The US House of Representatives voted late Wednesday to accept the Senate’s version of NASA’s $19 billion fiscal 2011 budget proposal. The bill will now go to President Obama for his approval and signature, and if approved would provide $60 billion for NASA over the next three years, with money for development of commercial spacecraft, a heavy lift vehicle for NASA, technology development – including in-space tech such as fuel depots – and one additional shuttle flight in 2011. The Constellation program would be officially dead, although the Orion capsule would still be developed, and the next human destination in space will likely be an asteroid.
The House voted 304 to 118, with no amendments allowed, in favor to approve the budget in a final series of votes before Congress recesses for the November 2 mid-term elections. The bill would keep most of the major changes in NASA’s future that Obama proposed in February of this year, while giving better direction as to where, when and how.
You can see a list of how the representatives voted at this link.
$3.99 billion of the new budget would go towards exploration in fiscal 2011, $1.3 billion for a new deep space capsule and $1.9 billion for initial development of a new heavy lift rocket.
Additionally,the bill would provide $144 million to support on-going development of unmanned spacecraft to deliver cargo to the International Space Station and $312 million for commercial crew spacecraft. Space operations would receive $5 billion, including $2.8 billion for the International Space Station.
NASA Administrator Charlie Bolden was understandably relieved and ecstatic about the passage.
“This important vote today in the House of Representatives on a comprehensive NASA authorization charts a vital new future for the course of human space exploration,” Bolden said in a statement. “The President has laid out an ambitious new plan for NASA that pioneers new frontiers of innovation and discovery. The plan invests more in NASA; extends the life of the International Space Station; launches a commercial space transportation industry; fosters the development of path-breaking technologies; and helps create thousands of new jobs. Passage of this bill represents an important step forward towards helping us achieve the key goals set by the President. “
“This is a great night for our nation’s space program,” Sen. Bill Nelson, a Florida Democrat, said in a statement. “This bill is a blueprint for how we will proceed for the next three years and will allow NASA to begin planning for an extra shuttle flight. Now we have to make sure the agency gets the funding necessary to get the job done.”
There were some critics of the bill however. Former NASA administrator Mike Griffin said in an article in the Huntsville Times this week, “While it is true that the Senate bill offers some improvement over the Obama administration’s ill-advised plan for NASA, in my considered opinion it is not enough better to warrant its support in law. As happened after the loss of space shuttle Columbia, it is time once again to ask ourselves whether we want to have a real space program, or not. If we do, then the Senate bill won’t get us there. If we cannot do better than that, then I believe we have reached the point where it is better to allow the damage which has been brought about by the administration’s actions to play out to its conclusion than to accept half-measures in an attempt at remediation.”
And Rep. Gabrielle Giffords, D-Arizona (who is married to shuttle commander Mark Kelly) said she doesn’t like the idea of Congress deciding what heavy lift vehicle should be built. “In short, the Senate bill forces NASA to build a rocket that doesn’t meet its needs, with a budget that’s not adequate to do the job and on a schedule that NASA’s own analysis says is unrealistic,” she said after the vote Wednesday night. “That is not my idea of an executable and sustainable human spaceflight program.”
She also said the legislation “lacks serious budgetary discipline” and includes an “unfunded mandate to keep the shuttle program going through all of fiscal year 2011 even after the shuttle is retired, which NASA estimates will cost the agency more than half a billion dollars.”
News reports of some ‘long lost’ Apollo 11 footage surfacing in Australia sounded pretty intriguing, with articles about it appearing on several websites this morning. But surely, any of the long-searched-for-and-believed-lost footage finally showing up would have received a bigger fanfare than just a few articles. I checked with NASA Headquarters about this footage, and they told me it actually is the same video that NASA restored and released in 2009 for the 40th anniversary of the Apollo 11 mission.
These restored videos include a copy of a tape recorded at NASA’s Sydney, Australia, video switching center, where down-linked television from Parkes and Honeysuckle Creek was received for transmission to the U.S., as well as original broadcast tapes from the CBS News Archive recorded via direct microwave and landline feeds from NASA’s Johnson Space Center in Houston, and kinescopes found in film vaults at Johnson that had not been viewed for over 30 years. Continue reading “‘Long Lost’ Apollo Footage Was Actually Released in 2009”
Apollo astronaut Jim Lovell was awarded the Lincoln Leadership Prize by the Abraham Lincoln Presidential Library and Museum foundation last week, and while humbled to receive the award, Lovell said he really is just an ordinary person. “I was just at the right place at the right time with the right credentials; there was nothing so extra special about me that got me where I am.”
But those in attendance at a reception to unveil a portrait of Lovell which will hang at the presidential library in Springfield, Illinois said Lovell embodies the intersection of heroism and legacy.
