Hawking Supports Tiny Spacecraft To Alpha Centauri

Artist’s impression of the planet around Alpha Centauri B. Credit: ESO
Artist’s impression of the planet around Alpha Centauri B. Credit: ESO

We know that Earth will die.

Even if we beat global warming, and survive long enough to face and survive the next ice age, Earth will still die. Even if we build a peaceful civilization, protect the planet from asteroids, fight off mutant plagues and whatever else comes our way, life on Earth will die. No matter what we do, the Sun will reach the end of its life, and render Earth uninhabitable.

So reaching for the stars is imperative. What sounds unrealistic to a great many people is a matter of practicality for people knowledgeable about space. To survive, we must have more than Earth.

A project launched by billionaire Yuri Milner, and backed by Mark Zuckerberg, intends to send tiny spacecraft to our nearest stellar neighbour, the Alpha Centauri system. With an expert group assembled to gauge the feasibility, and with the support of eminent cosmologist Stephen Hawking, this idea is gaining traction.

Stephen Hawking thinks reaching out to the stars is more than hyperbole: it's essential to the survival of the human species. He's smart. We should listen to him.
Stephen Hawking thinks reaching out to the stars is more than dreamy space talk: it’s essential to the survival of the human species. He’s smart. We should listen to him.

The distance to the Centauri system is enormous: 4.3 light years, or 1.34 parsecs. The project plans to use lasers to propel the craft, which should mean the travel time would be approximately 30 years, rather than the 30,000 year travel time that current technology restricts us to.

Of course, there are still many technological hurdles to overcome. The laser propulsion system itself is still only a nascent idea. But theoretically it’s pretty sound, and if it can be mastered, should be able to propel space vehicles at close to relativistic speeds.

There are other challenges, of course. The tiny craft will need robust solar sails as part of the propulsion system. And any instruments and cameras would have to be miniaturized, as would any communication equipment to send data back to Earth. But in case you haven’t been paying attention, humans have a pretty good track record of miniaturizing electronics.

Though the craft proposed are tiny, no larger than a microchip, getting them to the Alpha Centauri system is a huge step. Who knows what we’ll learn? But if we’re ever to explore another solar system, it has to start somewhere. And since astronomers think it’s possible that the Centauri system could have potentially habitable planets, it’s a great place to start.

April 12, 1961: The First Human in Space

Yuri Gagarin, the first human to break free of Earth's gravity and enter space. Credit: Russian Archives
Yuri Gagarin, the first human to break free of Earth's gravity and enter space. Credit: Russian Archives

On April 12th, 1961, the first human being broke free of the gravity bond with Earth, and orbited the planet.

Though most everyone is familiar with the American Apollo astronauts who walked on the Moon, what it took to get there, and the “One small step…” of Neil Armstrong, fewer people are familiar with Yuri Gagarin, the Soviet cosmonaut who was the first human in space. He orbited Earth in his Vostok 1 spacecraft for 108 minutes.

Gagarin became an international celebrity at the time. He received the USSR’s highest honor, the Hero of the Soviet Union. Quite an honor, and quite an achievement for someone who, as a child, survived the Nazi occupation of Russia by living in a tiny mud hut with those members of his family who were not deported for slave labour by the Germans.

The Space Race between the USA and the USSR was in full swing at the time of Gagarin’s flight, and only one month after Gagarin’s historic journey, American astronaut Alan Shepard reached space. But Shepard’s journey was only a 15 minute sub-orbital flight.

Gagarin only has one space flight to his credit, aboard the Vostok 1 in 1961. He did serve as back-up crew for the Soyuz 1 mission though. Gagarin was a test pilot before becoming a cosmonaut, and he died while piloting a Mig-15 fighter jet in 1968.

Space travel in our age is full of ‘firsts.’ It’s the nature of our times. But there can only ever be one first person to leave Earth, and that accomplishment will echo down the ages. Scores of people have been into space now. Their accomplishments are impressive, and they deserve recognition.

But this day belongs to Yuri Gagarin.

The Laws Of Cosmology May Need A Re-Write

A map of the CMB as captured by the Wilkinson Microwave Anisotropy Probe. Credit: WMAP team
A map of the Cosmic Microwave Background (CMB) as captured by the Wilkinson Microwave Anisotropy Probe. Credit: WMAP team

Something’s up in cosmology that may force us to re-write a few textbooks. It’s all centred around the measurement of the expansion of the Universe, which is, obviously, a pretty key part of our understanding of the cosmos.

The expansion of the Universe is regulated by two things: Dark Energy and Dark Matter. They’re like the yin and yang of the cosmos. One drives expansion, while one puts the brakes on expansion. Dark Energy pushes the universe to continually expand, while Dark Matter provides the gravity that retards that expansion. And up until now, Dark Energy has appeared to be a constant force, never wavering.

