A Family Of Stars Torn Apart

The stunning, shaped clouds of gas in the Orion Nebula make it beautiful, but also make it difficult to see inside of. This image of the Orion Nebula was captured by the Hubble Telescope. Image: NASA, ESA, M. Robberto (STScI/ESA) and The Hubble Space Telescope Orion Treasury Project Team
The stunning, shaped clouds of gas in the Orion Nebula make it beautiful, but also make it difficult to see inside of. This image of the Orion Nebula was captured by the Hubble Telescope. Image: NASA, ESA, M. Robberto (STScI/ESA) and The Hubble Space Telescope Orion Treasury Project Team

It sometimes doesn’t take much to tear a family apart. A Christmas dinner gone wrong can do that. But for a family of stars to be torn apart, something really huge has to happen.

The dramatic break-up of a family of stars played itself out in the Orion Nebula, about 600 years ago. The Orion Nebula is one of the most studied objects in our galaxy. It’s an active star forming region, where much of the star birth is concealed behind clouds of dust. Advances in infrared and radio astronomy have allowed us to peer into the Nebula, and to watch a stellar drama unfolding.

This three-frame illustration shows how a grouping of stars can break apart, flinging the members into space. Panel 1: members of a multiple-star system orbiting each other. Panel 2: two of the stars move closer together in their orbits. Panel 3: the closely orbiting stars eventually either merge or form a tight binary. This event releases enough gravitational energy to propel all of the stars in the system outward, as shown in the third panel.
Credits: NASA, ESA, and Z. Levy (STScI)

Over the last few decades, observations showed the two of the stars in our young family travelling off in different directions. In fact, they were travelling in opposite directions, and moving at very high speeds. Much higher than stars normally travel at. What caused it?

Astronomers were able to piece the story together by re-tracing the positions of both stars back 540 years. All those centuries ago, around the same time that it was dawning on humanity that Earth revolved around the Sun instead of the other way around, both of the speeding stars were in the same location. This suggested that the two were part of a star system that had broken up for some reason. But their combined energy didn’t add up.

Now, the Hubble has provided another clue to the whole story, by spotting a third runaway star. They traced the third star’s path back 540 years and found that it originated in the same location as the others. That location? An area near the center of the Orion Nebula called the Kleinmann-Low Nebula.

This composite image of the Kleinmann-Low Nebula, part of the Orion Nebula complex, is composed of several pointings of the NASA/ESA Hubble Space Telescope in optical and near-infrared light. Infrared light allows to peer through the dust of the nebula and to see the stars therein. The revealed stars are shown with a bright red colour in the image. With this image, showing the central region of the Orion Nebula, scientists were looking for rogue planets and brown dwarfs. As side-effect they found a fast-moving runaway star. By ESA/Hubble, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=57169218

The team behind these new results, led by Kevin Luhman of Penn State University, will release their findings in the March 20, 2017 issue of The Astrophysical Journal Letters.

“The new Hubble observations provide very strong evidence that the three stars were ejected from a multiple-star system,” said Luhman. “Astronomers had previously found a few other examples of fast-moving stars that trace back to multiple-star systems, and therefore were likely ejected. But these three stars are the youngest examples of such ejected stars. They’re probably only a few hundred thousand years old. In fact, based on infrared images, the stars are still young enough to have disks of material leftover from their formation.”

Young stars have a disk of gas and dust around them called a protoplanetary disk. Credit: NASA/JPL-Caltech

“The Orion Nebula could be surrounded by additional fledging stars that were ejected from it in the past and are now streaming away into space.” – Lead Researcher Kevin Luhman, Penn State University.

The three stars are travelling about 30 times faster than most of the Nebula’s other stellar inhabitants. Theory has predicted the phenomenon of these breakups in regions where newborn stars are crowded together. These gravitational back-and-forths are inevitable. “But we haven’t observed many examples, especially in very young clusters,” Luhman said. “The Orion Nebula could be surrounded by additional fledging stars that were ejected from it in the past and are now streaming away into space.”

The key to this mystery is the recently discovered third star. But this star, the so-called “source x”, was discovered by accident. Luhman is part of a team using the Hubble to hunt for free-floating planets in the Orion Nebula. A comparison of Hubble infrared images from 2015 with images from 1998 showed that source x had changed its position. This indicated that the star was moving at a speed of about 130,000 miles per hour.

The image by NASA’s Hubble Space Telescope shows a grouping of young stars, called the Trapezium Cluster (center). The box just above the Trapezium Cluster outlines the location of the three stars. A close-up of the stars is top right. The birthplace of the multi-star system is marked “initial position.” Two of the stars — labeled BN, and “I,” for source I — were discovered decades ago. Source I is embedded in thick dust and cannot be seen. The third star, “x,” for source x, was recently discovered to have moved noticeably between 1998 and 2015, as shown in the inset image at bottom right.
Credits: NASA, ESA, K. Luhman (Penn State University), and M. Robberto (STScI)

Luhmann then re-traced source x’s path and it led to the same position as the other 3 runaway stars 540 years ago: the Kleinmann-Low Nebula.

According to Luhmann, the three stars were most likely ejected from their system due to gravitational fluctuations that should be common in a high-population area of newly-born stars. Two of the stars can come very close together, either forming a tight binary system or even merging. That throws the gravitational parameters of the system out of whack, and other stars can be ejected. The ejection of those stars can also cause fingers of matter to flow out of the system.