“NASA had a leader at the exact moment they needed it,” said Richard K. Davis, Chair, President and CEO of US Bancorp, who introduced the former Apollo astronaut at the reception. “With the help of many, Lovell and his crew created the outrageous but amazing solution to plot Apollo 13 back home. NASA found they had a cool, calm, competent leader, a hero who took this crew and a nation from ‘Houston we have a problem’ to America, we have a miracle.
Davis said one of his all-time favorite quotes comes from Lovell: “There are people who make things happen, there are people who watch things happen, and there are people who wonder what happened. To be successful you need to be a person who makes things happen.”
Earlier in the week, Lovell talked with members of the media about his life and his thoughts on NASA’s current budget situation. You can read part one of the interview here, and following is the continuation of the conversation with Jim Lovell, where he talks about some of his memories of his flights to space, and what it took for him to realize that Apollo 13 was more than just a failure:
We’re coming up to almost the 40th anniversary of the last person who landed on the Moon—what are your thoughts about that?
Lovell: It is a rather sad remembrance. I think it is an end of an era. I think the anniversaries will end—we probably won’t get together much anymore. We should look ahead to have a space program that everyone can be proud of, regardless of what it ends up to be. Sometimes we live too much in the past. But the future is here.
Why did you decide to become an astronaut?
Lovell: When I was in high school I was interested in both astronomy and rockets. There was a fellow I admired, the father of modern rocketry named Robert Goddard. I really wanted to be a rocket engineer. So I wrote to the secretary of the American Rocket Society, and asked how I could become one. He told me there was no school at that time that offered that type of study specifically, but I should take mechanics and mathematics, thermodynamics and either go to MIT or CalTech.
But my father had died earlier that year and I didn’t have the money to go to either of those places, so I gave that up. But I did apply to get an ROTC scholarship and was accepted. I went to the University of Wisconsin for two years and won an appointment to the Naval Academy. I went there for four years and got into the Navy and became a naval aviator – which was a second goal for me, as my uncle had been a naval aviator and had regaled me with all his stories. Then I went to test pilot school for the Navy. And when NASA was asking for astronauts, it seemed to me to be the perfect opportunity: here was a marrying of flight and rockets all coming together for me as if I had planned it all this time.
You couldn’t have seen a more disappointed person when I wasn’t selected for the first original seven astronauts. I made it to the final 32 candidates. But then, for round two, I was selected.
Universe Today: What are your favorite memories from your four flights to space?
Lovell: Apollo 8 was the most inspirational flight to me, and I hope it brought a message back to the Earth of what we have.
The most impressive sight I saw was not the moon, not the far side that we never see, or the craters. It was Earth. The Earth was the most impressive sight. As we came around the far side of the Moon and saw the Earth come up above the horizon, we could see the only color in our part of the Universe. The blues of the oceans, the white clouds, the tans, the pinks. I could put my thumb up and hide the Earth completely. Then it dawned on me how completely insignificant we are. Everything I had ever known – my family, my country, my world – was behind my thumb.
So there in the distance was this small body orbiting a rather normal sun, — nothing so particular about it — tucked away on the outer edge of the galaxy we call the Milky Way.
I thought how fortunate we are to live on this small body, with everyone – all those ‘astronauts’ — living together like on a starship, with limited resources. So, in a way that was just like Apollo 13, and we have to learn to live and work together. And I hope we could bring that message back to the people of Earth.
But I also have to say one of my other favorite memories was from Apollo 13: the splashdown! Seeing the parachutes, feeling the capsule swaying in the ocean, and having one of the divers come to knock on the window was a great feeling. It was pretty impressive, too.
What was scarier, the explosion of Apollo 13 or seeing the service module after it was jettisoned and wondering if the heat shield was still intact?
Lovell: The low point was the explosion – which we didn’t realize was an explosion until I saw the oxygen leaking outside the spacecraft, and saw from our instruments that we would be completely out of oxygen. This also meant we would be out of electrical power, and because we used the electrical power to control the rocket engine, we also lost the propulsion system. We knew we were losing the command module, but that was the only thing that had the heat shield to get us back to Earth.
As we were going through and solving all the problems one by one, when we came back towards Earth and jettisoned the Service Module and saw the explosion had blown out the entire side panel, we wondered about that heat shield which was right behind us, if the explosion had cracked it. But there was nothing we could do at that point. There was no solution. You just crossed your fingers. Once we entered the atmosphere we just had to hope the heat shield was intact. And it was.
You went from the space program to the tugboat business. What was that like?
After I retired from NASA and the Navy, and I was looking for something to do. I went to the advanced management program at Harvard and learned enough about business to be dangerous. Some friends of ours had a tugboat company and he offered me a job leading the company. Since I was a Navy officer — which has something to do with ships and water – I thought I could handle that. I was in that about five years. Then I got into the telecommunications business, which was fortunate timing because the deregulation of AT&T was just around the corner. We sold digital systems, where AT&T had analog systems, and we could sell the systems instead of how it was done the past where customers leased equipment from the phone company.
