Elon Musk Just Shared an Image of the Main Body Tool for Building the BFR. That Thing is F’ing Big!

Artist's impression of the ITS (BFR) conducting a service run to the ISS. Credit: SpaceX

In September of 2016, Elon Musk announced the latest addition to the SpaceX rocket family. Known then as the Interplanetary Transport System (ITS) – now know as the Big Falcon Rocket (BFR) – this massive launch vehicle is central to Musk’s vision of sending astronauts and colonists to Mars someday. Since that time, the space community has eagerly waited for any news on how the preparations for this rocket are going.

Musk further inflamed people’s anticipation by recently announcing that the BFR would be ready to conduct orbital flights by as early as 2020. While admittedly an optimistic deadline, Musk indicated that his company was building the presently building the ship. And according to a recent post on Musk’s Instagram account, a key component (the main body tool) for making the BFR interplanetary spaceship has just been completed.

It is important to note, however, that what is being shown here is not actually a part of the rocket. As Ryan Whitwam of Extreme Tech noted, what we are seeing in the post is a tool “that SpaceX will use to fabricate the rocket from carbon fiber composite materials that are lighter than traditional materials. Flexible resin sheets of carbon fiber will be layered on the tool and then heated to cure them. After heating, you’re left with a solid section of rocket fuselage. It’s essentially a carbon fiber jig.”

https://www.instagram.com/p/BhVk3y3A0yB/?hl=en

Nevertheless, from the size of the tool itself, one gets a pretty clear idea of how large the final rocket will be. SpaceX chose to illustrate the scale of the tool by placing a Tesla next to it for scale. For some additional perspective, consider the cherry Tesla Roadster (driven by Starman) SpaceX launched with the Falcon Heavy‘s maiden flight.

Whereas the payload capsule was barely large enough to house it, this car looks like it could fit inside any rocket turned out by this tool easily, and with plenty of room to spare. And while cars are not exactly the BFR’s intended payload, it is good to know that it will be no slouch in that department!

When completed, the BFR will be the largest and most powerful rocket in the SpaceX rocket family. According to the company’s own specifications, it will measure 106 meters (348 ft) in height and 9 meters (30 ft) in diameter and will be able to deliver a payload of 150,000 kg (330,000 lb) to Low-Earth Orbit (LEO) – almost two and a half times the payload of the Falcon Heavy (63,800 kg; 140,660 lb).

And as Musk indicated during an interview with Jonathon Nolan at the 2018 South by Southwest Conference (SXSW) in Austin, Texas, it will even outpace the rockets that won the Space Race for the US:

“This a very big booster and ship. The liftoff thrust of this would be about twice that of a Saturn V (the rockets that sent the Apollo astronauts to the Moon). So it’s capable of doing 150 metric tons to orbit and be fully reusable. So the expendable payload is about double that number.”

Once completed, Musk hopes to see the BFR performing service missions to Low-Earth Orbit (LEO), the International Space Station, to the Moon, and – of course – to Mars. In addition to sending colonists there as early as the next decade, Musk has also expressed interest in using the BFR to conduct space tourism – flying passengers in luxury accommodations to the Red Planet and back.

In the end, it is clear that Musk and the company he founded for the purpose of reigniting space exploration are determined to make all of this happen. In the coming years, it will be interesting to see how far and how fast they progress.

Further Reading: Instagram, SpaceX, Extreme Tech

Launching Rockets from Balloons is About to be a Thing, But We Need a Better Name than “Rockoons”

Leo Aerospace plans to use “rockoons” (high-altitude balloons) that left rockets about 11 miles (18 kilometers) above Earth, where there is 95 percent less atmosphere to cause drag. That makes the rockoon less expensive to launch than a traditional rocket. The system works only for microsatellites. Image: Leo Aerospace.

One of the technological hurdles of our age is to get people and equipment into space more cheaply. SpaceX gets a lot of the headlines around that, with their reusable rockets. And so does Blue Origin, to some degree. Now a small start-up affiliated with Purdue University is tackling the problem and making some headway.

The company is called Leo Aerospace LLC and they’re using balloons to lower the cost of putting micro-satellites into orbit, rather than reusable rockets. The balloons will be reusable, but the rockets won’t.

Leo Aerospace plans to revive a decades-old method of putting satellites into space. They’re using hot air balloons to lift the rocket and its micro-satellite payload 18 km (11 miles) above Earth. At that altitude, there’s 95% less atmosphere. This means much less drag on the rocket, which translates into smaller rockets with less fuel. This is an intriguing idea, if not for the unfortunate name.

The rockoons will be used to launch rockets into sub-orbital and orbital flights. Sub-orbitals are often used by researchers because it gives them access to zero gravity and to vacuum, both of which are necessary for some experiments. According to Leo Aerospace, there’s something revolutionary about their plans.

“We’re targeting the microsatellites by saying, ‘You don’t have to ride-share with anyone. We can guarantee you will be our only payload and we will be focused on you.’” – Drew Sherman, Leo Aerospace’s Head of Vehicle Development.

They intend on targeting micro-satellite developers. Micro-satellites are often hitch-hikers on larger payloads, which basically means they’re second-class customers. They have to wait until there’s room for their micro-satellite on a traditional rocket carrying a larger payload. This can mean long delays of several months, and that micro-satellite developers have to compromise when it comes to the orbits they can obtain. It can also make micro-satellite missions difficult to plan and execute efficiently and economically. Micro-satellites are becoming more and more capable, so having a launch system tailor-made for them could indeed be revolutionary.

“We’re targeting the microsatellites by saying, ‘You don’t have to ride-share with anyone. We can guarantee you will be our only payload and we will be focused on you,’” said Drew Sherman, Leo Aerospace’s head of vehicle development. “‘We will work with you exclusively to get you into orbit. You won’t have to worry about other payloads or getting dropped off in the wrong spot.’”

