Black Hole Imaged For First Time By Event Horizon Telescope

Illustration of the supermassive black hole at the center of the Milky Way. Credit: NRAO/AUI/NSF
Illustration of the supermassive black hole at the center of the Milky Way. It's huge, with over 4 times the mass of the Sun. But ultramassive black holes are even more massive and can contain billions of solar masses. Image Credit: Credit: NRAO/AUI/NSF

For decades, scientists have held that Supermassive Black Holes (SMBHs) reside at the center of larger galaxies. These reality-bending points in space exert an extremely powerful influence on all things that surround them, consuming matter and spitting out a tremendous amount of energy. But given their nature, all attempts to study them have been confined to indirect methods.

All of that changed beginning on Wednesday, April 12th, 2017, when an international team of astronomers obtained the first-ever image of a Sagittarius A*. Using a series of telescopes from around the globe – collectively known as the Event Horizon Telescope (EHT) – they were able to visualize the  mysterious region around this giant black hole from which matter and energy cannot escape – i.e. the event horizon.

Not only is this the first time that this mysterious region around a black hole has been imaged, it is also the most extreme test of Einstein’s Theory of General Relativity ever attempted. It also represents the culmination of the EHT project, which was established specifically for the purpose of studying black holes directly and improving our understanding of them.

Simulated view of a black hole. Credit: Bronzwaer/Davelaar/Moscibrodzka/Falcke/Radboud University

Since it began capturing data in 2006, the EHT has been dedicated to the study of Sagittarius A* since it is the nearest SMBH in the known Universe – located about 25,000 light years from Earth. Specifically, scientists hoped to determine if black holes are surrounded by a circular region from which matter and energy cannot escape (which is predicted by General Relativity), and how they accrete matter onto themselves.

Rather than constituting a single facility, the EHT relies on a worldwide network of radio astronomy facilities based on four continents, all of which are dedicated to studying one of the most powerful and mysterious forces in the Universe. This process, whereby widely-space radio dishes from across the globe are connected into an Earth-sized virtual telescope, is known as Very Long Baseline Interferometry (VLBI).

As Michael Bremer – an astronomer at the International Research Institute for Radio Astronomy (IRAM) and a project manager for the Event Horizon Telescope – said in an interview with AFP:

“Instead of building a telescope so big that it would probably collapse under its own weight, we combined eight observatories like the pieces of a giant mirror. This gave us a virtual telescope as big as Earth—about 10,000 kilometers (6,200 miles) is diameter.”

Sagittarius A is the super-massive black hole at the center of our Milky Way Galaxy. It is shown in x-ray (blue) and infrared (red) in this combined image from the Chandra Observatory and the Hubble Space Telescope. Image: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI
Combined image of Sagittarius A shown in x-ray (blue) and infrared (red), provided by the Chandra Observatory and the Hubble Space Telescope. Credit: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI

All told, the network includes instruments like the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, the Arizona Radio Observatory Submillimeter Telescope, the IRAM 30-meter Telescope in Spain, the Large Millimeter Telescope Alfonso Serrano in Mexico, the South Pole Telescope in Antarctica, and the James Clerk Maxwell Telescope and Submillimeter Array at Mauna Kea, Hawaii.

With these arrays, the EHT radio-dish network is the only one powerful enough to detect the light released when an object would disappear into Sagittarius A*. And from six nights – from Wednesday, April 5th, to Tuesday, April 11th, – all of its arrays were trained on the center of our Milky Way to do just that. By the end of the run, the international team announced that they had snapped the first-ever picture of an event horizon.

In the end, some 500 terabytes of data were collected. This data is now being transferred to the MIT Haystack Observatory in Massachusetts, where it will be processed by supercomputers and turned into an image. “For the first time in our history, we have the technological capacity to observe black holes in detail,” said Bremer. “The images will emerge as we combine all the data. But we’re going to have to wait several months for the result.”

Part of the reason for the wait is the fact that the recorded data obtained by the South Pole Telescope can only be collected when spring starts in Antarctica – which won’t happen until October 2017 at the earliest. As such, it won’t be until 2018 before the public gets to feast its eyes on the shadow region that surrounds Sagittarius A*, and it is not expected that the first image will be entirely clear.

As Heino Falcke – an astronomers from Radbound University who now chairs the Scientific Council of EHT (and was the one who proposed this experiment twenty years ago) – explained in a EHT press release prior to the observation being made:

“It is the challenge of doing something, that has never been attempted before. It is the start of an adventurous journey towards a black hole… However, I think we need more observation campaigns and eventually more telescopes in the network to make a really good image.”

Despite the wait, and the fact that repeated attempts will be needed before we can get our first clear look at a black hole, there is still plenty of reason to celebrate in the meantime. Not only was this a first that was a long time in he making, but it also represents a major leap towards understanding one of the most powerful and mysterious forces of nature.

Given time, the study of black holes may allow for us to finally resolve how gravity and the other fundamental forces of the Universe interact. At long last, we will be able to comprehend all of existence as a single, unified equation!

