During the recently announced NASA science cutbacks, several missions were cut or dramatically scaled back. One mission that was on the chopping block might be getting a second chance. The SOFIA mission is a powerful infrared telescope installed on a 747 airplane. It had recently been put on hold, but NASA officials announced today that they’re continuing its development. Although this gives the mission some hope of return, NASA is still watching its budget carefully, and still hasn’t fully committed to completing the mission.
Continue reading “Airborne Infrared Telescope Gets Another Chance”
Genesis Accident Report Released
On the morning of September 8, 2004, NASA scientists were elated. Their Genesis spacecraft had traveled 32 million kilometers (20 million miles), and was loaded up with precious samples of the solar wind and interstellar particles. But as the spacecraft hurtled through the Earth’s atmosphere, it quickly became clear something was very wrong. Instead of floating gently down to Earth on its parachutes, Genesis cratered into the ground at high speed, and its fragile cargo suffered devastating damage. What went wrong? A special Mishap Board released their findings today.
Continue reading “Genesis Accident Report Released”
Infrared Sensor Could Be Useful on Earth Too
Infrared image of a NASA researcher. Image credit: NASA. Click to enlarge
The development of infrared detectors has been a boon to astronomy. Many objects in the Universe only reveal themselves when seen in the infrared spectrum; like planets forming within clouds of dust. NASA has developed an inexpensive alternative to previous infrared detectors, which could find many uses here on Earth. The detector is called a Quantum Well Infrared Photodetector (QWIP) array, and it could quickly spot forest fires, detect gas leaks, and have many other commercial uses.
An inexpensive detector developed by a NASA-led team can now see invisible infrared light in a range of “colors,” or wavelengths.
The detector, called a Quantum Well Infrared Photodetector (QWIP) array, was the world’s largest (one million-pixel) infrared array when the project was announced in March 2003. It was a low-cost alternative to conventional infrared detector technology for a wide range of scientific and commercial applications. However, at the time it could only detect a narrow range of infrared colors, equivalent to making a conventional photograph in just black and white. The new QWIP array is the same size but can now sense infrared over a broad range.
“The ability to see a range of infrared wavelengths is an important advance that will greatly increase the potential uses of the QWIP technology,” said Dr. Murzy Jhabvala of NASA’s Goddard Space Flight Center, Greenbelt, Md., Principal Investigator for the project.
Infrared light is invisible to the human eye, but some types are generated by and perceived as heat. A conventional infrared detector has a number of cells (pixels) that interact with an incoming particle of infrared light (an infrared photon) and convert it to an electric current that can be measured and recorded. They are similar in principle to the detectors that convert visible light in a digital camera. The more pixels that can be placed on a detector of a given size, the greater the resolution, and NASA’s QWIP arrays are a significant advance over earlier 300,000-pixel QWIP arrays, previously the largest available.
NASA’s QWIP detector is a Gallium Arsenide (GaAs) semiconductor chip with over 100 layers of detector material on top. Each layer is extremely thin, ranging from 10 to 700 atoms thick, and the layers are designed to act as quantum wells.
Quantum wells employ the bizarre physics of the microscopic world, called quantum mechanics, to trap electrons, the fundamental particles that carry electric current, so that only light with a specific energy can release them. If light with the correct energy hits one of the quantum wells in the array, the freed electron flows through a separate chip above the array, called the silicon readout, where it is recorded. A computer uses this information to create an image of the infrared source.
NASA’s original QWIP array could detect infrared light with a wavelength between 8.4 and 9.0 micrometers. The new version can see infrared between 8 to 12 micrometers. The advance was possible because quantum wells can be designed to detect light with different energy levels by varying the composition and thickness of the detector material layers.
“The broad response of this array, particularly in the far infrared — 8 to12 micrometers — is crucial for infrared spectroscopy,” said Jhabvala. Spectroscopy is an analysis of the intensity of light at different colors from an object. Unlike a simple photograph that just shows the appearance of an object, spectroscopy is used to gather more detailed information like the object’s chemical composition, speed, and direction of motion. Spectroscopy is used in criminal investigations; for example, to tell if a chemical found on a suspect’s clothing matches that at a crime scene, and it’s how astronomers determine what stars are made of even though there’s no way to take a sample directly, with the stars many trillions of miles away.
Other applications for QWIP arrays are numerous. At NASA Goddard, some of these applications include: studying troposphere and stratosphere temperatures and identifying trace chemicals; tree canopy energy balance measurements; measuring cloud layer emissivities, droplet/particle size, composition and height; SO2 and aerosol emissions from volcanic eruptions; tracking dust particles (from the Sahara Desert, e.g.); CO2 absorption; coastal erosion; ocean/river thermal gradients and pollution; analyzing radiometers and other scientific equipment used in obtaining ground truthing and atmospheric data acquisition; ground based astronomy; and temperature sounding.
