NASA’s Nanosail-D Released into the Winds of Space

Artist concept of Nanosail-D in Earth orbit. Credit: NASA

[/caption]

Despite being an idea rattling around inside the head of engineers and space enthusiasts for over 40 years, solar sails have never really gained much traction in the way of actual deployment. Today, NASA has taken an important step towards testing solar sail technology for use in future spacecraft.

The Nanosail-D spacecraft was launched Friday, Nov. 19 at 8:25 p.m. EST from Kodiak Island, Alaska, and was piggybacking on another satellite, both aboard a Minotaur IV rocket. It has successfully been ejected from the launch vehicle as of today, and is on its own. Though the sails have yet to deploy, this is already an achievement that bodes well for the future of both solar sail and small satellite technology.

The Nanosail-D satellite – commonly described as “loaf of bread” sized – was ejected from the Fast, Affordable, Science and Technology Satellite (FASTSAT) at 1:31 a.m. EST December 6th. Not only is this NASA’s first attempt at deploying a solar sail in space, but this also marks the first time a nanosatellite has been ejected from another satellite, proving that this is a reliable way to get multiple satellites into orbit at the same time.

Nanosail-D is a nanosatellite – or cubesat – designed to test the potential for solar sails in atmospheric braking. Such sails – made from a an ultra-thin and light material, in this case the polymer CP1 – could potentially be used to propel a spacecraft outside of our Solar System. The Nanosail-D sail will be deployed in low-Earth orbit, about 650 km (400 miles) up. The sail will be used to show how such technology could slow down satellites when they need to de-orbit.

Currently, de-orbiting satellites involves maneuvering them into a lower and lower orbit using the engines of the satellite, which necessitates more propellant aboard the spacecraft simply to dispose of it properly. Nanosail-D will deploy a solar sail and orbit for 70-120 days, eventually spiraling into the Earth’s atmosphere to burn up.

Since it will be orbiting so close to the Earth, its potential for testing solar sails as propulsion is not the focus of the mission; however, the deployment of a solar sail is itself a huge engineering challenge. Nanosail-D will be the perfect experiment to test out whether the method NASA will be using to unfurl the sail is workable in space.

Immediately after the ejection earlier today, a timer started a three-day countdown. Once it reaches zero, it will go boom – that is, four booms will spring out from the small satellite, and within five seconds the sail will be fully extended to its 100 square foot (10 square meter) sail-span.

The first Nanosail-D, unfurled in the lab with the mission team. Image Credit: NASA

Dean Alhorn, NanoSail-D principal investigator and aerospace engineer at the Marshall Space Flight Center explains on the mission page, “The deployment works in the exact opposite way of carpenter’s measuring tape. With a measuring tape, you pull it out, which winds up a spring, and when you let it go it is quickly pulled back in. With NanoSail-D, we wind up the booms around the center spindle. Those wound-up booms act like the spring. Approximately seven days after launch, it deploys the sail off the center spindle.”

There have been other attempts at launching and deploying solar sails before, but once deployed, Nanosail D will be the longest-running solar sail experiment yet attempted. Both JAXA and the Russian space agency have deployed successful solar sail experiments.

JAXA launched a clover-shaped sail aboard a sounding rocket in 2004, and the experiment lasted about 400 seconds. They also launched the IKAROS spacecraft in May, 2010, which is currently en-route to Venus, and will fly to the opposite side of Sun from Earth. The Russians deployed a 20-meter diameter mirror successfully aboard the Progress M-15 resupply mission to Mir in 1993. Named Znamya 2, the mirror cast a 5km (3 mile)-wide bright spot on the ground that swept across southern France to western Russia, and orbited for several hours before burning up.

The Planetary Society is probably the most vocal and enthusiastic organization in support of solar sail technology. They are currently developing a solar sail similar to that of Nanosail-D, called Lightsail-1. The society attempted a launch of a solar sail called Cosmos 1 in 2005, but the rocket carrying the satellite did not fire during its second stage, and the craft was lost.

Nanosail-D is in its second iteration. The first spacecraft was commissioned in early 2008, and the team – astrophysicists and engineers at the Marshall Space Flight Center and the Ames Research Center – had four months to put together a workable satellite. It launched aboard a Falcon 1 rocket in August of 2008, but the rocket burned up in the atmosphere. If engineers are good at one thing, it’s redundancy – the team had constructed a second Nanosail-D, and had ample time to work out some of the bugs and develop the technology even more.