Further Reading: Event Horizon Telescope, NRAO

Researchers Image Dark Matter Bridge Between Galaxies

This false color, composite image shows two galaxies, white, connected by a bridge of dark matter, red. The two galaxies are about 40 light years apart. Image: S. Epps & M. Hudson / University of Waterloo
This false color, composite image shows two galaxies, white, connected by a bridge of dark matter, red. The two galaxies are about 40 light years apart. Image: S. Epps & M. Hudson / University of Waterloo

Dark matter is mysterious stuff, because we can’t really “see” it. But that hasn’t stopped scientists from researching it, and from theorizing about it. One theory says that there should be filament structures of dark matter connecting galaxies. Scientists from the University of Waterloo have now imaged one of those dark matter filaments for the first time.

The two scientists, Seth D. Epps and Michael J. Hudson, present their results in a paper at the Monthly Notices of the Royal Astronomy Society.

Theory predicts that filaments of dark matter connect galaxies together, by reaching from the dark matter halo of one galaxy to the same halo in another galaxy. Other researchers have found dark matter filaments connecting entire galaxy clusters, but this is the first time that filaments have been imaged between individual galaxies.

“This image moves us beyond predictions to something we can see and measure.” – Mike Hudson, University of Waterloo

“For decades, researchers have been predicting the existence of dark-matter filaments between galaxies that act like a web-like superstructure connecting galaxies together,” said Mike Hudson, a professor of astronomy at the University of Waterloo. “This image moves us beyond predictions to something we can see and measure.”

Dark matter makes up about 25% of the Universe. But it doesn’t shine, reflect, or interact with light in any way, so it’s difficult to study. The only way we can really study it is by observing gravity. In this study, the pair of astronomers used the weak gravitational lensing technique.

Weak gravitational lensing relies on the effect that mass has on light. Enough concentrated mass in the foreground—dark matter in this case—will warp light from distant sources in the background.

When dealing with something as large as a super-massive Black Hole, gravitational lensing is quite pronounced. But galaxy-to-galaxy filaments of dark matter are much less dense than a black hole, so their individual effect is minimal. What the astronomers needed was the combined data from multiple galaxy pairs in order to detect the weak gravitational lensing.

Key to this study is the Canada-France-Hawaii Telescope. It performed a multi-year sky survey that laid the groundwork for this study. The researchers combined lensing images of over 23,000 pairs of galaxies 4.5 billion light years away. The resulting composite image revealed the filament bridge between the two galaxies.

“By using this technique, we’re not only able to see that these dark matter filaments in the universe exist, we’re able to see the extent to which these filaments connect galaxies together.” – Seth D. Epps, University of Waterloo

We still don’t know what dark matter is, but the fact that scientists were able to predict these filaments, and then actually find them, shows that we’re making progress understanding it.

We’ve known about the large scale structure of the Universe for some time, and we know that dark matter is a big part of it. Galaxies tend to cluster together, under the influence of dark matter’s gravitational pull. Finding a dark matter bridge between galaxies is an intriguing discovery. It at least takes a little of the mystery out of dark matter.

NASA Bombshell: Key Ingredient For Life Discovered On Enceladus

Scientists recently determined that a certain strain of Earth bacteria could thrive under conditions found on Enceladus. Credit: NASA/JPL/Space Science Institute


NASA has announced the discovery of hydrogen in the plumes on Enceladus. This is huge news, and Cassini scientists have looked forward to this day. What it means is that there is a potential source of energy for microbes in the oceans of Enceladus, and that energy from the Sun is not required to support life.

We’ve known about the plumes on Enceladus for a while now, and Cassini has even flown through those plumes to determine their content. But hydrogen was never discovered until now. What it means is that there is a geochemical source for hydrogen in Enceladus’ ocean, coming from the interaction between warm water and rocks.

“This is the closest we’ve come, so far, to identifying a place with some of the ingredients needed for a habitable environment.” – Thomas Zurbuchen, NASA.

This is a capstone finding, according to NASA. As far as we know, life needs three things to exist: water, energy, and the right chemicals. We know it has the necessary chemicals, we know it has water, and we now know it has a source of energy.

On Earth, hydrothermal vents deep in the ocean floor provide the energy for a web of life reliant on those vents. Bacteria live there, forming the base of a food chain that can include tube worms, shrimp, and other life forms. This discovery points to the possibility that similar communities might exist in the sub-surface ocean of Enceladus.

“This is the closest we’ve come, so far, to identifying a place with some of the ingredients needed for a habitable environment,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate at Headquarters in Washington.

Microbes in Enceladus’ ocean could use the hydrogen in a process called methanogenesis. They obtain energy by combining hydrogen with dissolved carbon dioxide in the water. This process produces a methane by-product. Methanogenesis is a bedrock process at the root of life here on Earth.

“Confirmation that the chemical energy for life exists within the ocean of a small moon of Saturn is an important milestone in our search for habitable worlds beyond Earth,” said Linda Spilker, Cassini project scientist at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California.

Hubble Confirms Plumes On Europa

NASA has also announced that the Hubble Space Telescope has confirmed the presence of plumes on another of our Solar System’s icy moons, Europa.