As you sit in this museum and library, what are your thoughts about studying the past?
This library and museum is not just something to look back on the era of Lincoln, it is an education for all ages coming through here of how we can keep the country together in the future. At the various museums around the country, like at the Air and Space museum, we show what people have done in the past in spaceflight. Here, and there, we show how people are committed to do things. Lincoln was committed to preserve the country. This type of an institution gives young people the chance to learn about those who were committed to make our country strong, and it should give everyone hope about our future.
You didn’t write the book “Lost Moon” for over 20 years after the Apollo 13 mission. What took so long?
Lovell: When we first got back from Apollo 13, the three of us astronauts said, this was a pretty unusual flight, so we should write a book about this. So, we said, we’re going to get together and write something. Well, as it often happens, as time went on, we all had jobs to do and life got busy for all of us. Jack Swigert went into politics in Colorado, and then, of course, he passed away. Fred Haise went into the aerospace business with Grumman, and I went into the telephone business. But just after I retired I got a call from a young man (Jeffrey Kluger) who said he had never written a book before, but he was a science writer for the Discover Magazine.
To make a long story short, I liked the way he wrote and we got together and wrote the book about 22 years after Apollo 13. But you have to remember that Apollo 13 was a failure. I mean, the only experiment that was completed was really done by the mission control team when they maneuvered the third stage of our booster to hit the Moon so that the Apollo 12 seismometers could pick up the results of the hit to learn something about the lunar surface. So there were no other successful experiments. The only thing we were doing was trying to figure out how to get home.
So, for years after we got back, I was frustrated. I wanted to land on the Moon like the other crews had, but I didn’t. But as we started to write the book, I realized that in its initial mission, yes, the flight was a failure. But as we wrote and I found out more about how hard the mission control team worked to get us back, I realized it really was a triumph in the way people handled a crisis: good leadership at all levels at NASA, teamwork that was generated because of that leadership, the use of imagination and initiative to figure out how to get us home by using just what we had on board, the perseverance of people who kept on going when it looked like initially that we didn’t have a chance. Jules Bergman (ABC science reporter) only gave us a 10 per cent chance, and my wife never forgave him for that!
But this is why Apollo 13 went from being a failure to a triumph.
The movie is very accurate, by the way. Ron Howard followed the real story very well. All the incidents were true except for the argument between Haise and Swigert, but Ron Howard had to figure out a way to portray the tension we all felt, and decided to do it in that way.
Previous winners of the Lincoln Leadership Prize are archbishop Desmond Tutu and Supreme Court Justice Sandra Day O’Connor. For more information about the Lincoln Prize and the Presidential Museum and Library, see the ALPLM website.
Lockheed Martin has been working overtime to get the Orion spacecraft ready for its first mission, which officials say could be as early as 2013, depending on Congress’ final decision for NASA’s future and budget. Tools and procedures are being checked out to see that they work as advertised for both the spacecraft as well as assembly procedures and manufacturing for building future capsules.
The Orion spacecraft will be assembled and integrated on site in the Operations & Checkout (O & C) building at NASA’s Kennedy Space Center (KSC) in Florida. By doing this, both time and money can be saved as it will cut down on transportation costs and logistical issues.
“The unique benefit of this complete on-site operation is that we will build the spacecraft and then move it directly onto the launch vehicle at KSC, which saves the government transportation costs associated with tests and checkout prior to launch,” said Lockheed Martin Orion Deputy Program Manager for production operations Richard Harris. “This capability also facilitates the KSC workforce transition efforts by providing new job opportunities for those employees completing their shuttle program assignments.”
The current plan calls for Orion to serve to transport astronauts to the International Space Station and perhaps an eventual mission beyond low-Earth-orbit (LEO), but Orion’s future rests with Congress’ upcoming decision on NASA’s future budget. The House Science and Technology Committee announced Thursday a compromise between the House and Senate versions of NASA’s budget, but it is unclear when a final vote may take place.
In the meantime, the O & C building has been transformed in the past couple years into what is being called “the space factory of the future.” This was accomplished by the combined effort of both Lockheed Martin as well as Space Florida, the state’s aerospace development organization. The work was done to create a state-of-the-art facility for spacecraft production and innovation.
Changes made to the O&C include 90,000 square feet of air-bearing floor space, paperless work stations, a portable clean room system, and specialized lifting/lowering/ support tools designed by United Space Alliance (USA). Specially designed air-bearing pallets will allow a small crew to maneuver hardware across the floor. The building renovation also incorporates energy-saving electrical systems which will help to further lower costs.
Lockheed Martin is the prime contractor for the Orion Project and heads the team that includes numerous subcontractors and small businesses working at facilities in 28 states. Additionally, the program works with more than 500 small businesses across the U.S. to provide the needed supplies that make the Orion Project a reality.