The flexibility of the rockoon system that Leo Aerospace is developing will be intriguing for micro-satellites. Rockoons will give micro-satellites the flexibility they need to operate efficiently. The launch can be scheduled and adapted to the needs of the individual satellite. “Our goal is to give people access to space. The only way to do that right now is to help people get their satellite into orbit. That’s where we want to leave our mark,” said Abishek Murali, Head of Mission Engineering at Leo Aerospace.

“Our goal is to give people access to space.” – Abishek Murali, Head of Mission Engineering at Leo Aerospace

The rockoon itself is a hybrid of a balloon and a rocket. The hybrid design takes advantage of physics by using the balloon to float the rocket 18 km high before launching the rocket. The rockoon has Leo Aerospace’s own patent-pending technology to control the pitch and angle of the launch, allowing for precision launches.

Rockoons were first used by the US Air Force back in the 1950s. But this next generation of rockoons, coupled with modern micro-satellites, will be much more capable than the 1950s technology.

Leo Aerospace LLC was started by five then-Purdue University students as a club and then turned into a business. The founders are, from left, Mike Hepfer, head of product development; Drew Sherman, head of vehicle development; Abishek Murali, head of mission engineering; Dane Rudy; chief executive officer; and Bryce Prior, head of operations and strategy. Image: Leo Aerospace.

Currently, Leo Aerospace is in the development and funding phase. They’ve obtained some funding from the National Science Foundation, and from a venture capital firm. They have about half of the $250,000 they need. They plan to conduct their first sub-orbital flight in 2020, and to launch their first micro-satellite into orbit in 2022. They intend to use existing approved launch sites.

Leo Aerospace was founded by five then-students at Purdue University. Leo started as a club, but the former students have turned it into a business. And that business seems to have a bright future. They conducted a customer discovery and market validation study and found a large demand for a better way to launch micro-satellites.

“We want to be part of the space market,” Murali said. “People are interested in space and creating technologies that not only can operate in space but also help people back on Earth. What we’re trying to do is help them get there.”

But they still need a better name than “rockoons.”

Here’s How to Follow the De-Orbit of Tiangong-1, now Estimated to Happen Between March 30 and April 2

Artist's illustration of China's 8-ton Tiangong-1 space station, which is expected to fall to Earth in late 2017. Credit: CMSE.

China’s Tiangong-1 space station has been the focus of a lot of international attention lately. In 2016, after four and half years in orbit, this prototype space station officially ended its mission. By September of 2017, the Agency acknowledged that the station’s orbit was decaying and that it would fall to Earth later in the year. Since then, estimates on when it will enter out atmosphere have been extended a few times.

According to satellite trackers, it was predicted that the station would fall to Earth in mid-March. But in a recent statement (which is no joke) the Chinese National Space Agency (CNSA) has indicated that Tiangong-1 will fall to Earth around April 1st – aka. April Fool’s Day. While the agency and others insists that it is very unlikely, there is a small chance that the re-entry could lead to some debris falling to Earth.

For the sake of ensuring public safety, the European Space Agency’s (ESA) Space Debris Office (SDO) has been providing regular updates on the station’s decay. According to the SDO, the reentry window is highly variable and spans from the morning of March 31st to the afternoon of April 1st (in UTC time). This works out to the evening of March 30th or March 31st for people living on the West Coast.

The possible re-entry region of the Tiangong-1 space station, indicated in green. Credit: ESA/SDO

As the ESA stated on their rocket science blog:

“Reentry will take place anywhere between 43ºN and 43ºS. Areas above or below these latitudes can be excluded. At no time will a precise time/location prediction from ESA be possible. This forecast was updated approximately weekly through to mid-March, and is now being updated every 1~2 days.”

In other words, if any debris does fall to the surface, it could happen anywhere from the Northern US, Southern Europe, Central Asia or China to the tip of Argentina/Chile, South Africa, or Australia. Basically, it could land just about anywhere on the planet. On the other hand, back in January, the US-based Aerospace Corporation released a comprehensive analysis on Tiangong-1s orbital decay.

Their analysis included a map (shown below) which illustrated the zones of highest risk. Whereas the blue areas (that make up one-third of the Earth’s surface) indicate zones of zero probability, the green area indicates a zone of lower probability. The yellow areas, meanwhile, indicates zones that have a higher probability, which extend a few degrees south of 42.7° N and north of 42.7° S latitude, respectively.

The Aerospace Corporations predicted reentry for Tiangong-1. Credit: aerospace.org

The Aerospace Corporation has also created a dashboard for tracking Tiangong-1 (which is refreshed every few minutes) and has come to similar conclusions about the station’s orbital decay. Their latest prediction is that the station will descend into our atmosphere on April 1st, at 04:35 UTC (March 30th 08:35 PST), with a margin of error of about 24 hours – in other words, between March 30th to April 2nd.

And they are hardly alone when it comes to monitoring Tiangong-1’s orbit and predicting its descent. The China Human Spaceflight Agency (CMSA) recently began providing daily updates on the orbital status of Tiangong-1. As they reported on March 28th: “Tiangong-1 stayed at an average altitude of about 202.3 km. The estimated reentry window is between 31 March and 2 April, Beijing time.”

The US Space Surveillance Network, which is responsible for tracking artificial objects in Earth’s orbit, has also been monitoring Tiangong-1 and providing daily updates. Based on their latest tracking data, they estimate that the station will enter our atmosphere no later than midnight on April 3rd.

Naturally, one cannot help but notice that these predictions vary and are subject to a margin of error. In addition, trackers cannot say with any accuracy where debris – if any – will land on the planet. As Max Fagin – an aerospace engineer and space camp alumni – explained in a recent Youtube video (posted below), all of this arises from two factors: the station’s flight path and the Earth’s atmosphere.