These plumes were first seen by the Hubble in 2014, but were never seen again. Since repeatability is key in science, those findings were put on the back burner. But in 2016, NASA announced today, Hubble spotted them again, in the same place. This is the same spot that the Galileo probe noticed a thermal hot spot.

We don’t know if Europa has hydrogen in its oceans, but it’s easy to see where this is going. NASA’s excitement is palpable.

What’s Next?

NASA’s Europa Clipper mission will visit Europa and determine the thickness of its ice layer, as well as the depth and salinity of its ocean. It will also analyze the atmosphere and the composition of the plumes. Europa Clipper will fill in a lot of gaps in our understanding.

Europa Clipper will be launched around 2022, but a mission to Enceladus will have to wait a little longer. One mission under consideration in NASA’s Discovery program is ELF, Enceladus Life Finder. ELF would fly through Enceladus’ plumes 8 or 10 times, taking more detailed samples of their content.

This enhanced-color Cassini view of southern latitudes on Enceladus features the bluish “tiger stripe” fractures that rip across the south polar region. These tiger stripes form over hydrothermal vents in the ocean, the source of Enceladus’ plumes. Credits: NASA/JPL-Caltech/Space Science Institute

The discovery of hydrogen in the plumes of Enceladus is huge news any way you look at it. But that discovery begs the question: Are we doing it all wrong? Are we looking for life in the wrong places?

The search for life elsewhere in the Universe, so far, has mostly revolved around exoplanets. And then refining that search to identify exoplanets that are in the habitable zones of their stars. We’re searching for other Earths, basically.

But maybe we should be changing our focus. Maybe it’s the ice worlds, including icy exomoons, that are the most likely targets for our search. This new evidence from NASA’s Cassini mission, and from the Hubble Space Telescope, suggests that in our Solar System at least, they are the best place to search.

One Final Ingredient Needed?

There’s a fourth ingredient needed for life. Once there is water, energy, and the necessary chemicals, life needs time to get going. How much time, we’re not exactly certain. But this is where Enceladus and Europa are different.

Europa is about 4 billion years old, or so we think. That’s only half a billion years younger than Earth, and we think life started on Earth about 3.5 billion years ago. This hints that, if conditions on Europa are favorable, life has had a long time to get going. Of course, that doesn’t mean it has.

On the other hand, Enceladus is probably much younger. A study of the orbits of Saturn’s moons suggests that Enceladus may only be 100 million years old. If that’s true, it’s not very much time for life to get going.

The hydrogen discovery is huge news. There are still a lot of questions, of course, and lots to be debated. But confirming a source of energy on Enceladus builds the case for the same type of hydrothermal vent life that we see on Earth.

Now all we need is a mission to Enceladus.

A Bored New Horizons Spacecraft Takes Part Time Job To Fill The Time

Artist's impression of New Horizons' close encounter with the Pluto–Charon system. Credit: NASA/JHU APL/SwRI/Steve Gribben

The New Horizons probe made history in July of 2015, being the first mission to ever conduct a close flyby of Pluto. In so doing, the mission revealed some never-before-seen things about this distant world. This included information about its many surface features, its atmosphere, magnetic environment, and its system of moons. It also provided images that allowed for the first detailed maps of the planet.

Having completed its rendezvous with Pluto, the probe has since been making its way towards its first encounter with a Kuiper Belt Object (KBO) – known as 2014 MU69. And in the meantime, it has been given a special task to keep it busy. Using archival data from the probe’s Long Range Reconnaissance Imager (LORRI), a team of scientists is taking advantage of New Horizon‘s position to conduct measurements of the Cosmic Optical Background (COB).

Continue reading “A Bored New Horizons Spacecraft Takes Part Time Job To Fill The Time”

Hubble Takes Advantage Of Opposition To Snap Jupiter

Image of Jupiter, taken by the Hubble Space Telescope when the planet was at a distance of 670 million kilometers from Earth. Credit: NASA/ESA/A. Simon (GSFC)

On April, 7th, 2017, Jupiter will come into opposition with Earth. This means that Earth and Jupiter will be at points in their orbit where the Sun, Earth and Jupiter will all line up. Not only will this mean that Jupiter will be making its closest approach to Earth – reaching a distance of about 670 million km (416 million mi) – but the hemisphere that faces towards us will be fully illuminated by the Sun.

Because of its proximity and its position, Jupiter will be brighter in the night sky than at any other time during the year. Little wonder then why NASA and the ESA are taking advantage of this favorable alignment to capture images of the planet with the Hubble Space Telescope. Already, on April 3rd, Hubble took the wonderful color image (shown above) of Jupiter, which has now been released.

Using its Wide Field Camera 3 (WFC3), Hubble was able to observe Jupiter in the visible, ultraviolet and infrared spectrum. From these observations, members of the Hubble science team produced a final composite image that allowed features in its atmosphere – some as small as 130 km across – to be discernible. These included Jupiter’s colorful bands, as well as its massive anticyclonic storms.