The potential commercial applications are quite diverse. The utility of QWIP arrays in medical instrumentation is well documented (OmniCorder, Inc. in N.Y.) and may become one of the most significant QWIP technology drivers. The success of OmniCorder Technologies use of 256 x 256 narrow band QWIP arrays for aiding in the detection of malignant tumors is quite remarkable.
Other potential commercial applications for QWIP arrays include: location of forest fires and residual warm spots; location of unwanted vegetation encroachment; monitoring crop health; monitoring food processing contamination, ripeness, and spoilage; locating power line transformer failures in remote areas; monitoring effluents from industrial operations such as paper mills, mining sites, and power plants; infrared microscopy; searching for a wide variety of thermal leaks, and locating new sources of spring water.
The QWIP arrays are relatively inexpensive because they can be fabricated using standard semiconductor technology that produces the silicon chips used in computers everywhere. They can also be made very large, because GaAs can be grown in large ingots, just like silicon.
The development effort was led by the Instrument Systems and Technology Center at NASA Goddard. The Army Research Laboratory (ARL), Adelphi, Md., was instrumental in the theory, design, and fabrication of the QWIP array, and L3/Cincinnati Electronics of Mason, Ohio, provided the silicon readout and hybridization. This work was conceived for, and funded by, the Earth Science Technology Office as an Advanced Component Technology development project.
Original Source: NASA News Release
The NASA Science Missions Getting Cut
Artist illustration of the Dawn mission, now cancelled. Image credit: NASA/JPL. Click to enlarge.
With the release NASA’s 2007 budget request, it was clear that the productive science programs will be paying the price for the new Vision for Space Exploration, returning humans to the Moon and then sending them on to Mars. Many programs will be affected. We review the missions, what they were supposed to accomplish, and what the cuts will bring. It’s not a pretty picture.
Scientists, space interest groups, and even members of Congress have expressed so much concern about NASA’s $16.79 billion budget request for Fiscal Year 2007 that the Associate Administrator of NASA’s Science Directorate has reportedly agreed to review the proposed cuts in science and solar system exploration programs. According to the American Association for the Advancement of Science and their magazine Science, NASA will re-evaluate the missions and programs that are under threat of being cancelled or delayed.
The outcry over the budget proposal began immediately after it was released on February 6. At first glance, the 2007 budget would be an overall increase of 3.2% over the FY06 appropriation, or a 1.5% increase when including Katrina funding in Fiscal Year 2006. But while the proposed budget will support the space shuttle and space stations programs in addition to the emerging costs of the Vision for Space Exploration, it does so while slashing the funds needed to sustain the current and anticipated programs in science and exploration.
Central to the problems of this budget is that the space shuttle program has a projected $3 – 5 billion shortfall for the planned 17 missions before the shuttle is to be retired in approximately 2010. To alleviate that shortage, NASA is planning to shift $3 billion from planetary exploration and science over the next four years to pay for the manned missions.
The Planetary Society has said that what NASA is doing is essentially transferring funds from a popular and highly productive program (science) to one that is scheduled for termination (the space shuttle).
“I am extremely uneasy about this budget,” said U.S. House Science Committee Chairman Sherwood Boehlert from New York. “This budget is bad for space science, worse for earth science, perhaps worse still for aeronautics. It basically cuts or deemphasizes every forward looking, truly futuristic program of the agency to fund operational and development programs to enable us to do what we are already doing or have done before.”
Senator Pete Domenici from New Mexico and 59 other senators have introduced a bill to authorize a 10 percent increase per year in NASA’s science budget from now through 2013.
But Louis Friedman, Executive Director of the Planetary Society doesn’t anticipate any big changes in what Congress will approve for NASA. “I think it is unlikely that NASA will get very much of an increase in budget, but I do anticipate some give and take and perhaps some restoration of science funding,” he said. “We will be trying very hard for a major restoration of funding, but it will be a difficult fight.”
The budget shows a 1.5% increase in science funding for this year, and 1% increase for each of the following two years, before inflation is taken into consideration. But even with that increase, there will actually be $2 billion less for space science and $1.5 billion less for exploration that what was previously planned, and needed, for all of the missions to continue.
Following are some of the areas that would be affected:
– Research and analysis: 15% across-the-board cuts in grants for research, ($350 to $400 million over the next five years) with some retroactive to 2006. An official at NASA Headquarters said he wasn’t aware that any notices of specific research cuts have been issued at this time.