Springfield, Illinois is a quiet, historic town that clings fervently to its association with Abraham Lincoln. If you want Civil War era history and desire to know anything about Lincoln, you can find it in Springfield, especially at the outstanding new Abraham Lincoln Presidential Library and Musuem.
So, it’s not often that an astronaut shows up, especially a former astronaut with his own unique kind of history such as Apollo 13’s Jim Lovell. But Lovell is in town this week, as he was awarded the Lincoln Leadership Prize, an honor given by the museum’s foundation to “exceptional men and women for a lifetime of service in the Lincoln tradition.” Still a commanding figure at age 82, Lovell chatted eloquently and easily with members of the press yesterday, and since I live in Springfield and am a member of the press, you can bet I was there. It was an honor to be able to talk with him.
Lovell toured the museum earlier in the day, and said, “It is a magnificent museum and library dedicated to one of our greatest presidents, and every American should have the chance to come here in order to get a good idea of what our country stands for and what the people in the past, like Abraham Lincoln, have done to make it a great country.”
Lovell said he was very honored and humbled to be the recipient of the Lincoln Prize and said what he has learned from Lincoln over the years is commitment. “Commitment is necessary if you are going to do anything great, like Lincoln, who committed himself to stand fast,” he said. “I enjoy the aspects of what the Lincoln Prize recognizes, and to be a recipient, well, it has a very special place in my heart.”
Of course, readers of Universe Today are familiar with Lovell’s history: a test pilot in the Navy who applied to become one of the original seven Mercury astronauts (“back when boosters were blowing up every other day at Cape Canaveral,” Lovell said). He didn’t make initial selection, but two years later when NASA needed more astronauts, Lovell was chosen. He flew two missions for Gemini, then Apollo 8 and Apollo 13.
Lovell called Apollo 8 the pinnacle of his career. “I am really proud to be one of three people that flew and circled the Moon on Christmas Eve in 1968,” he said, “and we were able to relay back — not to just the people of the United States, but the whole world — something positive after a rather dismal year.”
At the museum Lovell found out that the person who portrayed him in the movie “Apollo 13” – Tom Hanks – is a distance relative of Abraham Lincoln, “so I guess he had a bit of Lincoln in him too, and he was a great character to work with.”
Following is part of the conversation with Lovell:
On the topic of commitment, do you think the United States is committed to human spaceflight?
Lovell: My personal opinion is that I believe the US has a very strong committment to continue our space exploration. Unfortunately, our present administration doesn’t believe that. The proposed NASA budget for 2011 eliminates the forward efforts of manned spaceflight. It goes for general research and other things. I don’t think they actually remember that NASA was formed to explore space. Consequently there is a possibility that we might be number three or four in space exploration in the future. As you know there about 2 or 3 shuttle flights left. After that the US has no access to the International Space Station, which all our taxpayers have put a lot of money into. If this plan goes forward, the only access in the future will be the Russians and they have indicated that the cost per astronaut per flight is about 60 million dollars, which is a pretty high ticket price to get there.
I think Congress sees the danger of the present proposal of NASA’s 2011 budget and based on that they are now in session both in the House and Senate to try and modify the President’s proposal to continue in some aspect manned space efforts to design vehicles to get up to the International Space Station, sometime in the near future. Hopefully Congress will get together and come up with a compromise. I personally feel the President has so many things weighing on his mind right now that he will go along with Congress’ proposal and it will be better than the initial budget that he proposed to the American people some months ago.
Universe Today: Do you have confidence in the commercial space companies that could bring people to space?
That’s a good question, because part of the new proposal is putting efforts and money into developing commercial spaceflight. Now, you have to look at what the definition of commercial is. In my mind, commercial is when an entrepreneur sees an enterprise to develop a launch system and spacecraft to get into space. He gets his own resources, does the development to build and test his system, makes it man- rated and then proposes his vehicle and system to NASA, or to the FAA if he wants to use it for tourism to space. This is what I consider commercial.
Now, a government program is where the government puts all the money into it and develops and builds it. Within the government, we have the free enterprise system, the private sector where we have contractors to do that. Boeing, Lockheed, General Dyamics, and so on. These people have 40 or 50 years in the development of space artifacts, launch systems, spacecraft. To put government money into a new system for unproven vehicles is today, a waste of money.
Boeing is now thinking of going into commercial work. They have the expertise to do that. But not some of the newer people like SpaceX, although they did build a nice booster that made one flight. But if they could build it on their own and make it man-rated and have a suitable launch to system to go the ISS, more power to them. I’m sure NASA would contract with them. But we have limited amount of money to spend for space activities, and it seems to me the best place to put it would be with the people who have the knowledge and expertise and the history of what it takes to build a launch system.