Image of Jupiter’s Great Red Spot, taken by the Voyager 1 space probe during its flyby on March 5, 1979, and re-processed on November 6, 1998. Credit: NASA/JPL

The largest of these – the Great Red Spot – is believed to have been raging on the surface ever since it was first observed in the 1600s. In addition, it is estimated that the wind speeds can reach up to 120 m/s (430 km/h; 267 mph) at its outer edges. And given its dimensions – between 24-40,000 km from west to east and 12-14,000 km from south to north – it is large enough to swallow the Earth whole.

Astronomers have noticed how the storm appears to have been shrinking and expanding throughout its recorded history. And as the latest images taken by Hubble (and by ground-based telescopes) have confirmed, the storm continues to shrink. Back in 2012, it was even suggested that the Giant Red Spot might eventually disappear, and this latest evidence seems to confirm that.

No one is entirely sure why the storm is slowly collapsing; but thanks to images like these, researchers are gaining a better understanding of what mechanisms power Jupiter’s atmosphere. Aside from the Great Red Spot, the similar but smaller anticyclonic storm in the farther southern latitudes – aka. Oval BA or “Red Spot Junior” – was also captured in this latest image.

Located in the region known as the South Temperate Belt, this storm was first noticed in 2000 after three small white storms collided. Since then, the storm has increased in size, intensity and changed color (becoming red like its “big brother”). It is currently estimated that wind speeds have reached 618 km/h (384 mph), and that it has become as large as Earth itself (over 12,000 km, 7450 mi in diameter).

Image of Jupiter, made during the Outer Planet Atmospheres Legacy (OPAL) programme on January 19th, 2015. Credit: NASA/ESA/A. Simon (GSFC)/M. Wong (UC Berkeley)/G. Orton (JPL-Caltech)

And then there are the color bands that make up Jupiter’s surface and give it its distinct appearance. These bands are essentially different types of clouds that run parallel to the equator and differ in color based on their chemical compositions. Whereas the whiter bands have higher concentrations of ammonia crystals, the darker (red, orange and yellow) have lower concentrations.

Similarly, these color patterns are also affected by the upwelling of compounds that change color when they are exposed to ultraviolet light from the Sun. Known as chromophores, these colorful compounds are likely made up of sulfur, phosphorous and hydrocarbons. The planet’s intense wind speeds of up to 650 km/h (~400 mph) also ensure that the bands are kept separate.

These and other observations of Jupiter are part of the Outer Planet Atmospheres Legacy (OPAL) progamme. Dedicated to ensuring that Hubble gets as much information as it can before it is retired – sometime in the 2030s or 2040s – this program ensures that time is dedicated each year to observing Jupiter and the other gas giants. From the images obtained, OPAL hopes to create maps that planetary scientists can study long after Hubble is decommissioned.

The project will ultimately observe all of the giant planets in the Solar System in a wide range of filters. The research that this enables will not only help scientists to study the atmospheres of the giant planets, but also to gain a better understanding of Earth’s atmosphere and those of extrasolar planets. The programme began in 2014 with the study of Uranus and has been studying Jupiter and Neptune since 2015. In 2018, it will begin viewing Saturn.

Further Reading: Hubble Space Telescope

Finally! A Low Mass Super-Earth With Some Funky Atmosphere

Artist's impression of the exoplanet GJ 1132 b, which orbits the red dwarf star GJ 1132. Astronomers have managed to detect the atmosphere of this Earth-like planet. Credit: MPIA

In 2015, astronomers discovered an intriguing extrasolar planet located in a star system some 39 light years from Earth. Despite orbiting very close to its parent star, this “Venus-like” planet – known as GJ 1138b – appeared to still be cool enough to have an atmosphere. In short order, a debate ensued as to what kind of atmosphere it might have, whether it was a “dry Venus” or a “wet Venus”.

And now, thanks to the efforts of an international team of researchers, the existence of an atmosphere has been confirmed around GJ 1138b. In addition to settling the debate about the nature of this planet, it also marks the first time that an atmosphere has been detected around a low-mass Super-Earth. On top of that, GJ 1138b is now the farthest Earth-like planet that is known to have an atmosphere.

Led by John Southworth (of Keele University) and Luigi Mancini (of the University of Rome Tor Vergata), the research team included members from the Max Planck Institute for Astronomy (MPIA), the National Institute for Astrophysics (INAF), the University of Cambridge and Stockholm University. Their study, titled “Detection of the atmosphere of the 1.6 Earth mass exoplanet GJ 1132b“, recently appeared in The Astrophysical Journal.

Artist’s impression of the “Venus-like” exoplanet GJ 1132b. Credit: cfa.harvard.edu

Using the GROND imager on the La Silla Observatory’s 2.2m ESO/MPG telescope, the team monitored GJ 1132b in different wavelengths as it transited in front of its parent star. Given the planet’s orbital period (1.6 days), these transits happen quite often, which presented plenty of opportunities to view it pass in front of its star. In so doing, they monitored the star for slight decreases in its brightness.

As Dr. Southworth explained to Universe via email, these observations confirmed the existence of an atmosphere:

“What we did was to measure the amount of dimming at 7 different wavelengths in optical and near-infrared light. At one of these wavelengths (IR) the planet seemed to be slightly bigger. This indicated that the planet has a large atmosphere around it which allows most of the starlight to pass through, but is opaque at one wavelength.”