Basically, the station is still moving at a velocity of 7.8 km/sec (4.8 mi/s) horizontally while it is descending by about 3 cm/sec. In addition, the Earth’s atmosphere shrinks and expands throughout the day in response to the Sun’s heating, which results in changes in air resistance. This makes the process of knowing where the station’s will make its descent difficult to predict, not to mention where debris could fall.

However, as Fagin goes on to explain, once the station reaches an altitude of 150 km (93 mi) – i.e. within the Thermosphere – it will begin falling much faster. At that point, it be much easier to determine where debris (if any) will fall. However, as the ESA, CNSA, and other trackers have emphasized repeatedly, the odds of any debris making it to the surface is highly unlikely.

If any debris does survive re-entry, it is also statistically likely to fall into the ocean or in a remote area – far away from any population centers. But in all likelihood, the station will break up completely in our atmosphere and produce a beautiful streaking effect across the sky. So if you’re checking the updates regularly and are in a part of the world where it can be seen, be sure to get outside and see it!

Further Reading: GB Times

Tiangong 1 Falls, Blue Moon Rises and Mars Takes Aim At Saturn

Bob King
A couple watches the Moon rise from the icy shore of Lake Superior in Duluth earlier this month on March 1. Credit: Bob King

I apologize for the end-of-the-world title, but everything in it is true. And the world will still be here after it’s all done. On Friday (March 31) at 7:36 a.m. Central Time, the Moon will be full for the second time this month, which makes it a Blue Moon according to popular usage. Enjoy it. What with January’s Blue Moon and now this, we’ve chewed through all our Blue Moons till Halloween 2020.

I look forward to every full moon. Watching a moonrise, we get to see all manner of amazing atmospheric distortions play across the squat, orange disk. Once the sky’s dark, its outpouring of light makes walking at night a pleasure.

When a full moon occurs in spring, it hurries south down the ecliptic, the imaginary circle in the sky defining Earth’s orbit around the Sun. For northern hemisphere skywatchers, this southward sprint delays its rising by more an hour each night, forcing a quick departure from the evening sky. And that means blessed darkness for hunting down favorite galaxies and star clusters.


Tiangong 1 and a reentry simulation

As the Moon rolls along, the hapless Chinese space station Tiangong 1 hurtles toward Earth. Drag caused by friction with the upper atmosphere continues to shrink the spacecraft’s orbit, bringing it closer and closer to inevitable breakup and incineration. Since the Chinese National Space Administration (CNSA) lost touch with Tiangong 1 in March 2016, mission control can no longer power thrusters to de-orbit it at chosen time over a safe location like the ocean. The 9.3-ton (8,500 kg) station will burn up somewhere anywhere over a vast swath of the planet between latitudes 43°N and 43°S. Included within this zone are the southern half of Europe, the southern two-thirds of the U.S., India, Australia and much of Africa and South America.

Not until the day of or even hours before will have a clear idea of when and where the station will meet its fate. According to the latest update from the Aerospace Corp., which monitors falling spacecraft, reentry is expected on Easter Sunday (April 1) at 10:30 UT / 5:30 a.m. Central Time plus or minus 16 hours. This morning (March 29), the space station is circling Earth at about 118 miles (190 km) altitude. The lowest a satelllite can still make a complete orbit of the planet is about 62 miles (100 km). Below that, break-up begins.

A high definition TV camera on an aircraft took this photo of the cargo ship ATV-1 reentering the atmosphere in September 2008. Tiangong 1 is about the same size and will likely shatter and burn in similar fashion. Credit: ESA/NASA

For up-to-the-minute updates on when to expect Tiangong 1’s orbit to decay and the machine to plunge to Earth, check out Joseph Remis’ Twitter page. Most of the space station is expected to burn up on reentry, but larger chunks might survive all the way to the ground. Since much more of the Earth’s surface is water these remnants will likely end up in the drink … but you never know. If Tiangong-1 does come down over a populated area, observers on the ground will witness a spectacular, manmade fireball day or night.

Mars (right) and Saturn pair up in Sagittarius this morning, March 29 at dawn seen from Duluth, Minn. The two planets were 2.2° apart. Details: 35mm lens, f/2.8, 13 second exposure at ISO 800. Credit: Bob King

On the quieter side but nearly as eye-catching, Mars will overtake Saturn in the coming week, passing just 1° south of the ringed planet in a thrilling dawn conjunction on April 2. If the weather forecast doesn’t look promising that morning, the two planets will remain within 2° of each other now through April 6th, providing plenty of opportunities for a look.

You can easily tell them apart by color: Mars is distinctly red-orange and Saturn looks creamy white. Both are bright at around magnitude 0 though Mars is now a hair brighter by two-tenths of a magnitude. Will you be able to see the difference?

Mars passes close to Saturn on Monday, April 2. Look low in the southeastern sky shortly before and at dawn. Try getting a picture of the lovely couple by setting up your camera on a tripod and doing a series of time exposures from 5-30 seconds at f/3.5 and ISO 800. No fancy telephoto equipment is needed: a 35-55mm lens is perfect. Created with Stellarium

In most telescopes at low magnification both planets will comfortably fit in the same field of view. Saturn’s rings are tilted nearly wide open and quite beautiful. Mars appears gibbous and though still rather small, it’s brightening rapidly and drawing closer in time for its closest approach to Earth since 2003. Wishing you clear skies!

NASA’s Parker Solar Probe Will Touch the Sun — So Can You

Credit: NASA
NASA’s Parker Solar Probe will launch this summer and study both the solar wind and unanswered questions about the Sun’s sizzling corona. Credit: NASA

How would you like to take an all-expenses-paid trip to the Sun? NASA is inviting people around the world to submit their names to be placed on a microchip aboard the Parker Solar Probe mission that will launch this summer. As the spacecraft dips into the blazing hot solar corona your name will go along for the ride. To sign up, submit your name and e-mail. After a confirming e-mail, your digital “seat” will be booked. You can even print off a spiffy ticket. Submissions will be accepted until April 27, so come on down!