– Astrobiology research alone will have 50% of funding slashed.
– Astronomy and astrophysics at NASA cut by 20% over 5 years
– Aeronautics: cut by 18.1%, down to $724.4 million
In a press conference, NASA Administrator Mike Griffin acknowledged that “science and exploration are each paying to help complete our pre-existing obligations to the space station and the space shuttle, and when those obligations are completed the other major pieces of our portfolio will be able to do better.” In his congressional testimony, Griffin said, “I truly wish that it could be otherwise, but there is only so much money.”
NASA has 50 science and planetary missions currently operating, which includes missions from Voyager to the all of the Earth orbiting satellites to the recently launched New Horizons mission to Pluto. There are 22 missions that are in development, and 19 being studied for development. The budget maintains all of these missions, with the exception of some delays in launches to upgrade or replace existing Earth orbiting satellites. Following are missions that, if the current budget proposal is approved, will be cancelled or delayed:
Dawn: Cancelled.
The mission: Using an ion engine, the spacecraft would have traveled to the asteroid belt to study two dissimilar asteroids to help determine the role that size and water play in planetary evolution. It also would have helped determine the origin and evolution of our solar system. According to the NASA Watch website, 98% of Dawn’s hardware is complete, with a majority of it already integrated into the spacecraft. The shutdown costs for Dawn are $10 million, while it would take $40 million to complete the spacecraft and fly the mission.
In a statement, JPL Director Dr. Charles Elachi said, “During development a number of implementation and technical challenges led to a cost increase estimate of approximately 20% (from $373.2M to $446.5M.) Even though all the technical issues could be resolved, additional funding is still needed to complete and launch the mission by the spring of 2007. Of course we are disappointed, but the current tight budget environment has led to its cancellation.”
NASA has defended the cancellation not as a budget cut, but as a management decision due to developmental problems with the project. Louis Friedman says, “Indeed, (Dawn’s) cancellation was made separate from the budget submission and is not addressed in the Fiscal Year 2007 budget proposal. But the timing of the cancellation is suspicious – made immediately after the budget hearing in which testimony was unanimous that making mission cancellations in order to beef up research an analysis funding was an acceptable allocation of priorities.”
SOFIA (Stratospheric Observatory for Infrared Astronomy): Cancelled.
The mission: An airborne observatory consisting of a 2.5 meter reflecting infrared telescope. It would facilitate in developing observational techniques, new instrumentations, and in education of young scientists and teachers. The telescope is fully installed in a 747 aircraft and is functional. The first test flights for the observatory would have been done this year. SOFIA was being conducted in cooperation with the DLR, the German Aerospace Center, and was part of NASA’s Origins Program.
Mission to Europa: Cancelled.
Friedman said that the Europa mission was not yet an approved mission, but preliminary work had started and Congress had directed NASA to do that work in anticipation of a Fiscal Year 2007 new start for this mission. Instead NASA cancelled the existing work and ignored the request for a FY ’07 new start.
Last year, the Jupiter Icy Moon Orbiter was put down, which would have used a nuclear reactor to power an ion engine to send an orbiter to 3 of Jupiter’s moons. This year future missions to Europa have been tabled, even though the National Academy of Sciences and internal NASA advisory committees have endorsed the exploration of Europa as the next highest priority solar system objective after Mars.
Terrestrial Planet Finder: Cancelled.
The proposed mission: Terrestrial Planet Finder would have consisted of two complementary observatories: a visible-light coronagraph and a formation-flying infrared interferometer. It would study extra-solar planets, from their formation and development in disks of dust and gas around newly forming stars to studying features of planets and determining suitability for containing life.
TPF was not yet an approved mission, but preliminary development work had begun. NASA cancelled that work and removed TPF from the list of missions to be started in the next four years.
SIM Planet Quest: Delayed.
Formerly called the Space Interferometry Mission. As an optical interferometer in an Earth-trailing orbit, the spacecraft would survey approximately 100 of our closest stars and identify potential habitable planets. It would also survey thousands of other stars to help our general understanding of the formation and evolution of planetary systems. Also would help to answer questions in astrophysics concerning dark matter, black holes and the mass of the universe.
Mars Sample Return Mission: Delayed Indefinitely.
Not yet an approved mission, but preliminary development had begun. An exciting if not controversial mission to bring Martian soil to Earth.
Additional Programs Affected
Two Mars Scout missions planned for after 2011 were removed from the four year planning budget. These missions may have included airborne vehicles such as airplanes or balloons and small landers.
The Explorer Program, which launches small spacecraft to study areas such as Heliophysics and Astrophysics would be cut drastically with the earliest launch coming in 2014.