As we get more powerful telescopes operating in the infrared, we should be able to clarify exactly what happens in areas of intense star formation like the Orion Nebula and its embedded Kleinmann-Low Nebula. The James Webb Space Telescope should advance our understanding greatly. If that’s the case, then not only will the details of star birth and formation become much clearer, but so will the break up of young families of stars.

Get Ready For The >100 Planet Solar System

A new definition of what is a planet would mean there are at least 110 planets in our Solay System. Image Courtesy of Emily Lakdawalla of the Planetary Society, Data from NASA / JPL, JHUAPL/SwRI, SSI, and UCLA / MPS / DLR / IDA, processed by Gordan Ugarkovic, Ted Stryk, Bjorn Jonsson, Roman Tkachenko, and Emily Lakdawalla. https://creativecommons.org/licenses/by-nc-sa/3.0/

Pluto’s status as a non-planet may be coming to an end. Professor Mike Brown of Caltech ended Pluto’s planetary status in 2006. But now, Kirby Runyon, a doctoral student at Johns Hopkins University, thinks it’s time to cancel that demotion and restore it as our Solar System’s ninth planet.

Pluto’s rebirth as a planet is not just all about Pluto, though. A newer, more accurate definition of what is and what is not a planet is needed. And if Runyon and the other people on the team he leads are successful, our Solar System would have more than 100 planets, including many bodies we currently call moons. (Sorry elementary school students.)

This composite of enhanced color images of Pluto (lower right) and Charon (upper left), was taken by NASA’s New Horizons spacecraft as it passed through the Pluto system on July 14, 2015. Credits: NASA/JHUAPL/SwRI

In 2006, the International Astronomical Union (IAU) changed the definition of what a planet is. Pluto’s demotion stemmed from discoveries in the 1990’s showing that it is actually a Kuiper Belt Object (KBO). It was just the first KBO that we discovered. When Pluto was discovered by Clyde Tombaugh in 1930, and included as the ninth planet in our Solar System, we didn’t know much about the Kuiper Belt.

But in 2005, the dwarf planet Eris was discovered. It was like Pluto, but 27% more massive. This begged the question, Why Pluto and not Eris? The IAU struck a committee to look into how planets should be defined.

In 2006, the IAU had a decision to make. Either expand the definition of what is and what is not a planet to include Eris and other bodies like Ceres, or shrink the definition to omit Pluto. Pluto was demoted, and that’s the way it’s been for a decade. Just enough time to re-write text books.

But a lot has happened since then. The change to the definition of planet was hotly debated, and for some, the change should never have happened. Since the New Horizons mission arrived at Pluto, that debate has been re-opened.

A group of scientists led by Runyon has written a paper to be presented at the upcoming Lunar and Planetary Science Conference on March 20th to 24th.

“A planet is a sub-stellar mass body that has never undergone nuclear fusion…” – part of the new planetary definition proposed by Runyon and his team.

The group behind the drive to re-instate Pluto have a broader goal in mind. If the issue of whether Pluto is or is not a planet sounds a little pedantic, it’s not. As Runyon’s group says on their poster to be displayed at the upcoming conference, “Nomenclature is important as it affects how we compare, think, and communicate about objects in nature.”

Runyon’s team proposes a new definition of what is a planet, focused on the geophysics of the object: “A planet is a sub-stellar mass body that has never undergone nuclear fusion and that has enough gravitation to be round due to hydrostatic equilibrium regardless of its orbital parameters.”

The poster highlights some key points around their new planetary definition:

  • Emphasizes intrinsic as opposed to extrinsic properties.
  • Can be paraphrased for younger students: “Round objects in space that are smaller than stars.”
  • The geophysical definition is already in use, taught, and included in planetological glossaries.
  • There’s no need to memorize all 110 planets. Teach the Solar Systems zones and why different planet types formed at different distances from the Sun.

Their proposal makes a lot of sense, but there will be people opposed to it. 110 planets is quite a change, and the new definition is a real mouthful.

“They want Pluto to be a planet because they want to be flying to a planet.” – Prof. Mike Brown, from a BBC interview, July 2015.

Mike Brown, the scientist behind Pluto’s demotion, saw this all coming when New Horizons reached the Pluto system in the Summer of 2015. In an interview with the BBC, he said “The people you hear most talking about reinstatement are those involved in the (New Horizons) mission. It is emotionally difficult for them.”

Saying that the team behind New Horizons find Pluto’s status emotionally difficult seems pretty in-scientific. In fact, their proposed new definition seems very scientific.

This image from New Horizons shows the true nature of Pluto. What for a long time was just a blurry, round, blob in space, was revealed as a geologically active planet with a seasonal atmosphere. Image: NASA/JPL/New Horizons

There may be an answer to all of this. The term “classical planets” might be of some use. That term could include our 9 familiar planets, the knowledge of which guided much of our understanding and exploration of the Solar System. But it’s a fact of science that as our understanding of something grows more detailed, our language around it has to evolve to accommodate. Look at the term planetary nebula—still in use long after we know they have nothing to do with planets—and how much confusion it causes.

“It is official without IAU approval, partly via usage.” – Runyon and team, on their new definition.

