Laser Powered Plane Takes Flight

Image credit: NASA

A team of NASA researchers have created a remote control plane that gets its power from a ground-based laser that tracks it as it flies around. The model plane has a 3.5 metre wingspan, and only weighs 300 grams. It collects energy from a bank of photovoltaic cells to power its propeller. Although this is just a prototype, future versions could be much larger and fly above a city indefinitely providing telecommunications services – it could be an inexpensive replacement for satellites.

Ever since the dawn of powered flight, it has been necessary for all aircraft to carry fuel onboard ? whether in the form of batteries, fuel, solar cells, or even a human “engine” ? in order to stay aloft.

A team of researchers from NASA’s Marshall Space Flight Center in Huntsville, Ala., NASA’s Dryden Flight Research Center at Edwards, Calif., and the University of Alabama in Huntsville is trying to change that.

They have now chalked up a major accomplishment? and a “first.” The team has developed and demonstrated a small-scale aircraft that flies solely by means of propulsive power delivered by an invisible, ground-based laser. The laser tracks the aircraft in flight, directing its energy beam at specially designed photovoltaic cells carried onboard to power the plane’s propeller.

“The craft could keep flying as long as the energy source, in this case the laser beam, is uninterrupted,” said Robert Burdine, Marshall’s laser project manager for the tests. “This is the first time that we know of that a plane has been powered only by the energy of laser light. It really is a groundbreaking development for aviation.”

“We feel this really was a tremendous success for the project,” added David Bushman, project manager for beamed power at Dryden. “We are always trying to develop new technologies that will enable new capabilities in flight, and we think this is a step in the right direction.”

The plane, with its five-foot wingspan, weighs only 11 ounces and is constructed from balsa wood and carbon fiber tubing covered with Mylar film. Designed and built at NASA Dryden, the aircraft is a one-of-a-kind, radio-controlled model airplane. A special panel of photovoltaic cells, selected and tested by team participants at the University of Alabama in Huntsville, is designed to efficiently convert the energy from the laser wavelength into electricity to power a small electric motor that spins the propeller.

The lightweight, low-speed plane was flown indoors at the Marshall center to prevent wind and weather from affecting the test flights.

After the craft was released from a launching platform inside the building, the laser beam was aimed at the airplane’s panels, causing the propeller to spin and propel the craft around the building, lap after lap. When the laser beam was turned off, the airplane glided to a landing.

The team made a similar series of demonstration flights in 2002 at NASA Dryden, using a theatrical searchlight as a power source. The recent flights at the Marshall center are the first known demonstration of an aircraft flying totally powered by a ground-based laser. The demonstration is a key step toward the capability to beam power to a plane aloft. Without the need for onboard fuel or batteries, such a plane could carry scientific or communication equipment, for instance, and stay in flight indefinitely. The concept offers potential commercial value to the remote sensing and telecommunications industries, according to Bushman.

“A telecommunications company could put transponders on an airplane and fly it over a city,” Bushman said. “The aircraft could be used for everything from relaying cell phone calls to cable television or Internet connections.”

Laser power beaming is a promising technology for future development of aircraft design and operations. The concept supports NASA?s mission-critical goals for the development of revolutionary aerospace technologies.

Original Source: NASA News Release

NASA Moves Forward with Supersonic Airplane

Image credit: NASA

NASA has picked Allied Aerospace to continue the development of its X-34C experimental aircraft. The $150 million contract will have Allied create three flight-ready demonstrator vehicles that will fly more than 8,000 kilometres per hour; or seven times the speed of sound. The vehicle is intended to demonstrate a working scramjet engine, which pulls part of its fuel from the air – making it smaller and more efficient. The demonstration aircraft will be launched atop a Pegasus rocked and raised to Mach 5; then they’ll disengage and speed up to Mach 7 under their own power.

NASA has selected Allied Aerospace Industries of Tullahoma, Tenn., to provide three flight-ready experimental demonstrator vehicles that will fly approximately 5,000 miles per hour or seven times the speed of sound. The multi-year project, called X-43C, will expand the hypersonic flight envelope for air-breathing engines.