Beyond Einstein would be delayed indefinitely. These are missions such as Constellation -X and LISA that would attempt to answer questions about the Big Bang, Black Holes and Dark Matter.
The Associated Press has reported that a long list of satellites orbiting Earth are under threat of being delayed, downsized or cancelled. Scientists have warned that decreasing funding for these satellites will jeopardize the capability for forecasting weather and monitoring environmental issues.
The list includes:
Landsat: delay in launch of satellite to replace and upgrade Landsat 7, launched in 1999.
Earth Observing System: If cut, satellites such as Aqua (2002) and Terra (1999) would not be replaced when they fail.
Global Precipitation Measuring Mission: The launch of GPMM has been pushed back to 2012. GPMM will replace and upgrade the Tropical Rainfall Measuring Mission, which was supposed to be decommissioned in 2004.
Deep Space Climate Observatory: cancelled. An Earth observing satellite placed at the L-1 Point to determine cloud and radiation properties of the atmosphere. The spacecraft is already built, but would cost $60-100 million to launch and operate.
National Polar-Orbiting Operational Environmental Satellite System: Under review. Will monitor global environmental conditions, and collect and disseminate data related to weather, atmosphere, oceans and land, and is a cooperative effort between NASA, NOAA, the Department of Defense and the Department of Commerce.
The next round of Congressional hearings on the budget proposal are scheduled for March 30 at the House Appropriation Subcommittee on Science, State Justice and Commerce Hearing.
Written by Nancy Atkinson
The High Cost of Boots on the Moon
Artist impression of astronauts returning to the Moon. Image credit: NASA. Click to enlarge.
President Bush suggested that this approach would be both ambitious and reasonable:
Achieving these goals requires a long-term commitment. NASA’s current five-year budget is $86 billion. Most of the funding we need for the new endeavors will come from reallocating $11 billion within that budget. We need some new resources, however. I will call upon Congress to increase NASA’s budget by roughly a billion dollars, spread out over the next five years. This increase, along with refocusing of our space agency, is a solid beginning to meet the challenges and the goals we set today. It’s only a beginning. Future funding decisions will be guided by the progress we make in achieving our goals.
NASA’s new administrator, Michael Griffin further noted in a speech in September 2005 that “not one thin dime” would be directed away from NASA science programs.
As reasonable and optimistic as this statement was, reality has caught up with NASA. And science was the victim.
The White House released President Bush’s new NASA budget proposal for 2007 on February 6. Overall, the budget allocates $16.8 billion for NASA; a 3.2% rise over 2006’s budget.
Specifically, the budget proposes:
- $6.2 billion for the shuttle and space station
- $5.3 billion for science
- $4.0 billion for the new exploration systems
While NASA’s overall budget increases 3.2%, science will only go up by 1.5%, and future budget increases are expected to go up just 1.0% a year through 2011. Factored against inflation, this is essentially a budget decrease. New Scientist gives a good breakdown.
NASA Administrator Michael Griffin dropped the hammer on February 8, explaining what impact this new budget would have on the agency, specifically for its various science programs.
- Funding for Astrobiology will be cut to 50% of its 2005 levels.
- Europa mission that would search for life under the moon’s icy surface… cancelled.
- The Terrestrial Planet Finder – an observatory capable of seeing Earth-sized planets around other stars, and even signs of life… cancelled.
- The Space Interferometry Mission… delayed.
- Two scout missions to Mars… cancelled.
- Dawn mission to explore two asteroids… cancelled.
Ouch. The Terrestrial Planet Finder could make one of the most important discoveries in all of human history; that there’s life on other planets. Please, Mike, anything but that.
The response in the space community was immediate, and ferocious. With good reason. So much good science is being chopped away from NASA.
What’s insane about this whole situation is that NASA should even be forced to choose. If I were in Mike Griffin’s shoes, I’d probably make many of the same decisions. What other decision can he make? The President and Congress have essentially said, “keep flying the shuttle to build the International Space Station, put humans back on the Moon, and figure out how to pay for it.” Science is all that’s left to cut from. If the new exploration vehicle goes over budget, science will have to pay for that too.
Flying the shuttle isn’t about rocket fuel, it’s about the standing army of thousands of employees who work across the United States. These people do important, complicated and specialized work on the shuttle, and you can’t just wish them away with a magic wand. NASA exists in the real world, with all the political considerations that go along with it. People work for NASA, and they’re voters, and they can apply pressure back on Congress, who ultimately approves the budget. The shuttle program has momentum, and nobody can make this process turn on a dime.