In the end, it may not matter whether the IAU is convinced by Runyon’s proposed new definition. As their poster states, “As a geophysical definition, this does not fall under the domain of the IAU, and is an alternate and parallel definition that can be used by different scientists. It is “official” without IAU approval, partly via usage.”

It may seem pointless to flip-flop back and forth about Pluto’s status as a planet. But there are sound reasons for updating definitions based on our growing knowledge. We’ll have to wait and see if the IAU agrees with that, and whether or not they adopt this new definition, and the >100 planet Solar System.

You can view Runyon and team’s poster here.
You can view Emily Lakdawalla’s image of round objects in our Solar System here.
You can read the IAU’s definition of a planet here.

NASA Twins Study Researchers Take Genetic Data To Next Level

NASA is beginning to integrate the results of its twin study on astronauts Mark and Scott Kelly. Image: NASA

People who plan and conduct space missions never tire of telling us how hard it is to do things in space.

Our next big goal is getting humans to Mars, and establishing a colony there. There are a multitude of technical and engineering hurdles to be overcome, but we think we can do it.

But the other side of the coin is the physiological hurdles to be overcome. Those may prove to be much more challenging to deal with. NASA’s twins study is poised to add an enormous amount of data to our growing body of knowledge on the effects of space travel on human beings.

NASA's astronauts twins, Scott Kelly (l) and Mark Kelly (r). Image: NASA
NASA’s astronaut twins, Scott Kelly (l) and Mark Kelly (r). Image: NASA

Astronaut twins Scott and Mark Kelly are the basis of NASA’s study. Scott spent a year in space, returning to Earth on March 1st 2016, after spending 340 days aboard the ISS. Mark, himself a retired astronaut, remained on Earth during Scott’s year in space, providing a baseline for studying the effects on the human body of such a prolonged period of time away from Earth.

In February of 2016, NASA released preliminary results of the study. Now, the team studying the results of the twins study has started integrating the data. The way they’re doing this sets it apart from other studies.

“No one has ever looked this deeply at a human subject and profiled them in this detail.” – Tejaswini Mishra, Ph.D., Stanford University School of Medicine.

Typically, individual studies are released to appropriate journals more or less one at a time. But in the twins study, the data will be integrated and summarized before individual papers are published on separate themes. The idea is that taken together, their impact on our understanding of prolonged time in space will be much greater.

“The beauty of this study is when integrating rich data sets of physiological, neurobehavioral and molecular information, one can draw correlations and see patterns,” said Tejaswini Mishra, Ph.D., research fellow at Stanford University School of Medicine, who is creating the integrated database, recording results and looking for correlations. “No one has ever looked this deeply at a human subject and profiled them in this detail. Most researchers combine maybe two to three types of data but this study is one of the few that is collecting many different types of data and an unprecedented amount of information.”

“Each investigation within the study complements the other.” – Brinda Rana, Ph.D., U of C, San Diego School of Medicine

Mike Snyder, Ph.D, is the head of a team of people at Stanford that will work to synthesize the data. There are roughly three steps in the overall process:

  1. Individual researchers in areas like cognition, biochemistry, and immunology will analyze and compile their data then share their results with the Stanford team.
  2. The Stanford team will then further integrate those results into larger data sets.
  3. Those larger data sets will then be reviewed and analyzed to confirm and modify the initial findings.

“There are a lot of firsts with this study and that makes it exciting,” said Brinda Rana, Ph.D., associate professor of psychiatry, University of California San Diego School of Medicine. “A comparative study with one twin in space and one on Earth has never been done before. Each investigation within the study complements the other.”

NASA compares the twins study, and the new integrated method of handling all the results, to conducting a symphony. Each study is like an instrument, and instead of each one playing a solo, they will be added into a greater whole. The team at Stanford is like the conductor. If you’ve ever listened to an orchestra, you know how powerful that can be.

“The human systems in the body are all intertwined which is why we should view the data in a holistic way,” said Scott M. Smith, Ph.D., NASA manager for nutritional biochemistry at the Johnson Space Center. He conducts biochemical profiles on astronauts and his research is targeted to specific metabolites, end products of various biological pathways and processes.

“It is a more comprehensive way to conduct research.” – Chris Mason, Ph.D., associate professor, Department of Physiology and Biophysics Weill Cornell Medicine

Chris Mason Ph.D., at Weill Cornell Medicine said, “Both the universe and the human body are complicated systems and we are studying something hard to see. It’s like having a new flashlight that illuminates the previously dark gears of molecular interactions. It is a more comprehensive way to conduct research.”

Scientists involved with the twins study are very clearly excited about this new approach. Having twin astronauts is an extraordinary opportunity, and will advance our understanding of spaceflight on human physiology enormously.

“There is no doubt, the learnings from integrating our data will be priceless,” said Emmanuel Mignot, M.D., Ph.D., director of Center for Sleep Science and Medicine, Stanford University School of Medicine. He studies the immune system and is enthusiastic to study specific immune cell populations because many of the other immune studies focus only on general factors.

A summary of the early results should be out by early 2018, or possible late 2017. Individual papers on more detailed themes will follow shortly.