Doug Huie, a research technician at the University of Alabama in Huntsville, prepares the spacecraft for launch testing. The spacecraft measures 4 inches wide, 4 inches deep and 13 inches long, and weighs 9 pounds. (10cm X 10cm X 33 cm, 4kg) Image Credit: NASA

The Planetary Society almost had a chance to launch Nanosail-D, according to Louis Friedman, executive director of the The Planetary Society, they were contacted by the team developing Nanosail-D after the failed initial launch attempt, and asked if they would like to help launch the second Nanosail-D spacecraft. The Planetary Society agreed, but the team then found space aboard the FASTSAT launch. Consequently, Lightsail-D was borne out of this brief collaboration.

The timer is silently counting down what promises to be an exciting mission, and potential milestone in the future of spaceflight. Watch this space for further developments on the mission.

Sources: NASA press release, The Planetary Society, NASA Science, NASA Nanosail-D fact-sheet

Shuttle Launch Delayed to February of 2011

Discovery on the launchpad. Credit: Alan Walters (awaltersphoto.com) for Universe Today

[/caption]

NASA announced today that the launch of space shuttle Discovery for the STS-133 mission has been pushed back to no earlier than Feb. 3, 2011, to allow for more testing on the external tank stringers. Cracks on the stringers were found after the tank was loaded with cryogenic fuel for a subsequently scrubbed launch attempt in November.

“We’ve hit a point where there is no obvious answer for what has occurred,” said shuttle program manger John Shannon at a press briefing today, “so we have to take the next step and understand to very fine level the stress on the stringers and to find if that is a root cause of what happened to the STS-133 tank. I need to better understand the conditions to fly that fly tank confidently. It’s unfortunate we are not making the December launch window. But we want to make sure that we do this exactly right.”

The cracks appeared on two 21-foot-long, U-shaped aluminum brackets, called stringers, on the shuttle’s external tank. NASA repaired the cracks and reapplied foam to the exterior of the stringers. But they don’t understand the reasons the cracks appeared, and NASA managers feel this is likely a unique event.

“We don’t have any data that we have been flying with cracks all along,” said Shannon.

The launch window is open from Feb. 3 -10. This delay also moves the STS-134 launch from February to April.
This delay, however, doesn’t mean there won’t be any activity at the International Space Station. The crew for Expedition 26 launches on the Soyuz on Dec. 15, Japan’s HTV supply ship launches on January 20, a Progress resupply ship docks on Jan. 31, and ESA’s ATV resupply vehicle is scheduled for a February 15th launch.

NASA’s Bill Gerstenmaier said the teams will try to replicate what engineers think is the most leading cause is of the failure. “They will build up a stringer panel and put some defects in, the manufactured tolerances, and try to replicate the crack we saw during cryo loadings,” he said. “We’ll also do a test at cape where we load tank with cryogenic propellant and put some devices on the tank to monitor how it loads up and that will serve to validate the math models and the environment we see during loading.”

Gerstenmaier added that between those two tests, they should be able to understand what caused the cracks, but there is now way they can do those tests before December 17, the data NASA had been shooting for to launch STS-133.

“The teams have done tremendous job, but it’s time to pursue a different path,” he said. He also provided a quote from former NASA pioneer Hugh Dryden, who said the purpose of tests is to separate real from imaged problems and to reveal overlooked and unintended problems.

Lockheed Martin Wants to Launch Orion Spacecraft – on a Delta IV Heavy

If everything goes according to their plan - Lockheed Martin would have their Orion spacecraft launch on a Delta IV Heavy rocket. Image Credit: NASA

[/caption]

After the announcement of the Vision for Space Exploration (VSE) one of the proposals to reduce the space flight ‘gap’ between the shuttle program and the Constellation Program was to attach the Crew Exploration Vehicle (CEV) to a Delta IV Heavy rocket. With all the political wrangling this simple solution appeared lost – or so it was thought. The idea of man-rating a Delta IV heavy never seemed to quite fade away and now a plan is under way to launch the Orion spacecraft on top of one of these massive launch vehicles – within the next three years.