The human exploration of space is one of the greatest endeavours we can embark on. The whole point of space exploration is to learn how to get humans into space. At some point that requires putting human beings into rocket ships, blasting them into space, and figuring out what it takes to survive outside of the Earth. You have to keep doing that until humans don’t need to come back, and humanity becomes a true spacefaring civilization.
NASA shouldn’t be forced to choose between science and exploration. Why not pick up all of NASA’s science related activities and put them under the umbrella of the National Science Foundation? They’re slated to receive $5.8 billion for FY2007.
I would still be uncomfortable to have to choose between particle accelerators, genetic research and Martian rovers, but it’s probably a much more appropriate choice to have to make.
Written by Fraser Cain
Leading the Way Back to the Moon
Computer illustration of the CEV in orbit around the Moon. Image credit: NASA. Click to enlarge.
Jeff Hanley was only 8 years old on July 20, 1969 when Apollo 11 landed on the moon, but he can recall every detail of that day and all the specifics of that historic mission. Each of the Apollo missions to the moon made such a big impact on Hanley that space exploration became his life’s passion, ultimately becoming his profession. Now, Hanley has been appointed to lead NASA’s new program to return astronauts to the moon and prepare to send human expeditions to Mars.
Hanley started working at NASA while he was still in college and eventually became a flight controller in Houston’s Mission Control for 13 years, and then became a flight director in 1996. He oversaw two of the complex missions to refurbish the Hubble Space Telescope and was the lead flight director for the first expedition crew to the International Space Station in 2000. He led the Space Station Flight Director Office for two years before being promoted to chief of flight directors for all space missions in January of 2005.
Hanley has served in his current position as manager for NASA’s new Constellation Program since October 2005. His tenure thus far has been a series of constant meetings, briefings and trips around the country to the various NASA centers. His job is to lead the development of a new spacecraft and launch system, the focal point of NASA’s Vision for Space Exploration.
“We have not developed a new crew launch system from scratch since the space shuttle in the late 1970’s,” Hanley said. “That’s a generational gap we have to overcome, so we’re building a bridge from what we have today to what we want in the future.” The space vehicles that Hanley and his team are designing are combinations of the best elements from both the space shuttle and the Apollo spacecraft with significant improvements that come from advances in technology.
The new Crew Exploration Vehicle (CEV), while reminiscent of the Apollo blunt-body capsule, is three times larger with the capacity to carry four astronauts to the moon. It also has the ability to dock with the International Space Station, and the same crew vehicle will eventually carry astronauts to Mars. The separate lunar module will be able to land anywhere on the moon, including the poles, unlike the Apollo spacecraft that could only land near the equator. Initially, crews will stay up to 7 days on the moon’s surface.
“Apollo’s purpose was to send a man to the moon and return him safely to the earth,” Hanley said. “We go a substantial step beyond that with this architecture in terms of the capacity to deliver large amounts of mass to the moon and that’s really sending the signal that we’re serious about exploration and serious about coming to stay.” Developing a sustained presence on the moon will be the ultimate goal of the lunar missions, to demonstrate that humans can survive for long periods of time on another world.
Computer illustration of the CEV in orbit around the Moon. Image credit: NASA. Click to enlarge.
Instead of launching the entire system at once, the CEV and the lunar module launch separately. “In NASA shorthand we call it the 1.5 launch solution,” Hanley said. “The big heavy booster brings the lunar module and the upper stage to orbit and we’ll follow it with the crew launch vehicle, which launches on a smaller rocket, and the two vehicles will rendezvous and dock. Then we’ll light the Earth departure stage and send it on the way to the moon.”
Hanley continued, “We also want a quantum leap in safety and reliability in our launch systems over anything we have today.” Based on an engineering study, the new launch system will be 10 times safer than the space shuttle. The crew compartment sits on top of the rocket, unlike the space shuttle which is strapped to the rocket’s side. This allows for an escape system that can be used at anytime during launch.
The rockets will combine the reliability and power of solid rocket motors and the space shuttle main engines. The crew launch vehicle will be a single four-segment solid rocket motor with one shuttle main engine, which can lift 25 metric tons. The heavy cargo launch system will consist of two five-segment solid rockets and five shuttle main engines, which can boost 106 metric tons to orbit. A cargo-only mission could bring 21 metric tons of supplies to the moon.
Hanley anticipates the new spacecraft will be ready for its first launch in 2012, but he is challenging his team to have the spacecraft ready as soon as possible. “Our ideal is to make as small a gap as possible between the last shuttle flight [scheduled for 2010] and the first human flight of this system,” he said. “If we have things break our way and utilize good management practices in putting this together, I think we can do it.”