Last Look At Mimas For A Long Time

Mosaic view of Mimas, created using images taken by the Cassini probe (and illuminated to show the full surface). Credit: NASA/JPL-Caltech/Space Science Institute

Since the Cassini mission arrived in the Saturn system in 2004, it has provided some stunning images of the gas giant and its many moons. And in the course of capturing new views of Titan’s dense atmosphere, Iapetus’ curious “yin-yang” coloration, and the water plumes and “tiger stripes” of Enceladus, it snapped the most richly-detailed images of Mimas ever seen.

But like all good things, Cassini’s days of capturing close-up images of Mimas are coming to an end. As of January 30th, 2017, the probe made its final close approach to the moon, and took the last of it’s close-up pictures in the process. In the future, all observations (and pictures) of Mimas will take place at roughly twice this distance – and will therefore be less detailed.

To be fair, these close approaches were a pretty rare event during the Cassini mission. Over the course of the thirteen years that the probe has been in the Saturn system, only seven flybys have taken place, occurring at distances of less 50,000 km (31,000 mi). At its closest approach, Cassini passed within 41,230 km (25,620 mi) of Mimas.

Second mosaic view of Mimas, showing illumination on only the Sun-facing side. Credit: NASA/JPL-Caltech/Space Science Institute

During this time, the probe managed to take a series of images that allowed for the creation of a beautiful mosaic. This mosaic was made from ten combined narrow-angle camera images, and is one of the highest resolution views ever captured of the icy moon. It also comes in two versions. In one, the left side of Mimas is illuminated by the Sun and the picture is enhanced to show the full moon (seen at top).

In the second version (shown above), natural illumination shows only the Sun-facing side of the moon. They also created an animation that allows viewers to switch between mosaics, showing the contrast. And as you can see, these mosaics provide a very detailed look at Mimas heavily-cratered surface, a well as the large surface fractures that are believed to have been caused by the same impact that created the Herschel Crater.

This famous crater, from which Mimas gets it’s “Death Star” appearance, was photographed during Cassini’s first flyby – which occurred on February 13th, 2010. Named in honor of William Herschel (the discoverer of Uranus, its moons Oberon, and Titania, and Saturn’s moons Enceladus and Mimas), this crater measures 130 km (81 mi) across, almost a third of Mimas’ diameter.

This mosaic, created from images taken by NASA’s Cassini spacecraft during its closest flyby of Saturn’s moon Mimas, looks straight at the moon’s huge Herschel Crater Credit: NASA/JPL

Its is also quite deep, as craters go, with walls that are approximately 5 km (3.1 mi) high. Parts of its floor reach as deep as 10 km (6.2 mi), and it’s central peak rises 6 km (3.7 mi) above the crater floor. The impact that created this crater is believed to have nearly shattered Mimas, and also caused the fractures visible on the opposite side of the moon.

It’s a shame we won’t be getting any more close ups of the moon’s many interesting features. However, we can expect a plethora of intriguing images of Saturn’s rings, which it will be exploring in depth as part of the final phase of its mission. The mission is scheduled to end on September 15th, 2017, which will culminate with the crash of the probe in Saturn’s atmosphere.

Further Reading: NASA

Zero2Infinity Successfully Test Launches Its Bloostar Prototype

Zero 2 Infinity's Bloostar being deployed from a balloon 25 km (15.5 mi) above the coast of Spain. Credit: zero2infinity.space

Founded in 2009, the private aerospace company Zero2Infinity – which is headquartered in Barcelona, Spain – was created with the vision of delivering orbital payloads and providing space tourism on a budget. But unlike your conventional aerospace companies – i.e. SpaceX, Blue Origin, Orbital ATK, etc – their plan is to do it all using high-altitude stratospheric balloons.

On March 1st, the Zero2Infinity team passed a major milestone, deploying a prototype “rockoon” craft from the National Institute of Aerospace Technology‘s (INTA) facility in El Arenosillo, Spain. Known as Bloostar, this two-stage craft (which consists of a balloon and a rocket) is one of the latest technologies seeking to drastically reduce the costs of launching people and payloads into space.

As the name would suggest, the Bloostar craft consists of a first-stage balloon that carries a launch vehicle to altitudes of about 40 km (25 mi), where it is then engages its engine. By bringing a rocket to an attitude that is twice the cruising altitude of commercial aircraft, rockoons are capable of reducing the size of rockets and the amount of propellant needed to place payloads into orbit.

The launch vehicle itself is composed of a set of liquid fuel engines that are arranged in a concentric torus-configuration, which are then attached to the central payload. Each torus works as a stage during the rocket’s ascent, which are ignited once it reaches deployment altitude. After all the rocket stages are are finished deploying the payload, they all return to Earth with the balloon where they are recovered.

In this respect, the Bloostar employs technology that is similar to what United Launch Alliance is exploring with the proposed mid-air recovery of their Vulcan rockets’ engines. But the largest cost-cutting measure arises from the fact that the ignition phase does not start until the rocket is at an altitude that puts its beyond 95% of the mass of the Earth’s atmosphere.

This also allows for additional flexibility with launches since it means getting above inclement weather, and also ensures that polluting emissions are not added to the lower atmosphere. The use of several torus-shaped stages reduces the chance of damage occurring to the launch vehicle on re-entry, since several small stages experience less in the way of air friction and heat than larger rocket states.

There is the added benefit of there being less chance of damage. Oftentimes, satellites have fold-out solar panels and science instruments that have to be tucked away to be able to fit inside the cargo hold of a launch vehicle. But with the Bloostar, they can be attached to the flat front end, and will experience less in the way of launch stress since they are floated into space instead of accelerated to escape velocity.