Step right up! Head over before April 27 to put a little (intense) sunshine in your life. Click the image to go there. Credit: NASA

The Parker Solar Probe is the size of a small car and named for Prof. Eugene Parker, a 90-year-old American astrophysicist who in 1958 discovered the solar wind. It’s the first time that NASA has named a spacecraft after a living person. The Parker probe will launch between July 31 and August 19 but not immediately head for the Sun. Instead it will make a beeline for Venus for the first of seven flybys. Each gravity assist will slow the craft down and reshape its orbit (see below), so it later can pass extremely close to the Sun. The first flyby is slated for late September.

When heading to faraway places, NASA typically will fly by a planet to increase the spacecraft’s speed by robbing energy from its orbital motion. But a probe can also approach a planet on a different trajectory to slow itself down or reconfigure its orbit.

The spacecraft will swing well within the orbit of Mercury and more than seven times closer than any spacecraft has come to the Sun before. When closest at just 3.9 million miles (6.3 million km), it will pass through the Sun’s outer atmosphere called the corona and be subjected to temperatures around 2,500°F (1,377°C). The primary science goals for the mission are to trace how energy and heat move through the solar corona and to explore what accelerates the solar wind as well as solar energetic particles.

The Parker Solar Probe will use seven Venus flybys over nearly seven years to gradually shrink its orbit around the Sun, coming as close as 3.7 million miles (5.9 million km), well within the orbit of Mercury. Closest approaches (called perihelia) will happen in late December 2024 and the first half of 2025 before the mission ends. Credit: NASA

The vagaries of the solar wind, a steady flow of particles that “blows” from the Sun’s corona at more than million miles an hour, can touch Earth in beautiful ways as when it energizes the aurora borealis. But it can also damage spacecraft electronics and poorly protected power grids on the ground. That’s why scientists want to know more about how the corona works, in particular why it’s so much hotter than the surface of the Sun — temperatures there are several million degrees.

During the probe’s closest approach, the Sun’s apparent diameter will span 14° of sky. Compare that to the ½° Sun we see from Earth. Can you imagine how hot the Sun’s rays would be if it were this large from Earth? Life as we know it would be over. Wikipedia / CC BY-SA 3.0

As you can imagine, it gets really, really hot near the Sun, so you’ve got to take special precautions. To perform its mission, the spacecraft and instruments will be protected from the Sun’s heat by a 4.5-inch-thick carbon-composite shield, which will keep the four instrument suites designed to study magnetic fields, plasma and energetic particles, and take pictures of the solar wind, all at room temperature.

Similar to how the Juno probe makes close passes over Jupiter’s radiation-fraught polar regions and then loops back out to safer ground, the Parker probe will make 24 orbits around the Sun, spending a relatively short amount of face to face time with our star. At closest approach, the spacecraft will be tearing along at about 430,000 mph, fast enough to get from Washington, D.C., to Tokyo in under a minute, and will temporarily become the fastest manmade object. The current speed record is held by Helios-B when it swung around the Sun at 156,600 mph (70 km/sec) on April 17, 1976.

A composite of the August 21, 2017 total solar eclipse showing the Sun’s spectacular corona. Astronomers still are sure why it’s so much hotter than the 10,000°F solar surface (photosphere). Theories include a microflares or magnetic waves that travel up from deep inside the Sun. Credit and copyright: Alan Dyer / amazingsky.com

Many of you saw last August’s total solar eclipse and marveled at the beauty of the corona, that luminous spider web of light around Moon’s blackened disk. When closest to the Sun at perihelion the Parker probe will fly to within 9 solar radii (4.5 solar diameters) of its surface. That’s just about where the edge of the furthest visual extent of the corona merged with the blue sky that fine day, and that’s where Parker will be!

The First SpaceX BFR Should Make Orbital Launches by 2020

Artist's impression of the the Interplanetary Spacecraft approaching Mars. Credit: SpaceX

Elon Musk has a reputation for pushing the envelop and making bold declarations. In 2002, he founded SpaceX with the intention of making spaceflight affordable through entirely reusable rockets. In April of 2014, his company achieved success with the first successful recovery of a Falcon 9 first stage. And in February of this year, his company successfully launched its Falcon Heavy and managed to recover two of the three boosters.

But above and beyond Musk’s commitment to reusability, there is also his longer-term plans to use his proposed Big Falcon Rocket (BFR) to explore and colonize Mars. The topic of when this rocket will be ready to conduct launches was the subject of a recent interview between Musk and famed director Jonathon Nolan, which took place at the 2018 South by Southwest Conference (SXSW) in Austin, Texas.

During the interview, Musk reiterated his earlier statements that test flights would begin in 2019 and an orbital launch of the full BFR and Big Falcon Spaceship (BFS) would take place by 2020. And while this might seem like a very optimistic prediction (something Musk is famous for), this timeline does not seem entirely implausible given his company’s work on the necessary components and their success with reusability.

As Musk emphasized during the course of the interview:

“People have told me that my timelines have historically been optimistic. So I am trying to re-calibrate to some degree here. But I can tell what I know currently is the case is that we are building the first ship, the first Mars or interplanetary ship, right now, and I think we’ll probably be able to do short flights, short sort of up-and-down flights probably in the first half of next year.”

To break it down, the BFR – formerly known as the Interplanetary Transport System – consists of a massive first stage booster and an equally massive second stage/spaceship (the BFS). Once the spacecraft is launched, the second stage would detach and use its thrusters to assume a parking orbit around Earth. The first stage would then guide itself back to its launchpad, take on a propellant tanker, and return to orbit.

The propellant tanker would then attach to the BFS and refuel it and return to Earth with the first stage. The BFS would then fire its thrusters again and make the journey to Mars with its payload and crew. While much of the technology and concepts have been tested and developed through the Falcon 9 and Falcon Heavy, the BFR is distinct from anything else SpaceX has built in a number of ways.