More importantly by launching these test flights, NASA will be able to review up to three-quarters of the technical challenges involved with a flight to either the moon or to an asteroid – without risking a crew. Some of the elements that would be checked out on this unmanned test flight would be:

• Spacecraft stabilization and control.

• Parachutes used for reentry and other systems used to recover the spacecraft.

• Micrometeoroid shielding along with other systems used to protect the vehicle.

The manufacturer of the Orion spacecraft, Lockheed Martin, plans to have the first flight take place as soon as 2013. This test flight would launch from Cape Canaveral Air Force Station’s Space Launch Complex 37. If all goes well? Astronauts could be riding the Delta IV heavy to destinations such as the moon or an asteroid by 2015. For now though these plans are still in their infancy.

If all does go according to how Lockheed Martin human spaceflight engineers plan – the first mission to an asteroid could beat the 2025 date that President Obama set during his April visit to Kennedy Space Center – by ten years.

Each successive flight after the first unmanned mission would shake out the technology more and more until crews fly into orbit. The first unmanned flight, as envisioned by Lockheed Martin, would emulate many of the elements of a mission to either an asteroid or to the moon.

For long-time followers of the space program, witnessing a man-rated launch of a Delta IV heavy will very much be a blast from the past. In the early days of the space program astronauts rode Atlas and Titan rockets into orbit (these rockets were actually man-rated Cold-War missiles). Attached atop the Delta IV would be the Orion capsule and on top of that would be a Launch Abort System (LAS). This last component is a small mini-rocket that would pull the capsule up and away from the Delta if there is an emergency.

Once the flight is completed, the Orion will splashdown in the same general area as Space Exploration Technology’s (SpaceX’s) Dragon Spacecraft – the Pacific Ocean off the coast of California.

The Orion Spacecraft has proved itself to be a survivor. President Obama initially promised to support NASA’s lunar ambitions on the campaign trail – a promise he went back on once elected. He then attempted to cancel all elements of the Constellation Program of which Orion was a key part. This proposal landed with a resounding thud. He then attempted to gain support for his space plan by resurrecting Orion as a stripped down lifeboat for the International Space Station (ISS) – this too met with little support. Eventually, after much Congressional wrangling, Orion emerged as the one element of Constellation – which Obama could not kill.

Congress has put some support behind his plan to have commercial space firms provide transportation to low-Earth-orbit (LEO). However, these firms have no experience whatsoever launching men and material to orbit – and Congress wanted to have a backup plan – that meant Orion. As the launch vehicle that would have hefted Orion to orbit was effectively dead another rocket was required – the best candidate was the Delta IV heavy.

Within three years a Delta IV Heavy like this one could launch the first Orion capsule. Photo Credit: Universe Today/Alan Walters - awaltersphoto.com

Falcon 9 Ready for Second Flight – Dragon for First

SpaceX's Dragon spacecraft is set to launch from Cape Canaveral on Dec. 7. Image Credit: SpaceX

[/caption]

Space Exploration Technologies (SpaceX) is preparing to conduct the first demonstration launch for NASA’s Commercial Orbital Transportation Services (COTS) program, utilizing its Falcon 9 rocket. This first test flight appears to be holding solid for its targeted liftoff on Tuesday, Dec. 7. Launch will take place from the company’s launch site at Launch Complex 40 located at Cape Canaveral Air Force Station in Florida.

The launch window for this first demo flight extends from 9:03 a.m. to 12:22 p.m. EST. If it is required, launch opportunities are also open on Dec. 8 and Dec. 9 during the same general time frame. NASA TV will have coverage — you can watch it online at this link, or if you have it through your satellite or cable provider.

COTS 1, as this first flight has been dubbed, will be the first launch of the Dragon spacecraft, this will also mark the first commercial attempt to have their spacecraft reenter Earth’s atmosphere. The planned Dec. 7 flight is the first of three test launches currently envisioned in the Falcon 9 test flight series. This first flight is planned to check out important characteristics of both the Dragon spacecraft as well as the Falcon 9 launch vehicle. Some of these include orbital operations, launch elements of the combined Dragon/Falcon 9 vehicle, descent, re-entry and splashdown (which will occur in the Pacific Ocean).