The team members from the University of Cambridge and the MPIA then conducted simulations to see what this atmosphere’s composition could be. Ultimately, they concluded that it most likely has a thick atmosphere that is rich in water and/or methane – which contradicted recent theories that the planet had a thin and tenuous atmosphere (i.e. a “dry Venus”).

The ESO’s Paranal Observatory, located in the Atacama Desert of Chile. Credit: ESO

It was also the first time that an atmosphere has been confirmed around a planet that is not significantly greater in size and mass to Earth. In the past, astronomers have detected atmospheres around many other exoplanets. But in these cases, the planets were either gas giants or planets that were many times Earth’s size and mass (aka. “Super-Earths”). GJ 1132b, however, is 1.6 times as massive as Earth, and measures 1.4 Earth radii.

In addition, these findings are a significant step in the search for life beyond our Solar System. At present, astronomers seek to determine the chemical composition of a planet’s atmosphere to determine if it could be habitable. Where the right combination of chemical imbalances exist, the presence of living organisms is seen as a possible cause.

By being able to determine that a planet at lower end of the super-Earth scale has an atmosphere, we are one step closer to being able to determine exoplanet habitability. The detection of an atmosphere-bearing planet around an M-type (red dwarf) star is also good news in and of itself. Low-mass red dwarf stars are the most common star in the galaxy, and recent findings have indicated that they might be our best shot for finding habitable worlds.

Besides detecting several terrestrial planets around red dwarf stars in recent years – including seven around a single star (TRAPPIST-1) – there is also research that suggests that these stars are capable of hosting large numbers of planets. At the same time, there have been concerns about whether red dwarfs are too variable and unstable to support habitable worlds.

Artist’s impression of Kepler-1649b, the “Venus-like” world orbiting an M-class star 219 light-years from Earth. Credit: Danielle Futselaar

As Southworth explained, spotting an atmosphere around a planet that closely orbits a red dwarf could help bolster the case for red dwarf habitability:

“One of the big issues has been that very-low-mass stars typically have strong magnetic fields and thus throw out a lot of X-ray and ultraviolet light. These high-energy photons tend to destroy molecules in atmospheres, and might also evaporate them completely. The fact that we have detected an atmosphere around GJ 1132b means that this kind of planet is indeed capable of retaining an atmosphere for billions of years, even whilst being bombarded by the high-energy photons from their host stars.

In the future, GJ 1132b is expected to be a high-priority target for study with the Hubble Space Telescope, the Very Large Telescope (VLT) at the Paranal Observatory in Chile, and next-generation telescopes like the James Webb Space Telescope (scheduled for launch in 2018). Already, observations are being made, and the results are being eagerly anticipated.

I’m sure I’m not the only one who would like to hear what astronomers discover as they set their sights on this nearby star system and it’s Venus-like world! In the meantime, be sure to check out this video about GJ 1132b, courtesy of MIT news:

Further Reading: Max Planck Institute for Astronomy

What Are You Doing For Yuri’s Night?

What are you doing for Yuri's Night? Credit: yurisnight.net

On April 12th, 1961, history was made when the first human being – Russian cosmonaut Yuri Gagarin – went into space. Similarly, on April 12th, 1981, the inaugural launch of the Space Shuttle took place. In recognition of these accomplishments, people from all around the world have been celebrating “Yuri’s Night” – a global festival honoring humanity’s past, present, and future in space – for over a decade and a half.

This year will mark the 56th anniversary of Yuri Gagarin’s historic flight and of human spaceflight in general. As with every Yuri’s Night that has happened since 2001, this year’s festivities will feature educational events, presentations and games (along with general revelry) at venues located all across the world. Do you have any plans for Yuri’s Night 2017? And if not, perhaps you would like to know what’s happening?

Plenty of events have been planned for this year that are sure to appeal to science enthusiasts and those with a passion for space exploration. One of the highlights for 2017 is a chance to enjoy a virtual reality space vacation, which comes courtesy of the fun folks at Guerilla Science – a London and New York-based group that specializing in creating educational events and installations for festivals, museums, galleries, etc.

Screen shot from Guerilla Science’s “space vacation” VR app. Click to see the animation. Credit: guerillascience.org

For the sake of this year’s Yuri’s night, they are offering people a chance to experience a VR application that allows people to experience a trip to Mars’ Mariner Valley, or to take a self-guided tour on the Moon using the clicker to navigate. To learn more about this application (which is also available for beta testing), be sure to check out Guerilla Science’s “Intergalactic Travel Bureau“. As they describe the bureau’s purpose on their website:

“The Intergalactic Travel Bureau is a live, interactive experience that explores the incredible possibilities of space tourism through personalized space vacation planning experiences. It’s a little bit like Virgin Galactic and SpaceX meet the Jetsons and Mad Men. Bringing together space scientists, astronomers, science educators, actors and the general public, the Bureau has popped up all over the UK and the US since 2011.”

In addition, a virtual event is being hosted by Spacelog, a volunteer organization dedicated to sharing mission transcripts and photographs that celebrate the history of space exploration. In commemoration of Gagarin’s historic flight, they will be publishing the transcripts of the Vostok 1 mission on their Facebook page. Like the mission itself, the event will start at 4:10 am UTC and conclude at 07:55 UTC on Wednesday, April 12th.

