.

For those of you living near Johns Hopkins, APL and The Planetary Society will co-host a public lecture in APL’s Kossiakoff Center, featuring MESSENGER Project Scientist Ralph L. McNutt, Jr. The lecture will begin at 8 p.m. on Thursday. RSVP online.

Check Universe Today late on Thursday for coverage of the orbit insertion, with input from related talks at the Laboratory for Space Physics (LASP) in Boulder, Colorado. Meanwhile, for more information, check out NASA’s MESSENGER mission website.

Sources: NASA’s MESSENGER mission website and a press release from the University of Arizona.

Discoverys Last Launch and Landing Captured in Exquisite Amateur Videos

Launch of Space Shuttle Discovery on Feb. 24 at 4:53 p.m. from launch pad 39 A at the Kennedy Space Center. Credit: Ken Kremer


Watch the HD version. More photos below

Imagine ….. “You Are There ! ”

… in the middle of the whooping, cheering crowd at the Kennedy Space Center (KSC) for the historic final launch of Space Shuttle Discovery on the STS-133 mission to the International Space Station.

That’s the feeling you’ll get from this exquisite and exciting piece from amateur videographer Anton Janssen from the Netherlands. Anton has captured the sights and sounds of excitement of the giant crowd in the thick of the action in this amazingly sharp video of Discovery’s last blast to space.

Anton’s vantage point from the NASA Causeway enabled him to film the liftoff with a birds eye view of the entire orbiter to the base of the launch pad – not blocked by the launch gantry at all. And to top that off, the video shows panoramic reaction shots of the large and exuberant crowd. What’s more is you can hear the cheering multitudes at multiple milestones as Discovery ascends with a deafening roar and spewing intense scorching flames out her rear like a gigantic blowtorch burning an indelible hole in the sky.

I happened to meet Anton at Port Canaveral a few days after the launch as Discovery’s powerful Solid Rocket Boosters (SRB’s) were being towed along the canal following their retrieval from the Atlantic Ocean.

[/caption]

Anton told me he bought the camera new and especially for the STS-133 launch after he purchased one of the very hard to get VIP Tickets from the KSC Visitor Complex. He arrived at the viewing site several hours early, along with tens of thousands of other onlookers along the Florida Space Coast beaches and roadways.

“The NASA Causeway was a great viewing site because you could see the shuttle right from the start,” Anton explained.

Check out this amazing close up video view of the final moments of Discovery’s final landing and the finale of her space career as record by Matt Travis, of Spacearium, taken at the Shuttle Landing Facility where I was also stationed.

This timelapse of Discovery’s launch was shot from the Kennedy Space Center Causeway Viewing Site, by David Gonzales of Project Soar. (See our previous article about them.) Here, approximately 12 minutes is condensed into 27 seconds, so about 27 times as fast. Replayed at 15 fps. See the launch and smokey plume change over time as it is tugged on by wind.

Only 1 or 2 flight remain for the Space Shuttle Program until they are forcibly retired for lack of money.

Next up is the launch of Endeavour on April 19 at dusk. Should make for some extremely cool videos and snapshots! Get your gear ready!

Space Shuttle Discovery concluded her magnificent final journey with a safe landing on March 9, 2011 at the Kennedy Space Center in Florida at 11:57 a.m. EST. Credit: Ken Kremer

Did Mars’ Missing Carbon Go Underground in a Wetter Age?

Image credit: NASA/JPL-Caltech/Arizona State Univ. North is toward the top of the image, which is centered at 14 degrees south latitude, 304.4 degrees west longitude.

[/caption]

A close look at the Wisconsin-sized Huygens Crater, above, in Mars’ southern highlands gave NASA and Arizona State University scientists some clues to announce this week as to a possible source of the carbon that’s mysteriously missing from the red planet’s thin atmosphere.

It might be buried underground.

The impact that formed the crater lifted material from far underground and piled some of it at the crater’s rim, where, at about 10 o’clock on the photo, an unnamed crater later exposed rocks containing carbonate minerals. The minerals were identified by observations with the mineral-mapping Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on NASA’s Mars Reconnaissance Orbiter.

Carbon dioxide makes up nearly all of today’s Martian air and likely was most of a thicker early atmosphere, too. In today’s thin, cold atmosphere, liquid water quickly freezes or boils away.

Carbonates found in rocks elsewhere on Mars, from orbit and by NASA’s Spirit rover, are rich in magnesium. Those could form from reactions of volcanic deposits with moisture, said James Wray of Cornell University in Ithaca, N.Y. “The broader compositional range we’re seeing that includes iron-rich and calcium-rich carbonates couldn’t form as easily from just a little bit of water reacting with igneous rocks. Calcium carbonate is what you typically find on Earth’s ocean and lake floors.”