The cost-plus-fixed-fee completion type contract carries performance incentives and is valued at nearly $150 million over 66 months. The base activity covers all work through completion of the Preliminary Design Review, and the optional effort covers the final design, hardware fabrication and all associated support activities.

The X-43C is the next logical step, following the Hyper-X (X-43A), vehicle that aims at demonstrating short duration scramjet powered flight at Mach 7 and Mach 10. The X-43C will demonstrate free flight of a scramjet-powered vehicle with acceleration capability from Mach 5 to Mach 7, as well as operation of a hydrocarbon fuel-cooled scramjet.

NASA’s Langley Research Center (LaRC), Hampton, Va. is leading a combined U.S. Air Force/industry team in the design and development of the X-43C demonstrator vehicle and its propulsion system. The engine, which will be provided by the Air Force, will be a dual-mode scramjet capable of running as a ramjet or scramjet.

Allied Aerospace, Flight Systems Division, will team with Pratt & Whitney, West Palm Beach, Fla.; Boeing Phantom Works, Huntington Beach, Calif.; and RJK Technologies, Blacksburg, Va.

Work will be performed primarily in Tullahoma and West Palm Beach. Some contract work will also take place at Huntington Beach, Blacksburg, St. Louis, LaRC and NASA’s Dryden Flight Research Center (DFRC), Edwards, Calif.

Future air-breathing space access vehicles offer advantages over conventional rocket-powered vehicles that must carry all of the oxidizer needed to burn their fuel. Air-breathing engine-powered vehicles obtain oxygen from the atmosphere in flight. By minimizing the need to carry oxidizer, smaller and more efficient vehicles can be designed for space access missions.

‘When fully developed, these advanced propulsion systems will offer increased safety, payload capacity and economy of operation for future, reusable space access vehicles,” said Paul Moses, manager of the X-43C project. “The X-43C project will validate advanced technologies, design tools and test techniques that will enable design of such vehicles in the future,” he said.

For the three demonstration flights, a Pegasus-derived rocket booster will be air-launched by a carrier aircraft to boost the X-43C demonstrator vehicles to Mach 5 at approximately 80,000 feet. The X-43C will separate from the booster and continue to accelerate to Mach 7 under its own power and autonomous control.

Flights will originate from DFRC. Flight paths of the vehicles will be over water within the Pacific Test Range.

Original Source: NASA News Release

Lockheed Martin and Northrop Grumman Join Forces on Space Plane Bid

Image credit: NASA

Lockheed Martin and Northrop Grumman announced that they will be working together on their proposal for NASA’s Orbital Space Plane (OSP). This consortium will compete against Boeing, and NASA will select its supplier in August 2004. NASA will ask the winning team to build a vehicle by 2008 that can rescue the crew of the International Space Station, and then transfer two astronauts to the station by 2012. The OSP will be launched atop an Atlas V or Delta IV rocket.

Lockheed Martin Corporation’s (NYSE: LMT – News) Space Systems Company and Northrop Grumman Corporation’s (NYSE: NOC – News) Integrated Systems sector have moved NASA a significant step closer to its goal of launching a safe, affordable Orbital Space Plane (OSP) by 2008.

The two companies have agreed to establish a teaming arrangement to compete for the full-scale development of the OSP. Lockheed Martin will lead the new team as the system prime contractor while Northrop Grumman will serve as Lockheed Martin’s principal teammate and subcontractor. NASA expects to select a prime contractor team for the full-scale OSP development by August 2004.

“The diverse talents, technical resources and aerospace systems experience of our two companies will help NASA reduce the schedule and cost risks of the accelerated OSP program,” said Michael Coats, vice president, Lockheed Martin’s Advanced Space Transportation. “Our collective expertise in large-scale systems integration, space systems engineering, launch vehicles, military aircraft, and autonomous flight provide a critical foundation for NASA’s efforts to restore vigor and confidence to the nation’s human spaceflight program.”

NASA has specified that the OSP must provide a crew rescue capability for the International Space Station by 2008, a two-year acceleration in the OSP development schedule outlined last spring. A two-way crew transfer OSP is also required by 2012. OSP will be launched on either an Atlas V or Delta IV rocket.