There are a few companies that are looking at suborbital flights, such as Richard Branson’s company (Virgin Galactic) who wants to expand what Burt Rutan has done to give people 5 or 6 minutes of weightlessness. Jeff Bezos of Amazon.com is another (Blue Origin). They are really entrepreneurs. If they can build their vehicles and systems and they think there is a market for tourism, then that is the way to go.
I’m all for commercialization. A lot of times people compare this to the work that the NACA did to help the airline industry – to develop wing designs and things like that—but the aviation industry in the early days saw a good market, because they knew either commercial flights or military vehicles would provide a market, so there was an opening there.
If you look at commercial space companies, as far as orbital, you have to ask what can people do there? There’s only one place to go in orbit, that’s the ISS. The Russians are already there. The Chinese are talking about building a space station, but there is no other manned market for commercial orbital spaceflight. Now there are a lot of unmanned commercial operations: satellites for the military, GPS, communications, weather – there’s a lot that can happen there and can happen in the future. I think the Boeing vehicles have made over 80 commercial flights putting satellites in orbit.
But low Earth orbit for people – where do you want to go? Unless you have tourists that want to go around the Earth or go to the ISS, there really is not a market, except for the market of the government to put astronauts up in the ISS.
What is the benefit to be gained from manned spaceflight that would outweigh the costs in these tough economic times?
Lovell: That answer is the same as it was back in the days of Mercury, Gemini and Apollo.
One, is the technologies developed. It used to be the only way there was technology development was if there was a war. When NASA came along the technology it developed spilled over in the public sector and you can see what has happened today, especially in the information industry.
The second thing you have to remember is that there was a spur of education. When Russia put up Sputnik, everyone asked how they did it and why we didn’t. And this spilled over into education. I can’t tell you how many people who have told me that when they were young they followed the space program and that affected their choice to go into engineering or science.
Then, there is idea of what we can do as the human race. The world is getting smaller. We can’t do things in space much on our own anymore, and so we have to work together. We now have an International Space Station, 16 countries working together in a program that is not controversial at all. It works. We’re getting to know other countries. We have a common bond.
As of now China is working on their own, but if they accomplish what they want to do, they might join the consortium of the other countries working together.
Now, the idea of manned spaceflight, even though if you pin me to wall, and ask, “OK, we want to go to Mars—why? What will we do there?” Honestly, I can’t tell you. I don’t know.
But I have to tell you one thing. Somebody is going to go to Mars. The technology is here. It is just the time effort and money to make that a possibilty. The original Constellation program that we had carefully devised and developed over years to build a vehicle to get us up to the space station because the shuttle would be retired, and then build the Ares boosters to work our way eventually get us back to the Moon, using that infrastructure to fully explore it – we’ve only touched a small part of the Moon so far – and then after years of developing that to eventually get the architecture and infrastructure. That was the whole plan. It wasn’t a plan to get to Mars in 10 years or 15 years, it was plan to get to one spot, and work your way to the next spot. And there would probably be a consortium of countries working with us. And that was the whole plan that the President shot down. He mentioned something about someday we’d get a big booster. When? You have to have a program to develop the technology. He wants to develop technology and then figure out what kind of program to have. That’s the wrong approach. That’s putting the cart before the horse.
If money was no object and the President said we could go either to the Moon or Mars, what would you recommend?
Lovell: I would tell him to go back to the program we had developed for Constellation. Now, there has been some controversy, even among my own compatriots. Some say we’ve been to the Moon- we’ve done that, so let’s go on to Mars, or let’s go on to an asteroid. That’s all well said and done.
We were extremely fortunate in the 1960’s to develop Apollo and to have the accomplishments we did. I was amazed when I heard President Kennedy announce in 1961 that we were going to go to the Moon by the end of the decade. I said, that’s impossible. So if I say that I don’t know what we’d do if we go to Mars, I might be sadly mistaken and someone might get there before we ever thought it was possible.
But I think you have to do it step by step, to develop it and then go.
The idea for using rail guns to launch objects to space has been around for years – even Isaac Newton considered the concept. But now a group of NASA engineers is seriously studying the possibility of using a rail gun as a potential launch system to the stars, and they are looking for a system that turns a host of existing cutting-edge technologies into the next giant leap spaceward. Stan Starr, branch chief of the Applied Physics Laboratory at Kennedy Space Center said that nothing in the design calls for brand-new technology to be developed, but counts on a number of existing technologies to be pushed forward. He said developing such a system would be a “major technology revolution.”
“All of these are technology components that have already been developed or studied,” he said. “We’re just proposing to mature these technologies to a useful level, well past the level they’ve already been taken.”
A rail gun utilizes a magnetic field powered by electricity to accelerate a projectile along a set of rails, similar to train rails. One early proposal from the NASA group calls for a wedge-shaped aircraft with scramjets to be launched horizontally on an electrified track or gas-powered sled. The aircraft would fly up to Mach 10, using the scramjets and wings to lift it to the upper reaches of the atmosphere where a small payload canister or capsule similar to a rocket’s second stage would fire off the back of the aircraft and into orbit. The aircraft would come back and land on a runway by the launch site.