NASA established the COTS program to obtain commercial launch services to jump start the commercial space industry. Under the Obama administration’s plans for the space agency, NASA will utilize these private space firms to send cargo to the International Space Station (ISS). More to the point, it is hoped that these commercial space companies can reduce the hefty price tag associated with sending something into orbit.

There will be a press conference held before the launch, it is currently planned to be held on Monday, Dec. 6, at 1:30 p.m. The conference will be held at NASA’s Kennedy Space Center press site, and will also be on NASA TV. Speakers during the press conference will include, Phil McAlister, acting director, Commercial Space Flight Development, Alan Lindenmoyer, manager, Commercial Crew and Cargo Program, Gwynne Shotwell, president of SpaceX and Mike McAleenan, Falcon 9 Launch Weather Officer 45th Weather Squadron.

If everything goes off without a hitch, a press conference will be held about an hour after splashdown takes place. If this mission is a success it will go along way to reinforcing the success of the first launch of the Falcon 9, held this past June. More importantly it will prove the viability of the Dragon spacecraft.

Calm Down: NASA Hasn’t Found any Aliens

No, NASA is probably not announcing extraterrestrial life. And though this stock image shows a water bear, these cool little creatures come from right here on Earth (and have nothing to do with the announcement, but are scary looking when magnified). Image Credit: NASA

[/caption]

You may have heard in your wanderings through the blogosphere and in the internet today that NASA will be holding a press conference on December 2nd in which they will make an announcement regarding information the search for extraterrestrial life. And that this announcement involves astrobiology, the study of life outside what we know about here on Earth. While true, it is nothing to get worked up about.

Speculation abounds that this is, “the big one,” and that an announcement will be made that extraterrestrial life has been discovered. You can find this speculation at Kottke.org, io9, Gawker, and a lot of other places.

To be clear, there is almost no chance that the press release will be announcing little green men or little brown bacteria anywhere. Follow along for the long explanation below the fold.

Here’s what the press release is titled: “NASA Sets News Conference on Astrobiology Discovery: Science Journal Has Embargoed Details Until 2 p.m. EST On Dec. 2”. All this means is that Science Journal will be publishing some results related to astrobiology that are under embargo until that time. The embargo system is a basically a way of allowing journalists to see scientific results and get interviews and do research on an article before it’s published, but only if they promise to publish their information after the original publication does so. It makes sense, and it works most of the time to the benefit of almost everyone.

NASA regularly – like every day – announces upcoming press conferences and releases, and embargoed press releases float around to science writers like those of us here at Universe Today. This in itself is nothing out of the ordinary, and anyone with an email address can sign up to have these announcements delivered to their inbox or view them on NASA’s website. These emails are meant mainly to notify members of the press that there is something coming up worthy of being a phone-in listener of, the details of which require you to have press credentials.

The press release goes on to say,

“NASA will hold a news conference at 2 p.m. EST on Thursday, Dec. 2, to discuss an astrobiology finding that will impact the search for evidence of extraterrestrial life. Astrobiology is the study of the origin, evolution, distribution and future of life in the universe.
The news conference will be held at the NASA Headquarters auditorium at 300 E St. SW, in Washington. It will be broadcast live on NASA Television and streamed on the agency’s website at http://www.nasa.gov.
Participants are:
– Mary Voytek, director, Astrobiology Program, NASA Headquarters, Washington
– Felisa Wolfe-Simon, NASA astrobiology research fellow, U.S. Geological Survey, Menlo Park, Calif.
– Pamela Conrad, astrobiologist, NASA’s Goddard Space Flight Center, Greenbelt, Md.
– Steven Benner, distinguished fellow, Foundation for Applied Molecular Evolution, Gainesville, Fla.
– James Elser, professor, Arizona State University, Tempe”

And that’s about it. My first reaction to this was that they had potentially made the discovery of exotic, new organic molecules in an exoplanetary atmosphere, or that some chemical conducive to the existence of life as we know it was possibly found on some body in the Solar System. Announcements like this come out of NASA all of the time.

Just because some of the participants do work in fields that are related to oceanography or ecology or biology, does not mean that their services are required here to help make an announcement that life other than that on Earth has been discovered, as other speculative bloggers might think.