For one, it will be much larger (hence the nickname, Big F—— Rocket), have significantly more thrust, and be able  carry a much larger payload. The BFR’s specifications were the subject of a presentation Musk made at the 68th International Astronautical Congress on September 28th, 2017, in Adelaide, Australia. Titled “Making Life  Interplanetary“, his presentation outlined his vision for colonizing Mars and presented an overview of the ship that would make it happen.

According to Musk, the BFR will measure 106 meters (348 ft) in height and 9 meters (30 ft) in diameter. It will carry 110 tons (~99,700 kg) of propellant and will have an ascent mass of 150 tons (~136,000 kg) and a return mass of 50 tons (~45,300 kg). All told, it will be able to deliver a payload of 150,000 kg (330,000 lb) to Low-Earth Orbit (LEO) – almost two and a half times the payload of the Falcon Heavy (63,800 kg; 140,660 lb)

“This a very big booster and ship,” said Musk. “The liftoff thrust of this would be about twice that of a Saturn V (the rockets that sent the Apollo astronauts to the Moon). So it’s capable of doing 150 metric tons to orbit and be fully reusable. So the expendable payload is about double that number.”

In addition, the BFR uses a new type of propellant and tanker system in order to refuel the spacecraft once its in orbit. This goes beyond what SpaceX is used to, but the company’s history of retrieving rockets and reusing them means the technical challenges this poses are not entirely new. By far, the greatest challenges will be those of cost and safety, since this will be only the third reusable second stage spacecraft in history.

The other two consist of the NASA Space Shuttles, which were officially retired in 2011, and the Soviet/Russian version of the Space Shuttle known as the Buran spacecraft. While the Buran only flew once (an uncrewed flight that took place in 1988), it remains the only Russian reusable spacecraft to have even been built or flown.

Where costs are concerned, the Space Shuttle Program provides a pretty good glimpse into what Musk and his company will be facing in the years ahead. According to estimates compiled in 2010 (shortly before the Space Shuttle was retired), the program cost a total of about $ 210 billion USD. Much of these costs were due to maintenance between launches and the costs of propellant, which will need to be kept low for the BFR to be economically viable.

Addressing the question of costs, Musk once again stressed how reusability will be key:

“What’s amazing about this ship, assuming we can make full and rapid reusability work, is that we can reduce the marginal cost per flight dramatically, by orders of magnitude compared to where it is today. This question of reusability is so fundamental to rocketry, it is the fundamental breakthrough that’s needed.”

As an example, Musk compared the cost of renting a 747 with full cargo (about $500,000) and flying from California to Australia to buying a single engine turboprop plane, – which would run about $1.5 million and cannot even reach Australia. In short, the BFR relies on the principle that it costs less for an entirely reusable large spaceship to make a long trip that it does to launch a single rocket on a short trip that would never return.

“A BFR flight will actually cost less than our Falcon 1 flight did,” he said. “That was about a 5 or 6 million dollar marginal cost per flight. We’re confident the BFR will be less than that. That’s profound, and that is what will enable the integration of a permanent base on the Moon and a city on Mars. And that’s the equivalent of like the Union Pacific Railroad, or having ships that can quickly cross the oceans.”

Artist concept of NASA’s Space Launch System (SLS) on the left, and the Orion Multi-Purpose Crew Vehicle (right). Credit: NASA

Beyond manufacturing and refurbishing costs, the BFR will also need to have an impeccable safety record if SpaceX is to have a hope of making money from it. In this respect, SpaceX hopes to follow a development process similar to what they did with the Falcon 9. Before conducting full launch tests to see if the first stage of the rocket could safely make it to orbit and then be retrieved, the company conducted short hop tests using their “Grasshopper” rocket.

According to the timeline Musk offered at the 2018 SXSW, the company will be using the spaceship that is currently being built to conduct suborbital tests as soon as 2019. Orbital launches, which may include both the booster and the spaceship, are expected to occur by 2020. At present, Musk’s earlier statements that the first flight of the BFR would take place by 2022 and the first crewed flight by 2024 still appear to be on.

For comparison, the Space Launch System (SLS) – which is NASA’s proposed means of getting to Mars – is scheduled to conduct its first launch in 2019 as well. Known as Exploration Mission 1 (EM-1), this launch will involve sending an uncrewed Orion capsule on a trip around the Moon. EM-2, in which a crewed Orion capsule will delver the first module of the Lunar Orbital Platform-Gateway (LOP-G, formerly the Deep Space Gateway) to lunar orbit, will take place in 2022.

The ensuing missions will consist of more modules being delivered to lunar orbit to complete construction of the LOP-G, as well as the Deep Space Transport (DST). The first interplanetary trip to Mars, Exploration Mission 11 (EM-11), won’t to take place until 2033. So if Musk’s timelines are to be believed, SpaceX will be beating NASA to Mars, both in terms of uncrewed and crewed missions.

As for who will be enabling a permanent stay on both the Moon and Mars, that remains to be seen. And as Musk emphasized, he hopes that by showing that creating an interplanetary spaceship is possible, agencies and organizations all over the planet will mobilize to do the same. For all we know, the creation of the BFR could enable the creation of an entire fleet of Interplanetary Transport Systems.

The South by Southwest Conference began on Friday, March 9th and will continue until Sunday, March 18th. And be sure to check out the video of the interview below:

Further Reading: Testlarati, SXSW

Stephen Hawking has passed away at age 76

Hawking has experienced zero gravity before, when he flew on Zero Gravity Corp's modified Boeing 727 in 2007. Image: By Jim Campbell/Aero-News Network

Dr. Stephen Hawking, the famed British theoretical physicist, science communicator, author and luminary, passed away in the early hours on Wednesday, March 14th. According to a statement from his family, the renowned scientist died peacefully in his home at Cambridge. He was 76 years old, and is survived by his first wife, Jane Wilde, and their three children – Lucy, Robert and Tim.