For those interested, the Yuri’s Night Global Team (led by Veronica Ann Zabala-Aliberto) is still seeking Regional Team Leaders to help provide support, coordination, and resources for the hundreds of Yuri’s Night parties that have been planned. In addition to organizers and outreach personnel, the Global Team is also seeking translators who are fluent in Arabic and Turkish. To check out what positions are available, go to their website.

Statue of Yuri Gagarin, the first man in space, at the Baikonur Cosmodrome. Credit: AFP

So far, a total of 127 events have been registered in 38 countries, and on 7 continents. That’s right, an event has even been planned for Antarctica, specifically in Loung B3 at the South Pole Station (located at the geographic South Pole). So if you’re in the area – for whatever reason, possibly doing field studies on Emperor Penguins or something! – be sure to swing by!

To find an event in your neck of the woods, consult the full list here. And if you are interested in hosting one, you can register at the Yuri’s Night website. The website is also looking for donations to keep their volunteer and community efforts going.

Wherever you happen to land on April 12th, be sure to raise a glass to all those who have risked life and limb over the past fifty-plus years to establish humanity as a space-faring species!

Further Reading: Yuri’s Night

A Star Going Supernova In Slow Motion Discovered

Artistic impression of a star going supernova, casting its chemically enriched contents into the universe. Credit: NASA/Swift/Skyworks Digital/Dana Berry

A supernova is a rare and wondrous event. Since these intense explosions only take place when a massive star reaches the final stage of its evolutionary lifespan – when it has exhausted all of its fuel and undergoes core collapse – or when a white dwarf in a binary star system consumes its companion, being able to witness one is quite the privilege.

But recently, an international team of astronomers witnessed something that may be even rarer – a supernova event that appeared to be happening in slow-motion. Whereas supernova of its kind (SN Type Ibn) are typically characterized by a rapid rise to peak brightness and a fast decline, this particular supernova took an unprecedentedly long time to reach maximum brightness, and then slowly faded away.

For the sake of their study, the research team – which included members from the UK, Poland, Sweden, Northern Ireland, the Netherlands and Germany – studied a Type Ibn event known as OGLE-2014-SN-13. These types of  explosions are thought to be the result of massive stars (which have lost their outer envelop of hydrogen) undergoing core-collapse, and whose ejecta interacts with a cloud of helium-rich circumstellar material (CSM).

OGLE-2014-SN-131 (blue circle) in a VLT acquisition (left), and an NTT image showing no visible host at the SN location (right). Credit: Karamehmetoglu et al.

The study was led by Emir Karamehmetoglu of The Oskar Klein Center at Stockholm University. As he told Universe Today via email:

“Type Ibn supernovae are thought to be the explosions of very massive stars, surrounded by a dense region of extremely helium-rich material. We infer the existence of this Helium via the presence of narrow helium emission lines in their optical spectra. We also believe that there is very little, if any Hydrogen in the immediate surrounding of the star, because if it was there, it would show up much stronger than the Helium in the spectra. As you can imagine, this sort of configuration is very rare, since hydrogen is the most abundant element in the universe by far.”

As already noted, Type Ibn supernova are characterized by a sudden and dramatic increase in their brightness, then a rapid decline. However, when observing OGLE-2014-SN-131 – which they detected on November 11th, 2014 using the Optical Gravitational Lensing Experiment (OGLE) at the Warsaw University Astronomical Observatory – they witnessed something completely different.

“OGLE-2014-SN-131 was different because it took almost 50 days, as compared to the more typical ~1 week, for it to become bright,” said Karamehmetoglu. “Then it declined relatively slowly as well. The fact that it took several times longer than the typical rise to maximum brightness, which is unlike any other Ibn that has been studied before, makes it a very unique object.”

The Optical Gravitational Lensing Experiment (OGLE), a project being undertaken by the Astronomical Observatory at the University of Warsaw. Credit: astrouw.edu.pl

Thanks to data obtained by the OGLE-IV Transient Detection System, they were able to place OGLE-2014-SN-131 at a distance of about 372 ± 9 megaparsecs (1183.95  to 1242.66 million light years) from Earth. This was then followed-up with photometric observations using the OGLE telescope at the Las Campanas Observatory in Chile and the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) at the La Silla Observatory.

The team also obtained spectroscopic data using the ESO’s New Technology Telescope (NTT) at La Silla and the Very Large Telescope (VLT) at the Paranal Observatory (both located in Chile). In addition to having an unusually long rise-time, the combined data also indicated that the supernova had an unusually broad light curve. To explain all this, the team considered a number of possibilities.

For starters, they considered standard radio-active decay models, which are known to power the lightcurves of most other Type I and Type II supernovae. However, these could not account for what they had observed with OGLE-2014-SN-131. As such, they began considering more exotic scenarios, which included energy being input from a young, rapidly spinning neutron star (aka. a magnetar) nearby.