Hanley disagrees with the critics of NASA’s new program who say that returning to the moon is a waste of time and resources when the ultimate human destination is Mars, or perhaps other moons or asteroids. “That would be like the first explorers trying to circumnavigate the earth the first time they set out on the ocean,” he said. “That seems a little na?ve to me. The moon is three or four days away with the current rockets we have. Mars is months away. Once you light off the engines on the Mars transfer vehicle, there’s no turning back. You must have incredibly reliable systems to commit to those kinds of journeys.”
Hanley feels the only way to build up robustness and reliability of a spacecraft is through repeated use over time. “You’ve designed them, built them, and flown them over a period of time such that you’ve weeded out the ‘unknown unknowns,’ as we call them,” he said. “The moon gives us a natural platform to learn from when we get to the point when there’s no turning back from going to Mars.”
In addition, Hanley says, the exploration of other planets will only be successful if we learn to live off the land. “If you look in general at the history of exploration,” he said, “it wouldn’t have been possible without being able to live off the land. We have to learn how to use the available assets, like lunar soil and ice and convert that into rocket fuel and air, cultivating a way station, if you will, from which to test out systems for future exploration.”
Hanley believes that the successful international cooperation that has been forged through the International Space Station program should continue and expand through returning to the moon. “One of the unsung successes of the ISS program is the strong international team that has been cultivated,” he said. “The partnership has endured strains and come through them in great shape. The kinds of relationships and understandings we have today are a great basis on which to build more relationships for exploration.”
“Really,” he continued, “we have no choice but to partner with others to create a really robust program. NASA’s budget in the timeframe we are talking about just won’t be big enough to do all the things that possibly could be done, such as building habitats, rovers, and scientific stations. So there’s a huge opportunity for partners to come in and add value, robustness and capabilities.” Hanley said there have already been discussions at high levels with other space agencies on these matters.
The ISS has also been criticized as wasting time and resources, but Hanley feels everything that has been learned through the ISS program is invaluable. “What we eventually want to do at Mars,” he said, “is build an outpost off the planet. The ISS already is an outpost off the planet. We’ve learned an incredible amount in creating it, sustaining it, and it will, by its very nature, inform us of what the best approaches will be to take the next step.”
“Station is helping us to expand our horizons,” Hanley continued. “We’re learning through the engineering of our systems and cultivating our capabilities at that outpost, so we’re learning about how to rely less and less on supplies from the planet. We’re building heritage. And as soon as we learn the lessons we need to learn on the moon, we will be setting our sights on Mars and I don’t think that will be very long into the future.”
Written by Nancy Atkinson
NASA Ames Leads New Robotic Moon Missions
Lunar Prospector spacecraft. Image credit: NASA. Click to enlarge.
Today, on the 36th anniversary of Apollo 12, the second manned lunar landing, NASA announced that it has assigned management of its Robotic Lunar Exploration Program to NASA Ames Research Center in California’s Silicon Valley.
Returning astronauts to the moon will start with robotic missions between 2008 and 2011 to study, map and learn about the lunar surface. These early missions will help determine lunar landing sites and whether resources, such as oxygen, hydrogen and metals, are available for use in NASA’s long-term lunar exploration objectives. The assignment marks a rebirth of robotic space flight work at NASA Ames, which has a history of spearheading unmanned space launches.
“The Robotic Lunar Exploration Program is a critical element of NASA’s Vision for Space Exploration,” said Exploration Systems Mission Directorate Associate Administrator Dr. Scott Horowitz. “Data collected will help determine where we go, and what we find during our first human missions to the lunar surface.”
“Ames is delighted to be the home of the new Robotic Lunar Exploration Program,” said G. Scott Hubbard, Ames’ director. “Our center has a 40-year history of excellent space flight programs and project management: the Pioneer 6-13 series, the Galileo Probe and Lunar Prospector, as well as a lunar magnetic field instrument for four Apollo missions starting with Apollo 12 in 1969. We will apply all this experience to make RLEP successful,” Hubbard noted.
Launched on Jan. 6, 1998, from Cape Canaveral Air Station, Fla., Lunar Prospector reached the moon in four days. The mission was the last NASA voyage to our nearest neighbor in space.
The spacecraft orbited the moon and gathered data that resulted in evidence that water ice exists in shadowed craters near the lunar south and north poles, the first precise gravity map of the entire lunar surface, confirmation of the presence of local magnetic fields that create the two smallest magnetospheres in the solar system and the first global maps of the moon’s elemental composition.
Returning robots, and then astronauts, to the moon provides opportunities to develop and mature technologies needed for long-term survival on other worlds, according to scientists.
“An exploration science program with a sustained human presence on the moon gives us the opportunity to conduct fundamental science in lunar geology, history of the solar system, physics and the biological response to partial (Earth) gravity,” said Christopher McKay, lunar exploration program scientist at Ames.