Dr. Hawking spent the past 50 years living with a terminal illness that slowly deprived him of his speech and the use of much of his body. He also leaves behind an unparalleled scientific legacy and millions of people worldwide who admired him for his genius, his sense of humor, and the way he sought to educate people on the importance of scientific research, space exploration, and disability awareness.

In 1963, when he was just 21 years old, Dr. Hawking was diagnosed with Amyotrophic Lateral Sclerosis (ALS, aka. Lou Gehrig’s disease), a degenerative form of motor neurone disease that would be with him for the rest of his life. At the time, he was told that he had only two years to live. This diagnosis caused Dr. Hawking to fall into a depression and lose interest in his studies, which he was pursuing at Cambridge University at the time.

Stephen Hawking and Jane Wilde on their wedding day, July 14th, 1966. Credit: telegraph.co.uk

However, his outlook soon changed as the disease progressed slower than his doctor’s originally though. It was also around this time that Hawking met his first wife, Jane Wilde. The two became engaged in October of 1964 and married on July 14th, 1966. Hawking would later say that his relationship with Wilde gave him “something to live for”.

The slow progression of the disease also allowed Dr. Hawking to embark on a career marked by brilliance, brashness, and original thinking. Among his many achievements, Dr. Hawing was the Lucasian Professor of Mathematics at the University of Cambridge, the Founder of the Center for Theoretical Cosmology, and served as the Sally Tsui Wong-Avery Director of Research at the Department of Applied Mathematics and Theoretical Physics until his passing.

During his lifetime, Dr. Hawking made invaluable contributions to the fields of theoretical physics and cosmology. These include his extensive work on gravitational singularity theorems (in collaboration with Roger Penrose), the theory that black holes emit radiation (often called Hawking Radiation), and a theory of cosmology that attempted to unify general relativity and quantum mechanics (aka. Theory of Everything).

OPeter Higgs and Stephen Hawking visiting the “Collider” exhibition at London’s Science Museum (Image: c. Science Museum 2013)

His many accolades, honors and awards included being made an Honorary Fellow of the Royal Society of Arts (FRSA), a lifetime member of the Pontifical Academy of Sciences, and a recipient of the Presidential Medal of Freedom – the highest civilian award in the United States. In 2002, Hawking was ranked number 25 in the BBC’s poll of the 100 Greatest Britons.

The many books he penned include the best-selling A Brief History of Time, A Briefer History of Time, the essay collection Black Holes and Baby Universe, The Universe in a Nutshell, The Grand Design (which he co-authored with famed Caltech theoretical physicist and best-selling author Leonard Mlodinow) and his autobiography, My Brief History.

In 2007, Hawking and his daughter Lucy also published George’s Secret Key to the Universe, a children’s book designed to explain theoretical physics in an accessible fashion and featuring characters similar to those in the Hawking family. The book was followed by three sequels – George’s Cosmic Treasure Hunt (2009), George and the Big Bang (2011), George and the Unbreakable Code (2014).

President Barack Obama talks with Stephen Hawking in the Blue Room of the White House before a ceremony presenting him and 15 others the Presidential Medal of Freedom, August 12, 2009. (Official White House photo by Pete Souza)

In a statement by his three children, Lucy, Robert and Tim praised their father’s courage and persistence and honored how his genius and sense of humor inspired people all across the world:

“We are deeply saddened that our beloved father passed away today. He was a great scientist and an extraordinary man whose work and legacy will live on for many years… He once said, ‘It would not be much of a universe if it wasn’t home to the people you love.’ We will miss him forever.”

News of his passing was also met with a flurry of condolences by friends, colleagues, fans, and people whose lives he touched over the years. NASA tweeted the following early this morning, followed by a video of Dr. Hawking addressing the astronauts of the ISS in 2014:

https://twitter.com/NASA/status/973787392590172160?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Etweet

Famed scientists and science communicator Neil DeGrasse Tyson also expressed his condolences, tweeting:

The cast of the Big Bang Theory, one of the many hit TV shows that Dr. Hawking made several appearances on, also offered their condolences and admiration:

The Motor Neurone Disease Association – of which Prof Hawking had been a patron since 2008- also expressed condolences on both their Facebook and twitter feeds. In addition, they reported that its website had crashed because of an influx of donations to the charity.

Despite having lived for five decades with this degenerative disease, Hawking had a very practical and courageous attitude about life. In 2011, he said in an interview with The Guardian that death was never far from his mind. “I have lived with the prospect of an early death for the last 49 years,” he said. “I’m not afraid of death, but I’m in no hurry to die. I have so much I want to do first.”

Hawking, a well-known atheist, was also clear on his thoughts on an afterlife. “I regard the brain as a computer which will stop working when its components fail,” he said. “There is no heaven or afterlife for broken down computers; that is a fairy story for people afraid of the dark.”

Dr. Hawking’s life and his contributions to science have been commemorated in many ways over the years. A film version of A Brief History of Time, directed by Errol Morris and produced by Steven Spielberg, premiered in 1992.  In 1997, a six-part television series Stephen Hawking’s Universe premiered on PBS, with a companion book also being released. In 2014, the story of his diagnosis and the impact it had on his young family was showcased in the Oscar-winning film The Theory of Everything.

Stephen Hawking is a major proponent for colonizing other worlds, mainly to ensure humanity does not go extinct. Credit: educatinghumanity.com

Dr. Hawking has also been a major role model for people dealing with disabilities and degenerative illnesses and played an unparalleled role when it came to disability awareness and outreach. In 1999, he and eleven other luminaries joined with Rehabilitation International , an organization founded in 1922 “To advance the rights and inclusion of persons with disabilities across the world.”

In 2000, Dr. Hawking and his fellow luminaries signed the Charter for the Third Millennium on Disability, which called on governments around the world to prevent disabilities and protect disability rights. Throughout his life, Dr. Hawking also remained a committed educator  – personally supervising 39 successful PhD students – and lending his voice to scientific and humanitarian goals.