 

Diagram showing the various stages in the launch of he Bloostar. Credit: zero2infinity.space

For the sake of their test flight, the Bloostar’s first-stage was elevated to an altitude of 25 km (15.5 mi) above sea level, a little over halfway towards their maximum deployment height. Once there, the launch vehicle conducted a successful ignition test. In addition to being a crucial milestone in the development of the prototype, the flight provided an opportunity to test several key subsystems and steps that will come into play.

These included the craft’s telemetry systems, which needed to be tested in space. There was also the controlled ignition sequence and stabilization systems of the rocket, the launch sequence, the deployment of its parachute deployment, and finally, recovery of the engines at sea. And according to a news release issued by the company on Monday, March 13th, “All these goals were achieved in full.”

This test was a first for the aerospace industry, as Zero2Infinity is currently the only company using stratospheric balloons as a first-stage vehicle. And already, the company states that it has garnered its fair share of interest from leading satellite developers, claiming that they have “gathered upwards of 250 million Euros in Letters of Intent for future launches.”

In addition to Bloostar, the company also has a space tourism program in the works. Known as “Bloon“, this service will offer clients the ability to travel to near-space aboard a stratospheric balloon for a chance to see Earth from suborbit. The purpose here is not just leisure, but to inspire people to appreciate the planet as a whole and help to protect it.

And then there’s Elevate, which is the company’s service for launching communications and weather-monitoring satellites, science experiments, stratospheric platforms, and other payloads to sub-orbital space. One of the more interesting packages they deployed in recent years was a Barbie doll in October of 2016, as part of Mattel’s “Barbie to Space” PR campaign.

There is no doubt that the commercial aerospace sector (aka. NewSpace) plays an important role in the era of renewed space exploration. Whereas the Space Race was characterized by fierce competition between two rival superpowers and their respective federal space agencies, the new era is characterized by cooperation between multiple space agencies and (for he most part) healthy competition in the private sector.

With the development of reusable rockets, reusable launch components, and now reusable “rockoons”, the costs of exploiting Low-Earth Orbit are dropping, and space itself is becoming far more accessible.

Further Reading: zero2infinity

Russia Recruiting For Its Moon Bound Cosmonauts

Statue of Yuri Gagarin, the first man in space, at the Baikonur Cosmodrome. Credit: AFP

 

Roscosmos has certainly come a long way in the past few decades. After facing an uncertain future in the 1990s, the federal space agency has rebounded to become a major player in space and a crucial partner in the International Space Station. And in the coming years, Roscosmos hopes to expand its reach further, with missions planned to the Moon and even Mars.

Towards this end, on Tuesday, March 14th, the agency announced that it is conducting a recruitment drive for new cosmonauts. All are welcome, the agency stressed, to apply to become the next-generation of space explorers (provided they meet the criteria). And if all goes as planned, a few lucky applicants will be the first members of the Russian space program to “fly to the Moon.”

Understandably, Roscosmos is hoping to jump start its space exploration program again and recapture the momentum it enjoyed during the Soviet Era. In addition to Sputnik and sending the first man and woman into space (as part of the Vostok program), the Soviet space program also produced a reusable spacecraft by the 1980s that was similar to the Space Shuttle (known as the Buran program).

Rollout and Erection of Vostok 1, the flight that took the first man (Yuri Gagarin) into space on April 12th, 1961. Credits: alldayru.com

Unfortunately, with budget cuts during this decade and the fall of the Soviet Union in 1991, several changes had to be made. For one, Roscosmos needed to turn to commercial satellite launches and space tourism in order to make up the difference in its funding. In addition, some observers have cited how Russia’s financial commitment to  the ISS has had a detrimental effect on other programs.

It is little wonder then why Russian wants to embark on some serious missions in the coming decades, ones which will reestablish it as a leader in space exploration. Intrinsic to this is a proposed crewed mission to the Moon, which is scheduled to take place in 2031. Roscosmos has also been developing the next-generation spacecraft that will replace the Soyuz-TMA, which has been the workhorse of the space program since the Soviet era.

Known as the the Federatsiya (Federation) capsule, this vehicle is scheduled to make its first crewed flight to space sometime in 2023 from the Vostochny cosmodrome in the Russian far east. As you can see from the images, it bears a striking resemblance to the Orion capsule. Unveiled at the 12th International Aviation and Space Salon in Moscow (MAKS-2015), this capsule will carry the first Russian cosmonauts to the Moon.

All they need now is fresh blood to make the journey. Hence why they are conducting their first recruitment drive in five years, which is the second drive to be is open to all people – not just military pilots, but also those working in the space industry. This time around, Roscosmos is looking for 6 to 8 new recruits who will train in how to fly the next-generation spaceships and make Russia’s long-awaited lunar landing.

The Federatsiya crew capsule being unveiled at the 12th International Aviation and Space Salon in Moscow. Credit: Wikipedia Commons/Roscosmos

As Sergei Kiralyov (Roscosmos’ Executive Director of Manned Programs) was quoted by RIA Novosti as saying, “There will be no discrimination based on skin colour or gender.” The criteria for these applicants include an age limit of 35, a height of between 1 m 50 cm – 1 m 90 cm (4’11” and 6’2″), and a weight of no more than 90 kilograms (~198 pounds).