The engineers, from KSC and other NASA centers, contend the system, with its advanced technologies, will benefit the nation’s high-tech industry by perfecting technologies that would make more efficient commuter rail systems, better batteries for cars and trucks, and numerous other spinoffs.
For example, electric tracks catapult rollercoaster riders daily at theme parks. But those tracks call for speeds of a relatively modest 100 km/h (60 mph) — enough to make the ride exciting, but not nearly fast enough to launch something into space. The launcher would need to reach at least 10 times that speed over the course of two miles in Starr’s proposal.
The good news is that NASA and universities already have done significant research in the field, including small-scale tracks at NASA’s Marshall Space Flight Center in Huntsville, Ala., and at Kennedy. The Navy also has designed a similar catapult system for its aircraft carriers.
As far as the aircraft that would launch on the rail, there already are real-world tests for designers to draw on. The X-43A, or Hyper-X program, and X-51 have shown that scramjets will work and can achieve remarkable speeds.
The group sees NASA’s field centers taking on their traditional roles to develop the Advanced Space Launch System. For instance, Langley Research Center in Virginia, Glenn Research Center in Ohio and Ames Research Center in California would work on different elements of the hypersonic aircraft. Dryden Research Center in California, Goddard Space Flight Center in Maryland and Marshall would join Kennedy in developing the launch rail network. Kennedy also would build a launch test bed, potentially in a two-mile long area parallel to the crawlerway leading to Launch Pad 39A.
Because the system calls for a large role in aeronautic advancement along with rocketry, Starr said, “essentially you bring together parts of NASA that aren’t usually brought together. I still see Kennedy’s core role as a launch and landing facility.”
The Advanced Space Launch System is not meant to replace the space shuttle or other program in the near future, but could be adapted to carry astronauts after unmanned missions rack up successes, Starr said.
The studies and development program could also be used as a basis for a commercial launch program if a company decides to take advantage of the basic research NASA performs along the way. Starr said NASA’s fundamental research has long spurred aerospace industry advancement, a trend that the advanced space launch system could continue.
For now, the team proposed a 10-year plan that would start with launching a drone like those the Air Force uses. More advanced models would follow until they are ready to build one that can launch a small satellite into orbit.
A rail launcher study using gas propulsion already is under way, but the team is applying for funding under several areas, including NASA’s push for technology innovation, but the engineers know it may not come to pass. The effort is worth it, however, since there is a chance at revolutionizing launches.
NASA recently announced its choices for the experiments to fly aboard the Solar Probe Plus spacecraft, which is slated to launch no later than 2018. This spacecraft will perform the unprecedented task of flying into the Sun’s atmosphere – or corona – to take measurements of the plasma, magnetic fields and dust that surround our nearest star. It will be the first human-made satellite to approach the Sun at such a close proximity.
The previous record-holder for a spacecraft that approached the Sun was Helios 2, which came within 27 million miles (43.5 million kilometers) of the Sun in 1976. Solar Probe Plus will shatter that record, flying to 3.7 million miles (5.9 million kilometers) of the Sun’s surface at its closest approach. In flying so close to the Sun, the spacecraft will be able to get amazingly detailed data on the structure of the atmosphere that surrounds the Sun.
As you can imagine, it gets a little toasty as one gets that close to the Sun. Solar Probe Plus will utilize a special heat shield made of an 8-foot (2.4 m), 4.5 inch (11 cm)-thick special carbon-composite foam plate that will protect the craft from temperatures of up to 2600 degrees Fahrenheit (1400 degrees Celsius) and intense solar radiation. The heat shield is a modified version of that which was used in the MESSENGER mission to Mercury.
NASA has chosen five science projects out of the thirteen that were proposed since 2009. The selected proposals are, according to the press release:
— Solar Wind Electrons Alphas and Protons Investigation: principal investigator, Justin C. Kasper, Smithsonian Astrophysical Observatory in Cambridge, Mass. This investigation will specifically count the most abundant particles in the solar wind — electrons, protons and helium ions — and measure their properties. The investigation also is designed to catch some of the particles in a special cup for direct analysis.
— Wide-field Imager: principal investigator, Russell Howard, Naval Research Laboratory in Washington. This telescope will make 3-D images of the sun’s corona, or atmosphere. The experiment actually will see the solar wind and provide 3-D images of clouds and shocks as they approach and pass the spacecraft. This investigation complements instruments on the spacecraft providing direct measurements by imaging the plasma the other instruments sample.
— Fields Experiment: principal investigator, Stuart Bale, University of California Space Sciences Laboratory in Berkeley, Calif. This investigation will make direct measurements of electric and magnetic fields, radio emissions, and shock waves that course through the sun’s atmospheric plasma. The experiment also serves as a giant dust detector, registering voltage signatures when specks of space dust hit the spacecraft’s antenna.