These include Breakthrough Initiatives, an effort to search for extraterrestrial intelligence (SETI) in the Universe, which Dr. Hawking helped launch in 2015. That same year, he also used his influence and celebrity status to promote the The Global Goals, a series of 17 goals adopted by the United Nations Sustainable Development Summit to end extreme poverty, social inequality, and fixing climate change over the course of the next 15 years.

To commemorate his life and legacy, a book of condolence has been opened at Gonville and Caius College in Cambridge, where Prof Hawking was a fellow. All around the world, there are outpourings of remembrance and support for his family from people who are mourning Dr. Hawking’s passing and celebrating his life and achievements.

As Neil DeGrasse Tyson said, the death of Dr. Hawking has left a vacuum in the scientific community, and in the hearts of people everywhere. However, his life and his many contributions shall be remembered for a long time to come!

Further Reading: Stephen Hawking, BBC, The Guardian,

Space Catapult Startup SpinLaunch has Come Out of Stealth Mode. Space catapults? Yes Please

SpinLaunch's company hangar. Credit: SpinLaunch

Of all challenges presented by space exploration – and to be fair, there are many! – one of the greatest is the cost. When it comes right down to it, launching disposable rockets from Earth and getting them to the point where they can achieve escape velocity and reach space is expensive. In addition, these rockets need to be big, powerful and hold a lot of fuel to lift spacecraft or cargo.

For this reason, so many efforts in the past few decades have been focused on reducing the cost of individual launches. There are many ways to make launch vehicles cheaper, ranging from reusable rockets to reusable spacecraft (i.e., the Space Shuttle). But to Jonathan Yaney, the founder of SpinLaunch, a real cost-cutting solution is to propel smaller payloads into orbit using a space catapult instead.

The concept of a space catapult is simple and has been explored at length since the dawn of the Space Age. Also known as a mass driver or coilgun, the concept relies on a set of powerful electromagnetic rails to accelerate spacecraft or payloads to escape velocity and launch them horizontally. Since the 1960s, NASA has been exploring the concept as an alternative to conducting rocket launches.

The Magnetic Levitation (MagLev) System is being evaluated at NASA’s Marshall Space Flight Center. Credit: NASA

In addition, NASA has continued developing this technology through the Marshall Space Flight Center and the Kennedy Space Center. Here, engineers have been working on ways to launch spacecraft horizontally using scramjets on an electrified track or gas-powered sled. A good example of this is the Magnetic Levitation (MagLev) System which uses the same technology as a maglev train to accelerate a small space plane into orbit.

Another variation on the concept involves a centrifuge, where the spacecraft or cargo is accelerated on a circular track until it reaches escape velocity (and then launches). This concept was proposed by Dr. Derek Tidman – a physicist who specialized in electrothermal and electromagnetic acceleration – in the 1990s. Known as the Slingatron, this version of the space catapult is currently being researched by HyperV Technologies.

However, these ideas were never adopted because vast improvements in electromagnetic induction technology were needed to achieve the speed necessary to put heavy payloads into space. But thanks to advancements in high-speed maglev trains, recent attempts to create Hyperloop pods and tracks, and the growth of the commercial aerospace market, the time may be ripe to revisit this concept.

Such is the hope of Jonathan Yaney, an aerospace enthusiast with a long history of co-founding startups. As he describes himself, Yaney is a “serial entrepreneur” who has spent the past 15 years founding companies in the fields of consulting, IT, construction, and aerospace. Now, he has established SpinLaunch for the sake of launching satellites into space.

SpinLaunch’s company logo. Credit: SpinLaunch

And while Yaney has been known for being rather recluse, TechCrunch recently secured an exclusive interview and gained access to the company hangar. According to multiple sources they cite, Yaney and the company he founded are launching a crowdfunding campaign to raise the $30 million in Series A funding to develop the catapult technology. In the course of the interview, Yaney expressed his vision for space exploration as follows:

“Since the dawn of space exploration, rockets have been the only way to access space. Yet in 70 years, the technology has only made small incremental advances. To truly commercialize and industrialize space, we need 10x tech improvement.”

According to a source cited by TechCrunch, SpinLaunch’s design would involve a centrifuge that accelerates payloads to speeds of up to 4,828 km/h (3,000 mph). Additionally, the cargo could be equipped with supplemental rockets to escape Earth’s atmosphere. By replacing rocket boosters with a kinetic launch system, SpinLaunch’s concept would rely on principles similar to those explored by NASA.

But as he went on to explain, the method his company is exploring is different. “SpinLaunch employs a rotational acceleration method, harnessing angular momentum to gradually accelerate the vehicle to hypersonic speeds,” he said. “This approach employs a dramatically lower cost architecture with much lower power.” Utilizing this technology, Yaney estimates that the costs of individual launches could be reduced to $500,000 – essentially, by a factor of 10 to 200.

A lunar base, as imagined by NASA in the 1970s. Credit: NASA

According to Bloomberg Financial, not much more is known about the company or its founder beyond a brief description. However, according to SEC documents cited by TechCrunch, Yaney managed to raise $1 million in equity in 2014 and $2.9 million in 2015. The same documents indicate that he was $2.2 million in debt by mid-2017 and another $2 million in debt by late 2017.

Luckily, the Hawaii state senate introduced a bill last month that proposed issuing $25 million in bonds to assist SpinLaunch with constructing its space catapult. Hawaii also hopes to gain construction contracts for the launch system as part of its commitment to making space accessible. As it states in the bill:

“[T]he department of budget and finance, with the approval of the governor, is authorized to issue special purpose revenue bonds in a total amount not to exceed $25,000,000, in one or more series, for the purpose of assisting SpinLaunch Inc., a Delaware corporation, in financing the costs relating to the planning, design, construction, equipping, acquisition of land, including easements or other interests therein, and other tangible assets for an electrically powered, kinetic launch system to transport small satellites into low Earth orbit.”