“The combination of Lockheed Martin and Northrop Grumman on OSP provides NASA with a critical opportunity to broaden the nation’s industrial base in the area of human spaceflight,” said Doug Young, director of Space Access Programs for Northrop Grumman Integrated Systems. “The team will have the capability to design, develop, test, produce, support and maintain a cost-effective, technically superior crew rescue and transfer OSP system.”

Northrop Grumman and Lockheed Martin are currently performing separate OSP contracts for NASA. Awarded in April 2003, these contracts focus on helping NASA develop Level One Requirements for the OSP and on defining architectural concepts for proposed OSP crew rescue and transfer vehicles. Northrop Grumman will complete the current phase of its OSP contract, then become a Lockheed Martin subcontractor.

Headquartered in Bethesda, Md., Lockheed Martin employs about 125,000 people worldwide and is principally engaged in the research, design, development, manufacture and integration of advanced technology systems, products and services. The corporation reported 2002 sales of $26.6 billion.

Northrop Grumman Integrated Systems, headquartered in El Segundo, Calif., is a premier aerospace and defense systems integration enterprise. It designs, develops, produces and supports network-enabled integrated systems and subsystems for government and civil customers worldwide. Integrated Systems delivers best-value solutions, products and services that support NASA, military and homeland defense missions in the areas of intelligence, surveillance and reconnaissance; battle management command & control and integrated strike warfare.

Original Source: Lockheed Martin news release

NASA Safety Panel Resigns

Image credit: NASA

All nine members of NASA’s Aerospace Safety Advisory Panel handed in their resignations on Tuesday in the wake of criticism from the Columbia accident investigation report and Congress. The panel was originally formed after the Apollo 1 accident killed three astronauts in a fire in 1967, and included space engineers, scientists, and aerospace industry experts. NASA is now in the process of evaluating the structure of the safety panel to make it more effective in the future.

NASA Administrator Sean O’Keefe accepted letters of resignation from all 11 members and consultants of the Aerospace Safety Advisory Panel (ASAP). Congress first chartered the Aerospace Safety Advisory Panel in the aftermath of the Apollo 1 fire in 1967 to act as an independent body to advise the NASA Administrator on the safety of operations, facilities, and personnel.

ASAP chair Shirley McCarty said in a cover letter to the Administrator, “This will give you and the Congress the freedom to revitalize the Panel and reshape its charter and mission.”

“Reflecting on the findings of the Columbia Accident Investigation Board and the process failures identified in its report, it’s evident that a wide range of oversight functions should be strengthened within the agency,” said Administrator O’Keefe. “We need to take this opportunity to explore how the original concept for an Aerospace Safety Advisory Panel needs to evolve to best meet the future needs of the agency.”

NASA has already started the initial evaluation process to revise the panel’s charge, based on congressional reaction to the findings of the Columbia Accident Investigation Board. The agency also will review the original 1967 ASAP charter and its amendments.

“I want to send my personal gratitude to the panel members for their work and dedication to NASA,” added Administrator O’Keefe. “We have a lot of hard work ahead of us as we prepare to safely return to flight. A comprehensive review of the panel and its role in our safety objectives will be vital in the coming weeks as we move forward.”

Original Source: NASA News Release

NASA Approves Mirror for James Webb Telescope

Image credit: NASA

NASA announced today that it has selected a beryllium-based mirror technology for the 6.5 mirror on the James Webb Space Telescope – the successor to the Hubble Space Telescope. The primary mirror will actually be made up of 18 hexagonal-shaped segments, giving it 2.5 times more surface area than Hubble’s mirror; but it will be one-third the weight. Construction of the mirror will begin next year, and the telescope is expected to launch some time after 2011.

NASA today announced a major milestone in the development of the James Webb Space Telescope (JWST), the selection of a beryllium-based mirror technology for the telescope’s 6.5-meter primary mirror.

The JWST prime contractor, Northrop Grumman, Redondo Beach, Calif., recommended that NASA select the mirror technology, supplied by Ball Aerospace & Technologies Corporation, Boulder, Colo., for the JWST primary mirror.