“Establishing research stations on the moon will give us the experience and capabilities to extend to Mars and beyond,” robotics deputy program manager Butler Hine of Ames noted.
Original Source: NASA News Release
No Winner at the Elevator Competition
61 metre cable hung from a crane. Image credit: Spaceward Foundation. Click to enlarge.
NASA and the Spaceward Foundation announced the results of the 2005 Beam Power Challenge and Tether Challenge. Eleven teams competed in the two competitions over the weekend at NASA’s Ames Research Center in Mountain View, Calif. Although no team claimed this year’s prizes, historic firsts were achieved.
In the Beam Power Challenge, teams had to build robotic climbers that could scale a 200-foot cable powered only by the beam from an industrial searchlight. The team that lifted the most mass in a certain time would win the $50,000 prize. Although no team made it to the top of the cable, Team SnowStar from the University of British Columbia achieved the first beam-powered climb of approximately 20 feet. The University of Saskatchewan Space Design Team had the farthest beam-powered climb, approximately 40 feet.
“What happened this weekend is akin to the Wright brothers’ first powered flight,” said Spaceward Foundation founder, Metzada Shelef. “We hope these short climbs will be the first in a series of much longer climbs toward future space elevator concepts. The ingredients are there to make some great future achievements.” The Spaceward Foundation is NASA’s partner in this Challenge program.
In the Tether Challenge, teams had to create high-strength, low-weight tethers, which were stretched to their limits in a head-to-head, single-elimination competition. The Centaurus Aerospace Team produced the strongest tether. But to claim the $50,000 prize, the strongest team tether had to beat the house tether, constructed from the best commercially-available material, by a margin of 50 percent. Centaurus fell just short.
“The diversity of the teams, representing small businesses, university students, and enthusiastic hobbyists, and the range of their technical solutions, exceeded my expectations” said NASA’s Centennial Challenges program manager, Brant Sponberg. “This is especially impressive when you realize the teams had only six months to prepare. Even if a space elevator is never built, these are fundamental technologies with important applications both within and outside space exploration.”
The prizes for next year’s Beam Power Challenge and Tether Challenge will be $200,000 each, including the unclaimed $50,000 purses from this year. The competitions will increase in difficulty, as the teams will have to provide their own power beam, and the house tether will probably increase in strength.
NASA’s Centennial Challenges program promotes technical innovation through a novel program of prize competitions. It is designed to tap the nation’s ingenuity to make revolutionary advances to support the Vision for Space Exploration and NASA goals.
The Centennial Challenges program is managed by NASA’s Exploration Systems Mission Directorate. The Spaceward Foundation is a public-funded, non-profit organization dedicated to furthering the cause of space access in educational curriculums and in the public mindshare.
For information about the Centennial Challenges program on the Web, visit: http://centennialchallenges.nasa.gov or http://www.spaceward.org
Original Source: NASA News Release
Robot Plane Can Find Thermals to Stay Aloft
Unmanned prototype sailplane. Image credit: NASA. Click to enlarge.
With the graceful flight of hawks and eagles in mind, NASA aerospace engineer Michael Allen recently hand-launched a 15-pound motorized model sailplane over the Southern California desert. He was hoping it would catch plumes of rising air called thermals.
The sailplane did just that several times without human intervention during a series of research flights at NASA’s Dryden Flight Research Center, Calif. The tests validated Allen’s premise that using thermal lift could significantly extend the range and flight endurance of small unmanned air vehicles. Thermal lift increases vehicle endurance and saves fuel. This is significant, as small vehicle flight duration is often restricted by limited fuel capacity.
Allen and his team of engineers and technicians flew the remote-controlled RnR Products sailplane 17 times from July through mid-September. The sailplane was modified by Dryden aerospace technicians to incorporate a small electric motor and an autopilot programmed to detect thermals.
The 14-foot-wingspan model flew to an altitude of about 1,000 feet. The ground-based remote control pilot then handed off control to the sailplane’s onboard autopilot. The autopilot software flew the plane on a pre-determined course over the northern portion of Rogers Dry Lake at Edwards Air Force Base, Calif., until it detected an updraft. As the aircraft rose with the updraft, the engine automatically shut off. The aircraft circled to stay within the lift from the updraft.
Allen said the small sailplane added 60 minutes to its endurance by autonomous thermal soaring. The modified sailplane gained an average altitude in 23 updrafts of 565 feet, and in one strong thermal ascended 2,770 feet.
“The flights demonstrated a small unmanned vehicle can mimic birds and exploit the free energy that exists in the atmosphere,” Allen said. “We have been able to gather useful and unique data on updrafts and the response of the aircraft in updrafts. This will further the technology and refine the algorithms used.”