He said the carbonates at Huygens and Leighton “fit what would be expected from atmospheric carbon dioxide interacting with ancient bodies of water on Mars.” Key additional evidence would be to find similar deposits in other Martian regions. A hunting guide for that search is the CRISM low-resolution mapping, which has covered about three-fourths of the planet and revealed clay-mineral deposits at thousands of locations.

“A dramatic change in atmospheric density remains one of the most intriguing possibilities about early Mars,” added Mars Reconnaissance Orbiter Project Scientist Richard Zurek, of NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Increasing evidence for liquid water on the surface of ancient Mars for extended periods continues to suggest that the atmosphere used to be much thicker.”

Credit: NASA/JPL-Caltech/Univ. of Arizona

The HiRISE image above covers an area about 460 meters (1,500 feet) across in which carbonate minerals have been identified. It combines information collected separately in red, blue-green, and near-infrared wavelengths. It’s from HiRISE observation ESP_012897_168, made on April 27, 2009, and centered at 11.6 degrees south latitude, 51.9 degrees east longitude.

“We’re looking at a pretty lucky location in terms of exposing something that was deep beneath the surface,” Wray said. He reported the latest carbonate findings on Tuesday at the Lunar and Planetary Science Conference near Houston.

Observations in CRISM’s high-resolution mode show spectral characteristics of calcium or iron carbonate at this site. Detections of clay minerals in lower-resolution mapping mode by CRISM had prompted closer examination with the spectrometer, and the carbonates are found near the clay minerals. Both types of minerals typically form in wet environments.

The occurrence of this type of carbonate in association with the largest impact features suggests that it was buried by a few kilometers (or miles) of younger rocks, possibly including volcanic flows and fragmented material ejected from other, nearby impacts.

The new findings reinforce a report by other researchers five months ago identifying the same types of carbonate and clay minerals from CRISM observation of a site about 1,000 kilometers (600 miles) away. At that site, a meteor impact has exposed rocks from deep underground, inside Leighton crater. In their report of that discovery, Joseph Michalski of the Planetary Science Institute in Tucson, Ariz., and Paul Niles of NASA Johnson Space Center in Houston, proposed that the carbonates at Leighton “might be only a small part of a much more extensive ancient sedimentary record that has been buried by volcanic resurfacing and impact ejecta.”

NASA will launch the Mars Atmosphere and Volatile Evolution Mission (MAVEN) in 2013 to investigate processes that could have stripped the gas from the top of the atmosphere into interplanetary space. Meanwhile, CRISM and other instruments now in orbit continue to look for evidence that some of the carbon dioxide in that ancient atmosphere was removed, in the presence of liquid water, by formation of carbonate minerals now buried far beneath the present surface.

Source: NASA news release. See also NASA’s Mars Reconnaissance Orbiter page.

Grieving Glory — And Will The Taurus XL Fly Again?

Orbital Sciences Taurus rocket. Credit: NASA

[/caption]

Last week’s loss of the $420 million Glory satellite has sent NASA into an intensive investigation to find out why two climate change missions in a row — flying aboard the same type of rocket — crashed due to what apparently was a similar technical glitch. Orbital Sciences out of Dulles, Va. is the company that designed the Taurus XL rocket that hosted both Glory and the Orbiting Carbon Satellite that crashed in 2009. They insisted last week that they’ll bounce back with the Taurus. But they may not be bouncing back on a NASA mission. Joy Bretthauer, NASA’s Glory program executive, acknowledged that the Orbiting Carbon Observatory 2, which will launch in 2013, is contracted to fly on none other than a Taurus XL. That may not stand, she said: “The bottom line is NASA will not fly in a launch vehicle that we do not have confidence in.”

Meanwhile, scores of researchers who poured their hearts into the mission are working to cope with the loss. Greg Kopp, the Boulder, Colorado-based principal investigator on the Total Irradiance Monitor that was supposed to fly aboard Glory, gave a thorough debriefing about his experience for the radio program Colorado Matters, on Colorado Public Radio out of Denver. It airs today.

Rich Straka, deputy general manager for operations for the Orbital Sciences launch systems group,  said during a NASA press briefing that the problem with both launches had to do with a protective covering called a clamshell fairing, held onto the vehicle with frangible, or breakable, joints meant to explosively fracture when commanded to do so.

“The fairing is then in two halves and there are piston pushers that push the fairing off,” Straka explained.

But in neither launch — the OCO in 2009 or Glory last week — did the fairing come off the rocket. In both cases, it stayed put and weighed the satellite down, preventing its flight toward orbit.

“We went into this flight confident that we had nailed the fairing issue,” said Ron Grabe, executive vice president and general manager of Orbital Sciences’ launch systems group. “We went so far as to completely change out the initiation system to a system that we use on one of our other vehicles, and in the intervening years that system flew successfully three times.”