As Nancy wrote in a post earlier today, extraterrestrial life is very much of interest to Universe Today readers. Which is why she’ll be listening in on that news conference Thursday, and reporting what findings are released.

Extraterrestrial life is very much of interest to probably most of the population of our planet, too, and the fact that we have the tools necessary to potentially make this discovery within the next few hundred years (or sooner), is really, really exciting.

But just because it’s exciting doesn’t mean we have to jump all over a NASA press release that includes the words “extraterrestrial life” or “precursor to life on Mars” and make wild speculations. When that announcement is made (or if, depending on how you choose to solve the Drake Equation), you can be sure that it will be very closely guarded until being made public, and after that the President will likely have some things to say.

For some more level-headed analysis, Keith Cowing at Nasa Watch has some much more reasonable speculation that the announcement involves arsenic biochemistry. The Bad Astronomer, Phil Plait, also has a good debunking of the rampant speculation, and makes some good points about how NASA can create press releases in the future that have better-worded announcements.

So calm down – but don’t stop looking up! Keep being excited about all of the genuinely cool and exciting developments we’re currently making with regards to space.

Source: NASA press release

The Fall and Rise of ‘X’

As the X-37B ends its first mission and the X-34 program looks at a potential new start - are we at the dawn of a new age of 'X'? Photo Credit: NASA

[/caption]

They are at the very edge of current U.S. technological capabilities; one is a supposedly mothballed technology test-bed, the other a super-secret space plane that is currently on orbit – but set to land soon. They are the X-planes, experimental spacecraft that are proving out concepts and capabilities whose beginnings can be traced to the dawn of the space age.

It would appear from amateur observers on the ground that the secretive U.S. Air Force X-37B space plane – will be landing soon. This prediction is based off the fact that the craft is dropping in altitude and the more basic fact that it is nearing the limit of its orbital capabilities and has to return to terra firma. According to the U.S. Air Force, the X-37B can remain on orbit for around nine months or 270 days at maximum, this means that the craft should be landing sometime in the middle of January.

The X-37B or Orbital Test Vehicle (OTV) lifted off from Cape Canaveral Air Force Station in Florida on Apr. 22, atop an Atlas V rocket. Not much is known after launch due to a media blackout imposed by the U.S. Air Force.

The Air Force remains mum about the details surrounding the landing and recovery of the X-37B. It is known that the spacecraft will land at Vandenberg Air Force Base in California.

In this image, the X-37B is being encapsulated in its fairing atop an Atlas V rocket. Photo Credit: USAF

In many ways the craft resembles the shuttle with stubby wings, landing gear and a powerful engine that allows the craft to alter its orbit (much to the dismay of many observers on the ground). When the X-37B does touch down, it will do so at a 15,000 foot-long runway that was originally built to support the shuttle program.

The X-37B is one-quarter the size of the space shuttle. It is about 30 feet long and roughly 10 feet tall, with a 15-foot wingspan. It has a payload bay much like its larger, manned cousin – but naturally whatever that payload was for this mission – it was classified. The space plane was constructed by the Boeing Phantom Works. It is operated out of Schriever Air Force Base, Colorado. Another launch of the craft may take place as early as this March.

The two X-34s were moved from their hangars at Dryden to the National Test Pilot School in California. Photo Credit: NASA

Meanwhile, as the X-37B is ready to head to the hangar, another X-craft appears to be given a new lease on life. Two of the X-34 spacecraft, built by Orbital Sciences Corporation (Orbital), were moved from their hangars at Dryden Flight Research Center to the National Test Pilot School located in the Mojave Desert in California. These technology test-bed demonstrator craft will be inspected by the NASA contractor with the idea of flying them once again.

The roughly 60 foot-long spacecraft were put into mothballs back in 2001. If their flight status is renewed they would add to the growing fleet of robotic spacecraft that the United States appears to be building.

The ‘X’ craft have a long and storied history in American aviation and space exploration. One of the most famous of the “X’ planes – was the legendary X-15. None other than the first man to walk on the moon, Neil Armstrong, flew in this program which tested out concepts that would be later employed in the space shuttle. As the X-37B prepares to end its first mission and the X-34 may be at the verge of a rebirth – could we be at the dawn of a new ‘X’-era? Only time will tell.