Small, portable, unpiloted, long-endurance vehicles could fulfill a number of observation roles including forest fire monitoring, traffic control, search and rescue.
For more information about flight research at Dryden on the Web visit:
http://www.nasa.gov/centers/dryden
For information about NASA and agency programs on the Web, visit:
http://www.nasa.gov/home
Original Source: NASA News Release
New Details About Return to the Moon
Astronauts could return to the Moon as early as 2018. Image credit: NASA/JPL. Click to enlarge.
Before the end of the next decade, NASA astronauts will again explore the surface of the moon. And this time, we’re going to stay, building outposts and paving the way for eventual journeys to Mars and beyond. There are echoes of the iconic images of the past, but it won’t be your grandfather’s moon shot.
This journey begins soon, with development of a new spaceship. Building on the best of Apollo and shuttle technology, NASA’s creating a 21st century exploration system that will be affordable, reliable, versatile, and safe.
The centerpiece of this system is a new spacecraft designed to carry four astronauts to and from the moon, support up to six crewmembers on future missions to Mars, and deliver crew and supplies to the International Space Station.
The new crew vehicle will be shaped like an Apollo capsule, but it will be three times larger, allowing four astronauts to travel to the moon at a time.
The new spacecraft has solar panels to provide power, and both the capsule and the lunar lander use liquid methane in their engines. Why methane? NASA is thinking ahead, planning for a day when future astronauts can convert Martian atmospheric resources into methane fuel.
The new ship can be reused up to 10 times. After the craft parachutes to dry land (with a splashdown as a backup option), NASA can easily recover it, replace the heat shield and launch it again.
Coupled with the new lunar lander, the system sends twice as many astronauts to the surface as Apollo, and they can stay longer, with the initial missions lasting four to seven days. And while Apollo was limited to landings along the moon’s equator, the new ship carries enough propellant to land anywhere on the moon’s surface.
Once a lunar outpost is established, crews could remain on the lunar surface for up to six months. The spacecraft can also operate without a crew in lunar orbit, eliminating the need for one astronaut to stay behind while others explore the surface.
Safe and reliable
The launch system that will get the crew off the ground builds on powerful, reliable shuttle propulsion elements. Astronauts will launch on a rocket made up of a single shuttle solid rocket booster, with a second stage powered by a shuttle main engine.
A second, heavy-lift system uses a pair of longer solid rocket boosters and five shuttle main engines to put up to 125 metric tons in orbit — about one and a half times the weight of a shuttle orbiter. This versatile system will be used to carry cargo and to put the components needed to go to the moon and Mars into orbit. The heavy-lift rocket can be modified to carry crew as well.
Best of all, these launch systems are 10 times safer than the shuttle because of an escape rocket on top of the capsule that can quickly blast the crew away if launch problems develop. There’s also little chance of damage from launch vehicle debris, since the capsule sits on top of the rocket.
The Flight Plan
In just five years, the new ship will begin to ferry crew and supplies to the International Space Station. Plans call for as many as six trips to the outpost a year. In the meantime, robotic missions will lay the groundwork for lunar exploration. In 2018, humans will return to the moon. Here’s how a mission would unfold:
A heavy-lift rocket blasts off, carrying a lunar lander and a “departure stage” needed to leave Earth’s orbit. The crew launches separately, then docks their capsule with the lander and departure stage and heads for the moon.
Three days later, the crew goes into lunar orbit. The four astronauts climb into the lander, leaving the capsule to wait for them in orbit. After landing and exploring the surface for seven days, the crew blasts off in a portion of the lander, docks with the capsule and travels back to Earth. After a de-orbit burn, the service module is jettisoned, exposing the heat shield for the first time in the mission. The parachutes deploy, the heat shield is dropped and the capsule sets down on dry land.
Into the Cosmos
With a minimum of two lunar missions per year, momentum will build quickly toward a permanent outpost. Crews will stay longer and learn to exploit the moon’s resources, while landers make one way trips to deliver cargo. Eventually, the new system could rotate crews to and from a lunar outpost every six months.
Planners are already looking at the lunar south pole as a candidate for an outpost because of concentrations of hydrogen thought to be in the form of water ice, and an abundance of sunlight to provide power.
These plans give NASA a huge head start in getting to Mars. We will already have the heavy-lift system needed to get there, as well as a versatile crew capsule and propulsion systems that can make use of Martian resources. A lunar outpost just three days away from Earth will give us needed practice of “living off the land” away from our home planet, before making the longer trek to Mars.
Original Source: NASA News Release