While this model would explain the behavior of OGLE-2014-SN-131, it was limited in that it is not yet known what circumstances would be needed to invoke a magnetar. As such, Karamehmetoglu and his team also considered the possibility that the explosions might be powered by shocks created by the interaction of ejected material from the supernova with the helium-rich CSM.

Supernova 2008D in galaxy NGC 2770 (Type Ib), shown in X-ray (left) and visible light (right). Credit: NASA/Swift Science Team/Stefan Immler

Thanks to the spectral data obtained by the NTT and VLT, they knew that such material existed around the star, and the model was therefore able to reproduce the observed behavior. As Karamehmetoglu explained, it is for this reason that they favor this model over the others:

“In this scenario, the reason OGLE-2014-SN-131 is different from other Type Ibn SNe is due to the unusually massive nature of its progenitor star. A very massive star, between 40-60 times the mass of our Sun, located in a low-metallicity galaxy, probably gave rise to this SN by expelling a great amount of helium-rich matter, then eventually exploding as a SN.”

In addition to being a unique event, this study also some drastic implications for astronomy and the study of supernovae. Thanks to the detection of OGLE-2014-SN-131, any future models that attempt to explain how Type Ibn supernovae form now have a stringent constraint. At the same time, astronomers now have an existing model to consider if and when they witness other supernovae which exhibit particularly long rise times.

Looking ahead, this is precisely what Karamehmetoglu and his colleagues hope to do. “In our next effort, we will study other, less-rare, types of SN that have long rise times, and therefore are probably created by very massive stars,” he said. “We will get to take advantage of the comparison frame-work we developed when studying OGLE-2014-SN-131.”

Once more, the Universe has taught us that two of the more important aspects of scientific research are adaptability and a commitment to continuous discovery. When things don’t conform to existing models, develop new ones and test them out!

Further Reading: arXiv

World’s Largest Rocket Will Be Recoverable & Reusable

The Falcon Heavy, once operational, will be the most powerful rocket in the world. Credit: SpaceX

When Elon Musk launched SpaceX in 2002, he did so with the intention of making reusability a central feature of his company. Designed to lower the costs associated with launches, being able to reuse boosters was also a means of making space more accessible. “If one can figure out how to effectively reuse rockets just like airplanes,” he said, “the cost of access to space will be reduced by as much as a factor of a hundred.”

And with last week’s successful launch of the first reusable Falcon 9 (the SES-10 Mission) Musk chose to unveil more details about his company’s next major milestone. According to Musk, the demonstration flight of the Falcon Heavy – which is scheduled to take place this summer – will involve two recovered Falcon 9 cores and the attempted recovery of the rocket’s upper-stage.

In other words, on its maiden flight, two of the three boosters sending the Falcon Heavy into orbit will be reused, and SpaceX may even try to attempt to make the first-ever recovery of a second stage. Such a feat, if successful, will signal that Musk’s dream of total reusability – where the first stage, payload fairings, and second stage of their launch vehicles are all recoverable – has come to fruition.

An artist's illustration of the Falcon Heavy rocket. Image: SpaceX
An artist’s illustration of the Falcon Heavy rocket. Image: SpaceX

According to details shared at the news conference that accompanied the launch of SES-10, Musk indicated that the test flight would make use of boosters that were recovered from two successful Falcon 9 launches, and that all three would be recovered after launch. As he was quoted as saying by Stephen Clark at SpaceFlightNow:

“That will be exciting mission, one way or another. Hopefully in a good direction. The two side boosters will come back and do sort of a synchronized aerial ballet and land. Two of the side boosters will land back at the Cape. That’ll be pretty exciting to see two come in simultaneously, and the center core will land downrange on the drone ship.”

On the following day – Friday, March. 31st, 11:44 am – Musk followed this up with a tweet that indicated that the test flight could also involve something that has never before been attempted. “”Considering trying to bring upper stage back on Falcon Heavy demo flight for full reusability,” he wrote. “Odds of success low, but maybe worth a shot.”

Such a plan is in keeping with what Musk had initially hoped for his company, which was to make all of its rockets entirely reusable. While reusable boosters were not a part of the initial designs for the Falcon Heavy, the numerous successful recoveries (on land and at sea) of the first stage of the Falcon 9 indicated that the Heavy‘s outer cores could be recovered and reused in the same way.

Chart comparing the lift capacity of major launch systems to Low Earth Orbit (LEO). Credit: SpaceX

Musk also reiterated that the demo flight would be taking place this summer, and that it would be carrying something comically-inspired. “Silliest thing we can imagine!” he tweeted, in response to a question of what the cargo would be. “Secret payload of 1st Dragon flight was a giant wheel of cheese. Inspired by a friend & Monty Python.”

For those unfamiliar with what Musk was referring to “The Cheese Shop”, a classic Monty Python sketch. From this, we can safely assume that Musk has something similar in mind for the inaugural Falcon Heavy launch. Perhaps some wine and bread to go with that cheese?

The demonstration flight – which will take place on launch pad 39A at the Kennedy Space Center in Florida – is already expected to be a momentous event. With the ability to lift payloads of over 64 metric tons (64,000 kg or 141,096 lbs) to Low Earth Orbit (LEO), the Falcon Heavy will be the most powerful rocket currently in operation.