Northrop Grumman made the recommendation following a detailed process that took advantage of insights from a panel of experts representing the contractor team, NASA and the science community. Two mirror technologies, beryllium and ultra low-expansion glass, were tested, and their implementation plans were thoroughly reviewed during a six-month evaluation. Technical performance, manufacturing schedule, facilities, staffing, and cost were factors taken into consideration.

The production of the beryllium-based mirrors will begin within the next year. The mirrors will be incorporated into optical assemblies, mounted on the telescope structure, and subjected to a series of tests at cryogenic temperatures, individually and as an integrated system.

The Observatory design features a 6.5-meter aperture primary mirror, comprised of 18 hexagonal shaped segments. The telescope will be 2.5 times the diameter, yet weigh only one-third as much, as the mirror on the Hubble Space Telescope. JWST will be orders of magnitude more sensitive than ground-based infrared telescopes.

After launch in 2011, JWST will peer into the infrared at great distances to see the first stars and galaxies formed in the universe billions of years ago. A flagship mission in NASA’s Origins Program, JWST will search for answers to astronomers’ fundamental questions about the birth and evolution of galaxies, the size and shape of the universe, and the mysterious life cycle of matter.

NASA’s Goddard Space Flight Center, Greenbelt, Md., manages the JWST project for NASA Headquarters’ Office of Space Science, Washington. The project consists of an international team involving NASA, the European Space Agency, Canadian Space Agency, industry and academia.

Northrop Grumman is prime contractor leading a team including Ball Aerospace, Eastman Kodak Company, Rochester, N.Y.; and Alliant Techsystems, Magna, Utah. The major beryllium mirror subcontractors to Ball Aerospace are Tinsley Laboratories, Richmond, Calif.; Axsys Technologies, Cullman, Ala.; and Brush Wellman Inc., Elmore, Ohio.

Original Source: NASA News Release

Senate Approves $15.3 Billion Budget for NASA

Image credit: NASA

On the heels of the release of the Columbia Accident Investigation report, the United Stats Senate Appropriations Committee approved NASA’s $15.3 billion budget for 2004. There were only a few differences from this budget and the $15.5 billion requested by President Bush earlier this year. $200 million was cut in from the International Space Station because of the smaller crew and use of Soyuz spacecraft. $20 million was cut from the Jupiter Icy Moons Orbiter (JIMO) mission; although, the explained that this amount had been added last year and not used. There were no other major cuts or changes to NASA’s budget.

? The bill has NASA funded at $15.3 billion. This is the same as the amount enacted in FY 2003.

? The Human Space Flight makes no changes to the funding in the Shuttle account, but are encourages NASA to keep Congress notified of any changes to this program resulting from the Columbia Accident Investigation Board (CAIB). The report requires NASA to provide a comprehensive plan within 4 months regarding response to the CIAB, as well as a 10-year funding profile for all of Shuttle fleet as safe and the proposed changes. The report expresses concern over what the impacts of the CAIB recommendations will be, and if there is a restructuring at NASA, what the long-term implications of a reorganization may be. We are also making limitations that will not allow NASA to move funds away from the Shuttle program.

? The bill includes a reduction of $200 million for the International Space Station (ISS). With the current situation aboard the station of a reduced crew and Russians supplying vehicles for crew and cargo transfer, there are other pressing needs within NASA and the bill for funds. At this time, NASA is unsure as to when the ISS will be operating with a crew of three, it may only be for a few more months or it could be longer than a year. The ISS has reserves of over $250 million and should be able to cover this modest reduction.

? The Science, Aeronautics, and Exploration fund is funded at the request with the exception of a $20 million reduction for the Jupiter Icy Moons Orbiter. This reduction corresponds to a similar amount funded into the program last year, but that was not requested. The result is that the funding for the program is equal to the FY 2004 request, but is spread over two fiscal years, but actually 8 calendar months. There is also $50 million in additional funds that go towards aeronautics research. The bill also has some other minor adjustments to other programs, but there are no major cuts or terminations to any programs within this portion of the bill.