Specifically, the company had previously used a hot gas system to drive the pistons that would push the fairing halves apart. But they traced the OCO launch loss to an initiation failure in the hot gas system. Orbital Sciences redesigned the Taurus XL rocket to use a cold gas system, starting with a pressurized bottle of nitrogen, just like the one in use on their Minotaur rocket.

NASA’s Bretthauer said she and others in the agency are heavy-hearted, but also baffled that their review of the OCO failure didn’t rule out the same mishap for Glory.

“We really thought we had it right,” she said. “We obviously never would have launched if we had not strongly believed the OCO failure had been mitigated.”

Kopp, a solar physicist at CU Bouder’s Laboratory for Atmospheric and Space Physics (LASP), said Bretthauer herself has asked a key question during early meetings to investigate the Glory failure: If a thorough investigation by both NASA and Orbital Sciences missed a key problem, how can we trust the process the second time around?

Meanwhile, Kopp and others are regrouping to see how much of Glory’s science can be salvaged. His instrument, the TIM, was supposed to continue an ongoing measure of the sun’s energy reaching Earth, to try to better understand the sun’s role in climate change. For now, older instruments like SORCE are carrying the torch. And it’s possible that development of missions currently in the pipeline — like the Joint Polar Satellite System (JPSS), a collaboration between NASA and NOAA — might be sped up to fill in the gaps.

More information: See also NASA’s Glory and OCO pages, a previous story about the Glory mission, and two stories about the OCO crash in 2009, here and here. This story is cross-posted at anneminard.com.

Endeavour’s Final Rollout

Endeavour begins her journey out to the launch pad under a clear, cold Florida sky. Photo Credit: Ken Kremer/www.rittenhouseastronomicalsociety.org/Dr.Kremer/K.htm

[/caption]
CAPE CANAVERAL – The youngest orbiter in NASA’s shuttle fleet headed to Launch Complex 39A at Kennedy Space Center in Florida for the last time on Friday, Mar. 10. The shuttle started its slow trek out to the launch pad around 8 p.m. EST. Endeavour is being prepared for the STS-134 mission which is scheduled to launch on Apr. 19 at 7:48 p.m. EST.

The space shuttle Endeavour rolled out to Launch Complex for the final time at 7:56 p.m. EST. Photo Credit: Jason Rhian

Endeavour was wheeled out of NASA’s massive Vehicle Assembly Building (VAB) on top of the crawler-transporter. This huge, tracked vehicle moves at a blistering pace of about a mile an hour. Therefore it took Endeavour several hours to reach LC39A. What is known as “Rollout” had been slated to occur the day prior, but a front of nasty weather blew in and shuttle managers decided to push the trip back a day.

The STS-134 will be Endeavour’s 25th and final mission. It is a resupply flight to the International Space Station. Its payload consists of the Alpha Magnetic Spectrometer -02 (AMS-02) as well as the Express Logistics Carrier-3.

Endeavour, bathed in golden light, awaits her final trip out to the launch pad. Photo Credit: Ken Kremer/www.rittenhouseastronomicalsociety.org/Dr.Kremer/K.htm

“As exciting as it will be to fly this mission, what’s even more exciting is the science that this flight will bring to the International Space Station,” said STS-134 Pilot Greg Johnson. “I have no doubt that the AMS-02 will teach us new things about how the universe works and it may even show us new particles that we didn’t even know existed.”

Commander Mark Kelly will lead the crew of six, Johnson is the pilot and the Mission Specialists will be Mike Fincke, Andrew J. Feustel, Greg Chamitoff and European astronaut Roberto Vittori.

STS-134 Pilot Greg Johnson talks to reporters about his views on the upcoming STS-134 mission. Photo Credit: Jason Rhian

For a while it was uncertain whether-or-not Mark Kelly, the mission’s commander would be on this historic flight. His wife, Congresswoman Gabrielle Giffords, was severely injured when she was shot in the head by alleged gunman Jared Lee Loughner. NASA named Rick Sturckow as the mission’s backup commander. However, Kelly announced later that he would remain the mission’s commander and resumed training with his crewmates. By all accounts, it was Giffords that encouraged him to continue and it appears that she will back at Kennedy Space Center when the mission launches.

“While all of us that have worked on Endeavour are a little sad that this is her final mission, we remained focused on conducting her last flight as safely as possible,” said Endeavour’s Flow Director, Dana Hutcherson.

Reflected in the waters of the Kennedy Space Center turn basin, Endeavour heads out for her date with history. Photo Credit: Ken Kremer/www.rittenhouseastronomicalsociety.org/Dr.Kremer/K.htm

Endeavour was constructed after the loss of Challenger in 1986. The orbiter first flew in 1992. After the STS-134 mission concludes there will only be one flight remaining in the shuttle program, STS-135, currently slated for a June 28 launch. It has been hinted that Endeavour might end up staying at Kennedy Space Center – at the Kennedy Space Center Visitor Complex. However, an official announcement has yet to be made.