— Integrated Science Investigation of the Sun:principal investigator, David McComas of the Southwest Research Institute in San Antonio. This investigation consists of two instruments that will take an inventory of elements in the sun’s atmosphere using a mass spectrometer to weigh and sort ions in the vicinity of the spacecraft.
— Heliospheric Origins with Solar Probe Plus: principal investigator, Marco Velli of NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Velli is the mission’s observatory scientist, responsible for serving as a senior scientist on the science working group. He will provide an independent assessment of scientific performance and act as a community advocate for the mission.
Two important questions that the mission hopes to answer is the perplexing mystery of why the Sun’s atmosphere is hotter than its surface, and the mechanism for the solar wind that emanates from the Sun into the Solar System. The spacecraft will have a front-row seat to watch the solar wind speed up from subsonic to supersonic speed.
Because of the conservation of momentum, it takes a lot of slowing down to send a spacecraft towards the Sun. The Earth and objects on the Earth are traveling around the Sun at an average of 30 kilometers per second (67,000 miles per hour). So, to slow the spacecraft down enough to get it close to the Sun, it will have to fly around Venus seven times! This is the opposite of a gravity assist, or “slingshot”, in which a satellite gains energy by flying by a planet. In the case of Solar Probe Plus, as well as that of MESSENGER, multiple flybys of Venus imparts some of the craft’s energy to Venus, thereby slowing down the spacecraft.
The Solar Probe Plus mission is part of NASA’s “Living With a Star Program”, of which the Solar Dynamics Observatory is also a mission. This program is designed to study the impact our Sun has on the space environment of the Solar System, and acquire data to better equip future space missions.
The deserts of Promontory, Utah came alive with fire as NASA and Alliant Techsystems (ATK) tested the Development Motor-2 (DM-2). The five-segment, first-stage of the Ares rocket was activated at 9:27 a.m. MDT on Aug. 31. The still morning air surrendered its silence to the sound of unleashed technological thunder. The surrounding countryside was bathed in the colors of flame as a huge plume of hot exhaust and smoke shot out the back of the solid motor. However, ATK was racking up another successful test – to a system with a future in doubt.
The DM-2 is a test-article for the Ares family of rockets, which as part of the Constellation Program, has been targeted for cancellation. President Obama has worked since the beginning of this year to scrap almost every element of the Constellation Program. These plans to transform the U.S. manned space program have cost him support across the country – and within his own party.
Obama’s new agenda for NASA caused a strong Congressional reaction, with two separate bills drafted countering the White House’s proposal. These bills are attempting to seek a “middle-ground” between the “program of record” (Constellation) and the new Obama plan. Both the House and Senate issued competing (and radically different) bills. As it currently stands, NASA has no clear path forward and is kept in a holding pattern until the future of U.S. manned space flight is determined by lawmakers in Washington D.C. This leaves the fate of the Ares family of rockets up in the air.
[/caption]
Despite concerns about what ATK’s future may hold – company personnel remained optimistic. They cite the fact that in terms of technical expertise and know-how, few companies can compete with the experience that the Maryland-based rocket manufacturer has.
“In terms of harnessing this kind of energy, it’s a very challenging engineering task,” said Charlie Precourt, a four-time shuttle astronaut and ATK’s vice president and general manager of Space Launch Systems. “The skills required to complete these engineering tasks is being addressed by the decision-makers, to ensure that the critical skills and the performance capabilities that we have build up over many years endure into the next generation.”
ATK meanwhile continues to work on other components of the Ares and Orion systems. The Launch Abort System (LAS), parachute system for the upper Ares upper stage, and Attitude Control Motor (ACM) are all built by ATK and tested by the firm’s technicians and engineers.
The DM-2 test was conducted to gain data on some 53 designs incorporated in this system. Some of the elements tested include the redesigned rocket nozzle, new insulation used in this design and the motor casing’s liner. When activated the DM-2 produced an estimated 3.6 million pounds of thrust – equaling 22 million horsepower. The motor had 760 instruments incorporated into it these instruments worked to collect vital information regarding the rocket’s performance when it was fired. This makes the test fire of the DM-2 the most heavily-instrumented solid rocket motor test in NASA history.
The horizontal ground test firing is what is known as a “cold motor” test. This is accomplished by chilling the DM-2 down to 40 degrees F. This is done to measure how the motor performs at very low temperatures. The test also was held to prove out design specifications of new materials used in the motor joints.
These new elements will eliminate the need for the joint heaters that are currently used. (these heaters were required in the 4-segment version of the motor’s design). It is hoped that with the addition of these new modifications weight will be dramatically reduced, launch operations will be simplified and the overall system will be far less complex.