The X-37 can be seen to the left of this image with the X-34 at the right. Photo Credit: NASA

Flawless Launch of STP-S26

NASA successfully launched its first 'FASTSAT' on Nov. 17, 2010. Image Credit: NASA

[/caption]

While the U.S. Air Force unsuccessfully tried to get a Delta IV off the ground in Florida – things worked out far better for NASA at the Kodiak Launch Complex located in Kodiak, Alaska. Friday’s Minotaur 4 rocket launch successfully accomplished its mission of placing not one – but six satellites into orbit some 400 miles above the Earth.

The mission took off just before sunset from Launch Pad 1. After launch the $170 million flight turned southeast from its launch site going out over the Pacific Ocean. The launch took place under a clear sky with the moon lighting its way.

The payload for this flight was a rather mixed bag of NASA, military and university experiments. All six of the launch vehicle’s payloads were released right on time about 30 minutes after launch. The so-called ‘FASTSAT’ for Fast, Affordable, Science and Technology Satellite automatically switched itself on upon deployment. The project is a demonstration of ways to deploy experiments and other payloads cheaply and effectively to orbit.

Four of the satellites that were onboard the STP-S26 mission included the “ESPA-class:” STPSat-2, FalconSAT-5, FASTSAT-HSV01 and FASTRAC.

The FASTSAT program is NASA’s first microsatellite designed to provide multiple customers with access to orbit – at a lower cost. The main goal of the FASTSAT flight is to prove the viability of this capability to various government, academic and industry customers. The intent is to show that you do not have to invest millions of dollars into a single, large-scale satellite to conduct experiments on orbit.

The launch vehicle itself is also rather cheap as it is comprised of spare Peacekeeper missile tech. The STP-S26 mission was powered to orbit by a Minotaur IV launch vehicle, which was provided by the Rocket Systems Launch Program. The Minotaur IV is produced by Orbital Sciences Corporation.

One of the ‘firsts’ on this flight was the utilization of the Hydrazine Auxiliary Propulsion System (HAPS) to allow for dual-orbit capabilities. It is hoped, that in future flights this could be used to allow satellites to other orbits to give them far greater flexibility.
Another first employed on this mission was the first to use the Multi-Mission Satellite Operations Center Ground System Architecture. This center is capable of operating various satellites at the same time at a minimal cost. Indeed, the overriding theme of this launch would appear to be providing access to orbit – for less.

The Cutest Little Spaceship that Never Flew

A close-up view of the X-38 under the wing of NASA's B-52 mothership prior to a test launch of the vehicle. Credit: NASA

[/caption]

Of all the missions and spacecraft that NASA has shelved over the years, I found the X-38 Crew Return Vehicle (CRV) to personally be one of the most disappointing. While its cancellation resulted in no loss of science and never stranded any astronauts in space, my disappointment was from strictly an aesthetic point of view: this was the cutest little spacecraft I had ever seen. The X-38 was a prototype for a wingless lifting body reentry vehicle that was to be used as a crew return and/or rescue vehicle for the International Space Station, but it was canceled in 2002 due to budget cuts. I guess cuteness doesn’t get you far in the space biz.

The image above shows a test flight in 1999 where the the X-38 research vehicle was dropped from a B-52 airplane. Three different designs of the X-38 made flight tests, and the vehicle landed by using one of the biggest aerofoil parachutes ever made. The CRV was designed to fly automatically from orbit to landing using onboard navigation and flight control systems, but backup systems also would have allowed the crew to pick a landing site and steer the parafoil to a landing, if necessary. The X-38’s landed on skids, not wheels, reminiscent of the famed X-15 lifting body research aircraft.

The X-38 was developed at NASA’s Dryden Flight Research Center at Edwards Air Force Base in California, and atmospheric test vehicles were actually built by Scaled Composites – the very same company that later built SpaceShipOne and won the X PRIZE.

The X-38 drops from a B-52 aircraft. Credit: NASA

The X-38 looks like a mini-space shuttle, and would have fit into the payload bay of the full-size space shuttles.

X-38 weighed 10,660 kg and was 9.1 meters long. The battery system, lasting nine hours, was to be used for power and life support. If the crew from the ISS had to make an emergency return to Earth, it would only take two to three hours for the CRV to reach Earth.