Endeavour is the youngest orbiter in the shuttle fleet, this resupply flight to the International Space Station will be the last mission of its 19-year career. Photo Credit: Jason Rhian

Endeavour Mated to Rockets for Last Flight Photo Album

Space Shuttle Endeavour in VAB for Final Lift and Mate to Rocket Boosters. Endeavour was attached for the last time to External fuel tank and Solid Rocket Boosters that will power her last ascent to space on the STS-134 mission in April 2011. Then she will be retired from active duty service and sit in a museum yet to be chosen. All the orbiters could be usefully flown for many more years but for lack of money from the US Federal Government. Credit: Ken Kremer

[/caption]

For the final flight of Space Shuttle Endeavour, I was privileged to be one of the lucky few to be an eyewitness to how the orbiter was hoisted and attached for the last time to the External fuel tank and twin solid rocket boosters that will power her last ascent to space on the STS-134 mission . Thereafter she will be retired from active duty service.

“Lift and Mate” is the formal name for the nearly day and a half long intricate process to join Endeavour to the fuel tank and rocket boosters and took place after the orbiter was hauled inside the 52 story Vehicle Assembly Building atop a 76 wheeled transporter on Feb. 28.

Workers in the Vehicle Assembly Building (VAB) secure yellow metal sling to Endeavour prior to lift from the VAB transfer aisle into High Bay 3 on 1 March 2011. Credit: Ken Kremer

Lift and Mate is a jaw dropping and unforgettable experience because you see the orbiter suspended in mid air as though it was flying in space. While hanging in the air by thin cables, the 100 ton orbiter is reminiscent to me of what astronauts on the International Space Station surely see as the shuttle approaches for docking.

Following the shuttles rollover to the VAB on top on the transporter, technicians initially attached a large yellow, metal sling to Endeavour in the center area of the VAB – known as the transfer aisle.

Endeavour was then slowly and methodically hoisted on pulleys and chains into the vertical position. The tail came to rest just a few meters from the hard and unforgiving concrete floor. The orbiter was then lifted up to the VAB ceiling and carefully moved over walkways into High Bay 3. Media including myself watched this entire process in total awe from several different levels inside the VAB as Endeavour was lifted past us from just a few meters away.

The final step was to lower Endeavour into position for mating to the fuel tank and solid rocket boosters already awaiting her arrival.
Its hard to believe I was really an eyewitness to this majestic event and also sadly realize it will never happen again.

“The orbiter has a lot of life left in her,” said a top shuttle manager to me. “The shuttle could fly many more missions.”

Large yellow sling set to be attached to Endeavour. Credit: Ken Kremer

NASA will rollout Endeavour to Launch Pad 39 A on March 9 following the landing of Space Shuttle Discovery.

The STS-134 mission will be the 25th and final flight for shuttle Endeavour. Launch is set for April 19. Endeavour will haul the $2 Billion Alpha Magnetic Spectrometer (AMS) to orbit and attach it to the ISS. AMS will search for dark matter and seek to determine the origin of the universe.

Check out the majestic views of “Lift and Mate” for Space Shuttle Endeavour in my photo album herein

Final “Lift and Mate” of Space Shuttle Endeavour. Photos by Ken Kremer

Space Shuttle Endeavour in VAB for Lift and Mate. Credit: Ken Kremer
Overhead view of Space Shuttle Endeavour in VAB for Lift and Mate. Credit: Ken Kremer
Overhead view of Space Shuttle Endeavour in VAB for Lift and Mate from Level 16. Credit: Ken Kremer
Belly view of Space Shuttle Endeavour coated with thousands of heat shield tiles. Two rectangular attach points hold left and right side main separation bolts from ET Credit: Ken Kremer
Lifting Endeavour. Credit: Ken Kremer
Belly view of Space Shuttle Endeavour and heat shield tiles. Credit: Ken Kremer
Endeavour goes Vertical. Credit: Ken Kremer
Rotating Vertical Endeavour. Credit: Ken Kremer
Lowering Endeavour to Solid Rocket Boosters and External fuel tank inside VAB. Credit: Ken Kremer
Lowering Endeavour in High Bay 3 to SRBs and ET inside VAB. Credit: Ken Kremer
Lowering Endeavour to SRB’s and ET inside VAB. Credit: Ken Kremer
Lowering Endeavour to SRB’s and ET inside VAB. Credit: Ken Kremer
Endeavour disappears behind scaffolding while it is lowered to SRB’s and ET inside VAB. Credit: Ken Kremer
Endeavour disappears behind scaffolding while it is lowered to SRB’s and ET inside VAB. Tip of ET visible here above nose of Endeavour. Credit: Ken Kremer
Ken Kremer and Space Shuttle Endeavour in the VAB for Lift and Mate to Booster rocket