? NASA has come to the Committee in the recent past about various human capitol issues, including retention bonuses and increased buyout authority. The bill asks for NASA to report on what they feel the budgetary impacts of such practices will be, both initially and over the long term. The bill includes a requirement that the National Academy of Public Administration do a top to bottom management analysis of NASA, particularly in response to the CAIB report which cited NASA management and culture as being a factor in the Columbia accident.

Source: US Press Release

Senate Inquiry Comes Down Hard on NASA

With the Columbia accident report complete, US senators began a series of inquiries into how NASA has responded to the challenges that its culture and lack of safety concerns ultimately contributed to the shuttle’s destruction. NASA Administrator Sean O’Keefe received stinging criticism from the Senate committee on Commerce, Science and Transportation that NASA hadn’t fired enough people after the accident – O’Keefe felt it was pointless to name people responsible for the accident if they hadn’t acted maliciously. The committee then demanded that NASA prepare a report to analyze the cost and benefits of space flight. (Source: AP)

Grunsfeld Becomes NASA’s Chief Scientist

Image credit: NASA

NASA Administrator Sean O’Keefe announced today that astronaut Dr. John Grunsfeld would replace Dr. Shannon Lucid as the agency’s Chief Scientist. Grunsfeld is a veteran of four space shuttle flights, including two servicing missions to the Hubble Space Telescope and has studied astronomy and physics throughout his career. Lucid will return to the Johnson Space Center in Houston to assist with the shuttle’s return to flight activities.

Administrator Sean O’Keefe today announced the selection of veteran astronaut, astronomer, and astrophysicist Dr. John M. Grunsfeld as the agency’s new Chief Scientist at NASA Headquarters in Washington. He succeeds Dr. Shannon Lucid, effective immediately.

Grunsfeld, who played an integral role in two Space Shuttle servicing missions to the Hubble Space Telescope (HST), has studied astronomy and physics throughout his career. As NASA’s Chief Scientist, he’ll work to ensure the scientific merit of the agency’s programs.

“John has a deep interest in astronautical science and has the hands-on experience to back up what he has taught in the classroom,” said Administrator O’Keefe. “With his background in physics and astronomy, John is a natural selection to direct NASA’s important space-based science objectives.”

After serving nearly two years in Washington, Lucid will return to the NASA Johnson Space Center in Houston to assist the agency’s Return to Flight efforts. “I asked Shannon to come to Washington to help get our science priorities in order,” added Administrator O’Keefe. “Thanks to her leadership, and work with Mary Kicza, our Associate Administrator for Biological and Physical Research, our research goals have focus and a clear direction. Shannon’s insight and candor will be missed in Washington, but I’m sure her colleagues in Houston are looking forward to her return.”

She was selected as Chief Scientist in February 2002. During her tenure, one of Lucid’s most important tasks was to work with the offices of Biological and Physical Research, Earth Science, Space Science, and Space Flight to develop a comprehensive plan for prioritization of research on board the International Space Station.

Lucid also updated NASA’s science policy, which had not been done since 1996. The policy stipulates science grants will be peer reviewed, and NASA scientists must compete for research funding.

She joined NASA in 1978 and became an astronaut in August 1979. She has flown as a mission specialist on STS-51G in 1985, STS-34 in 1989, STS-43 in 1991 and STS-58 in 1993. In 1996, she was flown to Mir during STS-76, where she served as an engineer and conducted numerous life science and physical science experiments during her stay in orbit.

When Lucid returned to Earth after STS-79, she had traveled more than 75 million miles and spent more than 188 days in orbit, an American record at the time. For her extraordinary efforts, Lucid was awarded the Congressional Space Medal of Honor.

Grunsfeld is a veteran of four Space Shuttle flights. In1999 and 2002 he took part in a total of five successful spacewalks to upgrade Hubble. As a Mission Specialist on STS-103, Grunsfeld helped install new gyroscopes and scientific instruments and upgraded Hubble’s systems. During STS-109, he served as Payload Commander, in charge of the spacewalking activities and the HST payload. He and three other crewmates installed a new digital camera, cooling system for the infrared camera, new solar arrays, and power system.