One of the prototypes can now be seen at the Strategic Air and Space Museum in Ashland Nebraska, located just off Interstate 80, about 20 miles southeast of Omaha.

For more info about the X-38, see this NASA webpage.

Cassini Instruments Offline Until Nov. 24

Cassini-Huygens Mission
An artist illustration of the Cassini spacecraft. Credit: NASA/JPL

[/caption]

NASA announced that the Cassini spacecraft in orbit around Saturn will have its suite of scientific cameras offline until at least Nov. 24. Cassini is currently in safe mode due to a malfunction in the spacecraft’s computer. This shut down all non-essential systems to prevent any further damage happening to the spacecraft. This means that all scientific efforts on the mission have been suspended until the problem can be resolved.

Although these seem like severe issues, mission managers are relatively sure that they will have no serious long-term effects on the overall mission. Cassini entered safe mode around 4 p.m. PDT (7 p.m. EDT) on Tuesday, Nov. 2. Managers want to review what took place onboard Cassini, correct what they can and ensure that this doesn’t happen again. Programmers have already ascertained that the likely cause of the problem was a faulty program code line that made its way back to Cassini.

Cassini captured this startling image of Saturn's moon Hyperion. Photo Credit: NASA/JPL

Ordinarily when faulty code is sent from Earth to Saturn, Cassini would reject any coding that is deemed ‘bad.’ However, this did not happen in this case, causing the problem. Controllers are not totally convinced that a solar fare didn’t corrupt the code on its way out to the gas giant.

“The spacecraft responded exactly as it should have, and I fully expect that we will get Cassini back up and running with no problems,” said Bob Mitchell, Cassini’s program manager at JPL. “Over the more than six years we have been at Saturn, this is only the second safing event. So considering the complexity of demands we have made on Cassini, the spacecraft has performed exceptionally well for us.”

Cassini launched from Cape Canaveral Air Force Station back in 1997 atop a Titan rocket. In the thirteen years since that time it has entered ‘safe’ mode a total of six times.

Cassini discovered that Saturn's moon Enceladus is 'jet-powered' in the form of geysers erupting from the moon's surface into space. Photo Credit: NASA/JPL

The largest loss for Cassini’s planners is this will cost them a flyby of Titan, one of Saturn’s moons and the only moon in the solar system with an appreciable atmosphere. All is not lost however, as there are still some 53 possible flybys of the moon currently scheduled. The mission is currently planned to last until 2017.

The Cassini-Huygens mission is a cooperative program managed between NASA, the European Space Agency (ESA) and the Italian Space Agency. JPL, a division of the California Institute of Technology (Caltech) manages the Cassini program for NASA’s Science Mission Directorate located in Washington, D.C.

Discovery’s Final Mission Scrubbed 24 Hours Due to Weather

The crew of STS-133 will have to wait a little longer for their date with destiny - this time thanks to weather. Photo Credit: NASA/Kim Shiflett

[/caption]

Discovery’s final flight faced its first hurdle in the form of a fuel leak in its right OMS pod. This problem seemed solved, but using an over-abundance of caution mission managers had the seals around the affected flange replaced. Then unrelated leaks of hydrogen and helium pushed the launch back to Nov. 2 and then Nov. 3. With that problem resolved many thought Discovery’s problems were behind her – enter a voltage issue in the number three engine’s backup control system. This conspired to push the launch back to Nov. 4.

However, in the early morning hours of Nov. 4 it was obvious that Florida’s turbulent weather would not allow a launch on this day and mission managers scrubbed the launch for at least 24 hours. Weather for Friday shows a 70 percent chance of favorable conditions. If Discovery does launch tomorrow, it will take place at 3:04 p.m. EDT.

Discovery’s final mission, STS-133, will deliver the Leonardo Multipurpose Module (PMM) with its cargo – including the first humanoid robot to be sent into space – Robonaut-2 (R2). Also riding along on this mission is the Express Logistics Carrier-4 and spare parts. Like the other remaining shuttle flights, these new components and supplies are designed to leave the space station better prepared for when the space shuttles are retired next year.

The crew of STS-133 will be comprised of Commander Steve Lindsey, Pilot Eric Boe and Mission Specialists; Alvin Drew, Nicole Stott, Tim Kopra and Michael Barratt. All of these astronauts are space flight veterans.