The criteria also stress physical fitness, and claim that applicants must be able to cross-country ski for 5 km (~3 mi). They must also pass a series of psychological and physical tests (which include gynaecological examinations for women). In terms of skills, Roscosmos is seeking individuals who have an engineering degree, pilot training, experience in the aviation industry, and IT skills. Knowledge of a foreign language is also a plus (other than Russian, of course!).

“Recruitment of cosmonauts will take place starting from today, March 14, will take place before the end of the year. The results would be summed up in the end of December,” said Roscosmos’ First Deputy Director General Alexander Ivanov. Roscosmos also stressed that all those who are interested must apply by post or in person at the Star City astronaut training center outside Moscow (with three passport-sized photos included).

So if you speak Russian, are interesting in becoming part of the next-generation of cosmonauts, meet the requirements, or just want to go to the Moon, you might want to consider throwing your hat into the ring! Down the road, Roscosmos also has plans to conduct crewed missions to Mars between 2040 and 2060. These are expected to take place only after missions to the Moon are complete, which may include the creation of a lunar outpost.

Further Reading: Phys.org, AFP

NASA Brings Trappist-1 Into Focus… Kinda Sorta

TRAPPIST-1 is probably the most well-known ultra-cool, or red dwarf, star. It is host to several rocky, roughly Earth-sized planets. Astronomers think it's no accident that ultra-cool stars and red dwarfs are host to so many smaller, rocky planets, and they hope that SPECULOOS will find them. Credit: NASA/JPL-Caltech
TRAPPIST-1 is probably the most well-known ultra-cool, or red dwarf, star. It is host to several rocky, roughly Earth-sized planets. Astronomers think it's no accident that ultra-cool stars and red dwarfs are host to so many smaller, rocky planets, and they hope that SPECULOOS will find them. Credit: NASA/JPL-Caltech

On February 22nd, 2017, NASA announced the discovery of a seven-planet system around the red dwarf star known as TRAPPIST-1. Since that time, a number of interesting revelations have been made. For starters, the Search for Extra-Terrestrial Intelligence (SETI) recently announced that it was already monitoring this system for signs of advanced life (sadly, the results were not encouraging).

In their latest news release about this nearby star system, NASA announced the release of the first images taken of this system by the Kepler mission. As humanity’s premier planet-hunting mission, Kepler has been observing this system since December 2016, a few months after the existence of the first three of its exoplanets was announced.

Continue reading “NASA Brings Trappist-1 Into Focus… Kinda Sorta”

Warm Poles Suggest Enceladus’ Liquid Water Near Surface

Saturn's moon Enceladus could harbor microbial life in the warm salty water thought to exist under its frozen surface. Respondents in the study seemed to like that possibility. Credits: NASA/JPL-Caltech/Space Science Institute

One of the biggest surprises from the Cassini mission to Saturn has been the discovery of active geysers at the south pole of the moon Enceladus. At only about 500 km (310 miles) in diameter, the bright and ice-covered moon should be too small and too far from the Sun to be active. Instead, this little moon is one of the most geothermally active places in the Solar System.

Now, a new study from Cassini data shows that the south polar region of Enceladus is even warmer than expected just a few feet below its icy surface. While previous studies have confirmed an ocean of liquid water inside Enceladus which fuels the geysers, this new study shows the ocean is likely closer to the surface than previously thought. Additionally – and most enticing – there has to be a source of heat inside the moon that is not completely understood.

“These observations provide a unique insight into what is going on beneath the surface,” said Alice Le Gall, who is part of the Cassini RADAR instrument team, from Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), and Université Versailles Saint-Quentin (UVSQ), France. “They show that the first few meters below the surface of the area that we investigated, although at a glacial 50-60 K, are much warmer than we had expected: likely up to 20 K warmer in some places. This cannot be explained only as a result of the Sun’s illumination and, to a lesser extent, Saturn’s heating so there must be an additional source of heat.”

Tiger stripes on the south pole of Enceladus. The region studied is indicated by the coloured band. NASA/JPL-Caltech/Space Science Institute; Acknowledgement: A. Lucas

Microwave data taken during a close flyby in 2011 shows there is excess heat at three fractures in the surface of Enceladus. While similar to the so-called “tiger-stripe” features on this moon that are actively venting ice and water molecules into space, these three fractures don’t appear to be active, at least not in 2011.

Scientists say the seemingly dormant fractures lying above the moon’s warm, underground sea point to the dynamic character of Enceladus’ geology, suggesting the moon might have experienced several episodes of activity, in different places on its surface.

The 2011 flyby provided the first – and unfortunately, the only — high-resolution observations of Enceladus’ south pole at microwave wavelengths.

It looked at a narrow, arc-shaped swathe of the southern polar region, about 25 km (15 miles) wide, and located just 30 km to 50 km (18-30 miles) north of the tiger-stripe fractures.

The heat that was detected appears to be lying under a much colder layer of frost.

Because of operational constraints of the 2011 flyby, it was not possible to obtain microwave observations of the active fractures themselves. But this allowed the scientists to observe that the thermally anomalous terrains of Enceladus extend well beyond the tiger stripes.