In the meantime, Yaney is looking to the public and several big venture capital firms to raise the revenue he needs to make his vision a reality. Of course, beyond the issue of financing, several technical barriers still need to be addressed before a space catapult could be realized. The most obvious of these is how to overcome the air resistance produced by Earth’s dense atmosphere.

However, Yaney was optimistic in his interview with TechCrunch, claiming that his company is investigating these and other challenges:

“During the last three years, the core technology has been developed, prototyped, tested and most of the tech risk retired. The remaining challenges are in the construction and associated areas that all very large hardware development and construction projects face.”

There’s no indication of when such a system might be complete, but that’s to be expected at this point. However, with the support of the Hawaiian government and some additional capital, his company is likely to secure its Series A funding and begin moving to the next phase of development. Much like the Hyperloop, this concept may prove to be one of those ideas that keep advancing because of the people who are willing to make it happen!

And be sure to check out this video about SpinLaunch’s crowdfunding campaign, courtesy of Scott Manley:

Further Reading: TechCrunch

SpaceX Launches the First of Thousands of Space Internet Satellites, but Didn’t Quite Catch the Fairing

SpaceX Falcon 9 booster stationed at Launch Complex 4 East (SLC-4E) at the Vandenburg Air Force Base. Credit: SpaceX

After multiple delays, SpaceX’s PAZ mission launched from from Space Launch Complex 4 East (SLC-4E) at Vandenburg Air Force Base on the morning of Thursday, February 22nd. Shortly after it reached orbit, the rocket deployed its payload (the PAZ Earth Observing satellite) as well as and two Starlink demonstrations satellites that will test SpaceX’s ability to provide broadband internet service from orbit.

In addition, this launch was the first time that SpaceX would be attempting to “catch” the payload fairings from a Falcon 9 rocket using a retrieval ship. As part of their plan to make their rockets fully reusable, the rocket’s fairings were equipped with deployable chutes that would control their descent to the Pacific Ocean. Once there, the newly-commissioned “Mr. Steven” retrieval ship would be waiting to catch them in its net.

As noted, the primary mission for this launch was the deployment of the the PAZ satellite to low-Earth orbit. This  synthetic-aperture radar satellite was commisioned by Hisdesat, a Spanish commercial satellite company, for governmental and commercial use. Its purpose s to generate high-resolution images of the Earth’s surface, regardless of whether there are clouds covering the ground.

https://www.instagram.com/p/BfgHKDNAplx/

The secondary payload consisted of two experimental satellites  – Microsat-2a and 2b – which are the first phase in SpaceX’s plan to deliver broadband internet service to the entire world. The plan calls for the deployment of more satellites in phases, reaching a total of 4,000 by 2024. However, it was the attempted retrieval of the rocket’s payload fairings that was of particular interest during the launch.

To be fair, this would not be the first time that SpaceX’s attempted to retrieve payload fairings. In March of 2017, SpaceX successfully recovered the fairings for one of their Falcon 9s, which allowed them to recoup an estimated $6 million dollars from that launch. At present, SpaceX indicates that the cost of an individual Falcon 9 launch is estimated to be around $62 million.

If the payload fairings could be recovered regularly, that means that the company could stand to recoup an additional 10% from every individual Falcon 9 launch. These additional savings would not only make the company more competitive, but could allow for additional mission profiles that are currently considered too expensive.

On Thursday Morning, SpaceX founder Elon Musk posted a picture of Mr. Steven taking to sea on Instagram with the following statement:

“Going to try to catch the giant fairing (nosecone) of Falcon 9 as it falls back from space at about eight times the speed of sound. It has onboard thrusters and a guidance system to bring it through the atmosphere intact, then releases a parafoil and our ship with basically a giant catcher’s mitt welded on tries to catch it.”

The launch, which was covered via webcast, went as planned. After taking off amid clear skies, the Falcon 9 reached orbit and deployed the PAZ satellite without incident, and the two Starlink satellites were deployed shortly thereafter. However, the webcast ended without providing any information about the status of the retrieval of the payload fairings.

At 7:14 am, Musk tweeted an update about the attempted retrieval, indicating that the fairings had landed in the ocean a few hundred meters from where Mr. Steven was waiting to catch them. While unsuccessful, Musk was optimistic about future attempts to retrieve payload fairings, saying:

“Missed by a few hundred meters, but fairing landed intact in water. Should be able catch it with slightly bigger chutes to slow down descent.”

As always, Musks seems undeterred by a setback and the company is moving ahead with its plans for expanded reusability. If successful, future attempts at retrieval are likely to involve the second stages of the Falcon 9 and Falcon Heavy rockets. Given all the possibilities that this will allow for, there are many who want to see Musk’s latest venture to succeed.

In the meantime, check out this webcast of the launch:

Further Reading: ArsTechnica

Good News For The Search For Life, The Trappist System Might Be Rich In Water

This artist’s impression shows several of the planets orbiting the ultra-cool red dwarf star TRAPPIST-1. New observations and analysis have yielded good estimates of the densities of all seven of the Earth-sized planets and suggest that they are rich in volatile materials, probably water. Image Credit: ESO

When we finally find life somewhere out there beyond Earth, it’ll be at the end of a long search. Life probably won’t announce its presence to us, we’ll have to follow a long chain of clues to find it. Like scientists keep telling us, at the start of that chain of clues is water.

The discovery of the TRAPPIST-1 system last year generated a lot of excitement. 7 planets orbiting the star TRAPPIST-1, only 40 light years from Earth. At the time, astronomers thought at least some of them were Earth-like. But now a new study shows that some of the planets could hold more water than Earth. About 250 times more.

Continue reading “Good News For The Search For Life, The Trappist System Might Be Rich In Water”