DM-2 is a combination of Solid Rocket Booster (SRB) segments that have flown on 57 shuttle missions total. These segments are recycled after every mission. Once they have been jettisoned from the space shuttle they are recovered out in the Atlantic Ocean by recovery ships (named Freedom Star and Liberty Star). From there, they are shipped back to ATK’s plant where they are broken down into segments again and refurbished for the next mission.
ATK highlighted that most space-faring nations utilize solid rocket motors for their space flight programs. The U.S., Japan and Europe all incorporate solid rocket into their launch vehicles.
“If you look at the physics of putting something in space, you have to get to this magic speed of 17,500 miles-per-hour,” said Michael Bllomfield, three-time shuttle astronaut who now ATK’s vice president of Johnson Space Center (JSC) Operations. “the most efficient launch profile uses a combination of solids and liquids.”
The day prior to the test ominous storm clouds had encircled ATK’s test site. The rain and lightning that followed seem to underscore the condition in which the solid rocket manufacturer now finds itself. The following day they went about their duties despite the uncertainty that they currently face. With the shuttle program coming to an end and the future use of solid rockets placed in doubt, only time will tell if the company that provided the U.S. space program with its heavy lift capabilities for the past 30 years can weather the storm.
Commercial space companies Armadillo Aerospace and Masten Space Systems have been awarded a total of $475,000 to perform test flights of their experimental vehicles near the edge of space. The award is part of NASA’s Commercial Reusable Suborbital Research Program (CRuSR), which seeks to develop commercial reusable transportation to near space for frequent, low-cost trips to near-space for small payloads.
“These two awards are just the beginning of an innovative teaming relationship with industry to provide affordable access to the edge of space while evaluating the microgravity environment for future science and technology experiments,” said NASA Chief Technologist Bobby Braun. “CRuSR represents the sort of government-commercial partnership that will facilitate near-space access at affordable costs.”
The CRuSR awards will fund two flights this fall and one this winter of Armadillo’s Super-Mod vehicle from Spaceport America in New Mexico. The first two flights will be to an altitude of approximately nine miles and the third to approximately 25 miles.
The Masten Space Systems’ Xaero vehicle (a re-aligned version of their Xoie vehicle for better aerodynamics, according to Colin Ake from Masten) will make four flights this winter from the Mojave Spaceport in California. Two flights will reach an altitude of approximately three miles and two others will be to approximately 18 miles, with an engine shutdown during flight.
Near-space is the region of Earth’s atmosphere between 20,000 and 107,000 meters (65,000 and 350,000 feet).
NASA’s proposed budget for FY 2011 has funds for the CRuSR program that will both go to universities and other research institutions to build science and education payloads, as well as being used to purchase flights on commercial suborbital vehicles. However, the total amount available for the program is yet to be determined by Congress.
Who doesn’t love looking at old pictures, especially ones from our first steps? In this case, these pictures are our first steps towards heading to space. NASA just added hundreds of images to The Commons area on the photo sharing site Flickr, and is looking for a little crowd-sourcing help to add data to the images. The public can help tell the photos’ story by adding tags, or keywords, to the images to identify objects and people. In addition, viewers can communicate with other visitors by sharing comments. NASA says these contributions will help make the images easier to find online and add insight about NASA’s history. The image above is the construction of Hanger 1 at NASA’s Ames Research Center, during the 1930’s. Today, the structure is still impressive and the it is first thing you notice when entering Ames, as it dwarfs every other building. But the historic building needs to be refurbished — or else torn down — as it was built with what we now consider toxic materials. Since I just was at Ames, it was fun to see this image of the Hanger’s construction. But there are tons of other images, like the cow pasture that is now home to Johnson Space Center, below, and other great shots of spacecraft, astronauts and more.
There are three sets of NASA photos now on Flickr: “Launch and Takeoff” set captures iconic spacecraft and aircraft taking flight. “Building NASA” spotlights ground-breaking events and the construction of some of NASA’s one-of-a-kind facilities. The “Center Namesakes” set features photos of the founders and figureheads of NASA’s 10 field centers. Click on the links within the article or on the pictures here to access the images and add your 2 cents, such as your remembrances of events or objects in NASA’s history.
The Commons was launched with the Library of Congress to increase access to publicly-held photography collections and provide a way for the public to contribute information and knowledge.
“NASA on The Commons is bringing literally out-of-these-world images to Flickr,” said Douglas Alexander, general manager of Flickr. “We are thrilled to be working with NASA to offer such a rich archive and provide amazing insight into this country’s space program and its early beginnings.”
As the project leader, the New Media Innovation Team at Ames Research Center enlisted the help of NASA
photography and history experts to compile the three image sets for The Commons. The group will continue to create and release new photo sets that highlight different elements, themes or achievements.
If you just want to look at old images, there is also NASAimages.org, which provides hundreds of thousands of images and thousands of hours of video, HD video and audio content available free to the public for download.