“Servicing the Hubble Space Telescope is by far and away the most meaningful thing I’ve ever done. It’s helping us answer fundamental questions about our world and our place in the universe,” said Grunsfeld. “I was born the same year NASA was established, so we grew up together. I quickly discovered space exploration and science mesh well together and I couldn’t be more excited about this opportunity.”

A native of Chicago, Grunsfeld received a bachelor’s degree in physics from the Massachusetts Institute of Technology in 1980. He earned a masters degree and a doctorate in physics from the University of Chicago in 1984 and 1988, respectively.

Grunsfeld was selected as a NASA astronaut in 1992. His first flight assignment came in 1995 on board the Space Shuttle Endeavour on STS-67. In 1997, Grunsfeld served as flight engineer for the Space Shuttle Atlantis during STS-81 and a 10-day mission to Russia’s Mir space station. He has logged over 45 days in space, including 37 hours and 32 minutes working outside the Space Shuttle.

Grunsfeld has been honored with the W.D. Grainger Fellow in Experimental Physics and was awarded the NASA Distinguished Service Medal earlier this year. He was awarded NASA Space Flight Medals in 1995, 1997, 1999, and 2002, and earned the agency’s Exceptional Service Medal in 1997, 1998, and 2000.

Source: NASA Press Release

NASA Accepts CAIB Report

NASA Administrator Sean O’Keefe officially accepted the report from the Columbia Accident Investigation Report, and vowed that serious changes would be made to the agency to reduce the risks of future shuttle flights. In fact, he said, many of the preliminary recommendations were already underway and would be ready when the shuttle returns to flight some time in Spring 2004. The board made 15 recommendations that must be fulfilled before the shuttle can return to flight, but their biggest complaint, that NASA’s fundamental culture caused allowed this disaster to take place may be the hardest to fix.

NASA SIRTF Launches on Board a Delta II Rocket


NASA’s Space Infrared Telescope Facility (SIRTF) successfully launched on board a Delta II rocket from Florida’s Cape Canaveral Air Force Station at 0535 GMT (1:35 am EDT). The Deep Space Network station in Canberra, Australia reported the first data from the observatory 64 minutes after launch. The last of the Great Observatories, SIRTF will use infrared detectors to help expand astronomers’ knowledge of many objects in the sky, including brown dwarfs, planet-forming discs of debris around other stars, and distant galaxies. The observatory will undergo two months of testing followed by another month of science verification; after that, SIRFT will be ready for use.

NASA’s Space Infrared Telescope Facility (SIRTF) successfully launched from Florida’s Cape Canaveral Air Force Station at 1:35:39 a.m. Eastern Daylight Time (10:35:39 p.m. Pacific Daylight Time, August 24) aboard a Delta II launch vehicle.

Flying eastward over the Atlantic Ocean, the new observatory entered an Earth-trailing orbit the first of its kind at about 43 minutes after launch. Five minutes later, the spacecraft separated from the Delta?s second and final stage. At about 2:39 a.m. Eastern Daylight Time (11:39 p.m. Pacific Daylight Time, Aug. 24), about 64 minutes after take-off, the NASA Deep Space Network station in Canberra, Australia received the first data from the spacecraft.

“All systems are operating smoothly, and we couldn?t be more delighted,” said David Gallagher, project manager for the mission at NASA?s Jet Propulsion Laboratory, Pasadena, Calif.

The last of NASA?s suite of Great Observatories, the Space Infrared Telescope Facility will use infrared detectors to pierce the dusty darkness enshrouding many of the universe?s most fascinating objects, including brown dwarfs, planet-forming debris discs around stars and distant galaxies billions of light years away. Past Great Observatories include the Hubble Space Telescope, Chandra X-ray Observatory and Compton Gamma Ray Observatory.

The two-and-one-half to five-year mission is an important bridge to NASA?s Origins Program, which seeks to answer the questions: “Where did we come from? Are we alone?”

In-orbit checkout and calibration is scheduled to last 60 days, followed by a 30-day science verification period, after which the observatory is expected to begin its regular science mission.

For more information about the Space Infrared Telescope Facility, visit their Web site at http://sirtf.caltech.edu/>.

Original Source: NASA News Release