Cassini’s view down into a jetting “tiger stripe” in August 2010. Credit: NASA

Their findings show it is likely that the entire south pole region is warm underneath, meaning Enceladus’ ocean could be just 2 km under the moon’s icy surface in that area. The finding agrees with a 2016 study, led by another Cassini team member, Ondrej Cadek, which estimated the thickness of the crust on Enceladus’ south pole to be less than the rest of the moon. That study estimated the depth of the ice shell to be less than 5 km (1.2 miles) at the south pole, while average depth on other areas of Enceladus is between 18–22 km (11-13 miles).

What generates the internal heat at Enceladus? The main source of heat remains a mystery, but scientists think gravitational forces between Enceladus, Saturn, and another moon, Dione pull and flex Enceladus’ interior. Known as tidal forces, the tugging causes the moon’s interior to rub, creating friction and heat. It also creates stress compressions and deformations on the crust, leading to the formation of faults and fractures. This in turn creates more heat in the sub-surface layers. In this scenario, the thinner icy crust in the south pole region is subject to a larger tidal deformation that means more heat being created to help keep the underground water warm.

Dramatic plumes, both large and small, spray water ice out from many locations along the famed “tiger stripes” near the south pole of Saturn’s moon Enceladus. Credit: NASA/JPL/Space Science Institute

Since the geysers weren’t known until Cassini’s arrival at Saturn, the spacecraft didn’t have a specific payload to study them, but scientists used the instruments at their disposal to make the best observations they could, flying the spacecraft to within 49 km (30 miles) of the surface. To fully study the tidal heating — or to determine if there is another source of heat — scientists will continue to study the data already taken by various Cassini instruments. But since the mission will be ending in September 2017, it may require another mission to this intriguing moon to fully figure out this mystery.

“This discovery opens new perspectives to investigate the emergence of habitable conditions on the icy moons of the gas giant planets,” says Nicolas Altobelli, ESA’s Project Scientist for Cassini–Huygens. “If Enceladus’ underground sea is really as close to the surface as this study indicates, then a future mission to this moon carrying an ice-penetrating radar sounding instrument might be able to detect it.”

“Finding temperatures near these three inactive fractures that are unexpectedly higher than those outside them adds to the intrigue of Enceladus,” said Cassini Project Scientist Linda Spilker at the Jet Propulsion Laboratory. “What is the warm underground ocean really like and could life have evolved there? These questions remain to be answered by future missions to this ocean world.”

Feel free to submit your mission proposals in the comment section below…

An artist’s illustration of Cassini entering orbit around Saturn. Credit: NASA/JPL.

Sources: ESA
JPL
Paper: Thermally anomalous features in the subsurface of Enceladus’s south polar terrain” by A. Le Gall et al. (2017), published in Nature Astronomy

Canada To Get Its Own Spaceport

8 Ukrainian-built Cyclone 4 rockets will be launched each year from Maritime Launch Services' planned spaceport in Nova Scotia, Canada. Image: Maritime Launch Services

Canada is getting its own rocket-launching facility. Maritime Launch Services (MLS) has confirmed its plans to build and operate a commercial launch facility in Nova Scotia, on Canada’s east coast. The new spaceport should begin construction in 1 year, and should be in operation by 2022.

The facility will be built near Canso, in the province of Nova Scotia. Maritime Launch Services hopes to launch 8 rockets per year to place satellites in orbit. The Ukrainian Cyclone 4M medium-class rockets that will lift-off from Canso will have a payload of up to 3,350 kg.

The red marker in the map above shows the location of the Maritime Launch Services spaceport. Image: Google

Spaceports have certain requirements that make some locations more desirable. They need to be near transportation infrastructure so that rockets, payloads, and other materials can be transported to the site. They need to be away from major population centres in case of accidents. And they need to provide trajectories that give them access to desirable orbits.

The Nova Scotia site isn’t the only location considered by MLS. They evaluated 14 sites in North America before settling on the Canso, NS site, including ones in Mexico and the US. But it appears that interest and support from local governments helped MLS settle on Canso.

The Ukrainian Cyclone M4 rockets have an excellent track record for safety. The company who builds it, Yuzhnoye, has been in operation for 62 years and has launched 875 vehicles and built and launched over 400 spacecraft. Cyclone rockets have launched successfully 221 times.

The Cyclone 4. The Cyclone family of rockets have over 200 successful launches to their credit. Image: Yuzhnoye Design Office
The Cyclone 4. The Cyclone family of rockets have over 200 successful launches to their credit. Image: Yuzhnoye Design Office

MLS is a group of American aerospace experts including people who have worked with NASA. They are working with the makers of the Cyclone 4 rocket, who have wanted to open up operations in North America for some time.

The Cyclone rocket family first started operating in 1969. The Cyclone 4 is the newest and most powerful rocket in the Cyclone family. It’s a 3-stage rocket that runs on UDMH fuel and uses nitrogen tetroxide for an oxidizer.

There have been other proposals for a Canadian spaceport. The Canadian Space Agency was interested in Cape Breton, also in Nova Scotia, as a launch site for small satellites in 2010. A Canadian-American consortium called PlanetSpace also looked at a Nova Scotia site for a launch facility, but they failed to get the necessary funding from NASA in 2008. Fort Churchill, in the Province of Manitoba, was the site of over 3,500 sub-orbital flights before being shut down in 1985.