In fact, its capacity will be about twice that of the Arianespace Ariane 5 and United Launch Alliance’s Delta IV Heavy rockets – which are capable of lifting 21,000 kg (46,000 lb) and 28,790 kg (63,470 lb) to LEO, respectively. However, SpaceX has indicated that the payload performance to geosynchronous transfer orbit (GTO) would be reduced with the addition of reusable technology.

Artist’s concept of the SpaceX Red Dragon spacecraft launching to Mars on SpaceX Falcon Heavy as soon as 2018. Credit: SpaceX

Whereas its original capacity to GTO was said to be 22,200kg (48,940 lb), full reusability on all three booster cores will reduce this to 7,000 kg (15,000 lb), while having two reusable outside cores will reduce it to approximately 14,000 kg (31,000 lb). But of course, these reductions in payloads have to be considered against significantly reduced launch costs.

For the time being, the plan is to recover all three boosters of the Falcon Heavy. This may change, depending on the success of the maiden flight, to the point where just the outer boosters are deemed reusable and the central core expendable. And depending on the success of the second stage recovery, SpaceX may begin pursuing reusability with the second stages of their Falcon 9 as well.

Musk has also indicated that at present, SpaceX will be primarily focused on the many commercial missions it has planned using the Falcon 9 launch vehicle. But if all goes according to plan, this summer will be the second time in the space of a single year that Musk’s and the aerospace company he started knocked it out of the park and silenced all those who said he was attempting the impossible.

Further Reading: SpaceFlightNow, SpaceX

TRAPPIST-1 Is Showing A Bit Too Much Flare

Artist's impression of a system of exoplanets orbiting a low mass, red dwarf star. Credit: NASA/JPL

It turns out that the TRAPPIST-1 star may be a terrible host for the TRAPPIST planets announced in February.

The TRAPPIST-1 star, a Red Dwarf, and its 7 planets caused a big stir in February when it was discovered that 3 of the rocky planets are in the habitable zone. But now more data is coming which suggests that the TRAPPIST-1 star is much too volatile for life to exist on its planets.

Red Dwarfs are much dimmer than our Sun, but they also last much longer. Their lifetimes are measured in trillions of years, not billions. Their long lives make them intriguing targets in the search for habitable worlds. But some types of Red Dwarf stars can be quite unstable when it comes to their magnetism and their flaring.

Our own Sun produces flares, but we are protected by our magnetosphere, and by the distance from the Sun to Earth. Credit: NASA/ Solar Dynamics Observatory,

A new study analyzed the photometric data on TRAPPIST-1 that was obtained by the K2 mission. The study, which is from the Konkoly Observatory and was led by astronomer Krisztián Vida, suggests that TRAPPIST-1 flares too frequently and too powerfully to allow life to form on its planets.

The study identified 42 strong flaring events in 80 days of observation, of which 5 were multi-peaked. The average time between flares was only 28 hours. These flares are caused by stellar magnetism, which causes the star to suddenly release a lot of energy. This energy is mostly in the X-ray or UV range, though the strongest can be seen in white light.

While it’s true that our Sun can flare, things are much different in the TRAPPIST system. The planets in that system are closer to their star than Earth is to the Sun. The most powerful flare observed in this data correlates to the most powerful flare observed on our Sun: the so-called Carrington Event.The Carrington Event happened in 1859. It was an enormously powerful solar storm, in which a coronal mass ejection struck Earth’s magnetosphere, causing auroras as far south as the Caribbean. It caused chaos in telegraph systems around the world, and some telegraph operators received electric shocks.

Earth survived the Carrington Event, but things would be much different on the TRAPPIST worlds. Those planets are much closer to their Sun, and the authors of this study conclude that storms like the Carrington Event are not isolated incidents on TRAPPIST-1. They occur so frequently that they would destroy any stability in the atmosphere, making it extremely difficult for life to develop. In fact, the study suggests that the TRAPPIST-1 storms could be hundreds or thousands of times more powerful than the storms that hit Earth.

A study from 2016 shows that these flares would cause great disturbances in the chemical composition of the atmosphere of the planets subjected to them. The models in that study suggest that it could take 30,000 years for an atmosphere to recover from one of these powerful flares. But with flares happening every 28 hours on TRAPPIST-1, the habitable planets may be doomed.

The Earth’s magnetic field helps protects us from the Sun’s outbursts, but it’s doubtful that the TRAPPIST planets have the same protection. This study suggests that planets like those in the TRAPPIST system would need magnetospheres of tens to hundreds of Gauss, whereas Earth’s magnetosphere is only about 0.5 Gauss. How could the TRAPPIST planets produce a magnetosphere powerful enough to protect their atmosphere?

It’s not looking good for the TRAPPIST planets. The solar storms that hit these worlds are likely just too powerful. Even without these storms, there are other things that may make these planets uninhabitable. They’re still an intriguing target for further study. The James Webb Space Telescope should be able to characterize the atmosphere, if any, around these planets.

Just don’t be disappointed if the James Webb confirms what this study tells us: the TRAPPIST system is a dead, lifeless, grouping of planets around a star that can’t stop flaring.