The Canso launch facility is an entirely private business proposal. Neither the Canadian government nor the Canadian Space Agency are partners. It’s not clear if having a launch facility on Canadian soil will impact the CSA’s activities in any way.

But at least Canadians won’t have to leave home to watch rocket launches.

Trump’s NASA Authorization Act In All Its Glory

NASA's Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL

It’s no secret that NASA has had its share of worries with the Trump administration. In addition to being forced to wait several months to get a sense of the administration’s priorities, the space agency has also had to contend with proposed cuts to its Earth Observation and climate monitoring programs. But one thing which does not appear to be threatened is NASA’s “Journey to Mars“.

In accordance with the National Aeronautics and Space Administration Transition Authorization Act of 2017, the Trump administration has finally committed to funding NASA’s plans for deep space human exploration in the coming decades, and to the tune of $19.5 billion. Central to these plans is the proposed crewed mission to Mars, which is scheduled to take place by 2033.

The Act was introduced to Congress back in February and presented to President Trump for approval on Tuesday, March. 9th. Consistent with the Space Administration Authorization Act of 2010 and the NASA Transition Authorization Act of 2016, this bill approved of $19.5 billion in funding for NASA for fiscal year 2017, much of which was earmarked for the continuation of NASA’s “Journey to Mars”.

NASA has unveiled a new exercise device that will be used by Orion crews to stay healthy on their mission to Mars. Credit: NASA

In addition to maintaining the US government’s commitment “to extend humanity’s reach into deep space, including cis-lunar space, the Moon, the surface and moons of Mars, and beyond”, the Act also expressed the need for a continued commitment to the International Space Station and the utilization of Low Earth Orbit, and other related space ventures.

However, it is Section. 431, Subtitle C – Journey to Mars, that contains all the articles that are of particular interest to space enthusiasts – as these deal with the planned missions to Mars. Article 432, titled “Human Exploration Roadmap”, specifically states that:

“The Administrator shall develop a human exploration roadmap, including a critical decision plan, to expand human presence beyond low-Earth orbit to the surface of Mars and beyond, considering potential interim destinations such as cis-lunar space and the moons of Mars.

This roadmap, according to the Act, will include all the science and exploration goals that were outlined in the 2014 report, “Pathways to Exploration: Rationales and Approaches for a U.S. Program of Human Space Exploration”, which was prepared by the National Academies of Sciences, Engineering, and Medicine’s Committee on Human Spaceflight.

Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. Credit: NASA/MSFC

In addition, they cite the many plans prepared by NASA and other advocates for Mars exploration over the years. These include “The Global Exploration Roadmap” (2013), “NASA’s Journey to Mars – Pioneering Next Steps in Space Exploration” (2015), the JPL’s “Minimal Architecture for Human Journeys to Mars” (2015), and Explore Mars’ “The Humans to Mars Report 2016“.

The Space Launch System (SLS), the Orion Space Capsule, a deep space habitat, and other capabilities are cited as crucial technologies. Other technologies that are identified are “space suits, solar electric propulsion, deep space habitats, environmental control life support systems, Mars lander and ascent vehicle, entry, descent, landing, ascent, Mars surface systems, and in-situ resource utilization.”

And last, but not least, is the need to pursue robotic and crewed missions that are intended to test these technologies – aka. Exploration Mission-1 (EM-1) and Exploration Mission-2 (EM-2). The former mission (which is scheduled for launch on September 30th, 2018) will be the first launch of the SLS with the Orion Capsule on-board, and will involve an uncrewed Orion being sent on a translunar mission.

Exploration Mission-2 (which is expected to launch in August of 2021) will be consists of a crew of four astronauts conducting another flight around the Moon and returning to Earth. Other crewed explorations are expected to follow during the 2020s, which may or may not include the crewed exploration of an asteroid towed into lunar orbit (as part of the Asteroid Redirect Mission, or ARM).

Here too, the Act was consistent with the NASA Transition Authorization Act of 2016. Based on growing budget assessments and the judgement that the benefits of “the Asteroid Robotic Redirect Mission have not been demonstrated to Congress to be commensurate with the cost”, the Act recommends that NASA select a more “cost-effective” option for testing the Orion capsule.

Aside from testing the components and developing the expertise necessary for a crewed mission to Mars, these mission will also establish an all-important “launch cadence”. In other words, NASA hopes to begin conducting regular launches using the SLS between 2021 and 2023, which will be key to restarting crewed exploration of the Solar System.

Of course, the Act also emphasizes the need for continued research into the potential health risks, which are currently being performed aboard the ISS. These include the dangers of exposure to radiation, the long-term effects of time spent in microgravity environments (i.e. muscle degeneration, loss of bone density, organ degeneration, and loss of eyesight), and efforts to mitigate them.

Of course, critics of the Act cite the adjustments made to spending on Earth sciences and heliophysics. In addition, this funding is only for the coming year, and future commitments will need to be made to ensure that the “Journey to Mars” can happen in the time frame provided. But the Act passed with almost unanimous support, and seems to have confirmed what many observers claimed about the space priorities of a Trump administration.

Proponents of space exploration and a mission to Mars can therefore rest easy, as it seems that both are safe for another year. As for Earth science and research, which are intrinsic to helping us predict the effects of climate change, that’s another battle!

Further Reading: congress.gov