How is this known? Well, the Cosmic Microwave Background (CMB) is one way the expansion is measured. The CMB is like an echo from the early days of the Universe. It’s the evidence left behind from the moment about 380,000 years after the Big Bang, when the rate of expansion of the Universe stabilized. The CMB is the source for most of what we know of Dark Energy and Dark Matter. (You can hear the CMB for yourself by turning on a household radio, and tuning into static. A small percentage of that static is from the CMB. It’s like listening to the echo of the Big Bang.)

The CMB has been measured and studied pretty thoroughly, most notably by the ESA’s Planck Observatory, and by the Wilkinson Microwave Anisotropy Probe (WMAP). The Planck, in particular, has given us a snapshot of the early Universe that has allowed cosmologists to predict the expansion of the Universe. But our understanding of the expansion of the Universe doesn’t just come from studying the CMB, but also from the Hubble Constant.

The Hubble Constant is named after Edwin Hubble, an American astronomer who observed that the expansion velocity of galaxies can be confirmed by their redshift. Hubble also observed Cepheid variable stars, a type of standard candle that gives us reliable measurements of distances between galaxies. Combining the two observations, the velocity and the distance, yielded a measurement for the expansion of the Universe.

So we’ve had two ways to measure the expansion of the Universe, and they mostly agree with each other. There’ve been discrepancies between the two of a few percentage points, but that has been within the realm of measurement errors.

But now something’s changed.

In a new paper, Dr. Adam Riess of Johns Hopkins University, and his team, have reported a more stringent measurement of the expansion of the Universe. Riess and his team used the Hubble Space Telescope to observe 18 standard candles in their host galaxies, and have reduced some of the uncertainty inherent in past studies of standard candles.

The result of this more accurate measurement is that the Hubble constant has been refined. And that, in turn, has increased the difference between the two ways the expansion of the Universe is measured. The gap between what the Hubble constant tells us is the rate of expansion, and what the CMB, as measured by the Planck spacecraft, tells us is the rate of expansion, is now 8%. And 8% is too large a discrepancy to be explained away as measurement error.

The fallout from this is that we may need to revise our standard model of cosmology to account for this, somehow. And right now, we can only guess what might need to be changed. There are at least a couple candidates, though.

It might be centred around Dark Matter, and how it behaves. It’s possible that Dark Matter is affected by a force in the Universe that doesn’t act on anything else. Since so little is known about Dark Matter, and the name itself is little more than a placeholder for something we are almost completely ignorant about, that could be it.

Or, it could be something to do with Dark Energy. Its name, too, is really just a placeholder for something we know almost nothing about. Maybe Dark Energy is not constant, as we have thought, but changes over time to become stronger now than in the past. That could account for the discrepancy.

A third possibility is that standard candles are not the reliable indicators of distance that we thought they were. We’ve refined our measurements of standard candles before, maybe we will again.

Where this all leads is open to speculation at this point. The rate of expansion of the Universe has changed before; about 7.5 billion years ago it accelerated. Maybe it’s changing again, right now in our time. Since Dark Energy occupies so-called empty space, maybe more of it is being created as expansion continues. Maybe we’re reaching another tipping or balancing point.

The only thing certain is that it is a mystery. One that we are driven to understand.

Can We Now Predict When A Neutron Star Will Give Birth To A Black Hole?

A black hole is the final form a massive star collapses to. The light (and spacetime itself) is warped around the black hole's event horizon due to extreme gravitational effects. This is as accurate as we can be to visualizing an actual black hole as it was generated with a code that implemented General Relativity accurately. Credit and Copyright: Paramount Pictures/Warner Bros. Mathematical Model used to create the image developed by Dr. Kip Thorne

A neutron star is perhaps one of the most awe-inspiring and mysterious things in the Universe. Composed almost entirely of neutrons with no net electrical charge, they are the final phase in the life-cycle of a giant star, born of the fiery explosions known as supernovae. They are also the densest known objects in the universe, a fact which often results in them becoming a black hole if they undergo a change in mass.

For some time, astronomers have been confounded by this process, never knowing where or when a neutron star might make this final transformation. But thanks to a recent study by a team of researchers from Goethe University in Frankfurt, Germany, it may now be possible to determine the absolute maximum mass that is required for a neutron star to collapse, giving birth to a new black hole.

Continue reading “Can We Now Predict When A Neutron Star Will Give Birth To A Black Hole?”

SpaceX Achieves Historic Landing!

SpaceX achieved a major milestone earlier today as its Falcon 9 rocket achieved a soft landing at sea. Credit: SpaceX

In their drive to achieve the goal of reusable rockets, SpaceX has spent the past few years running their Falcon 9 rocket through the most rigorous of tests. And while they have achieved a soft landing once before, SpaceX has been unable to safely land their rockets at sea, despite several attempts. This has been an important step in the development process, as it would mean that the Falcon 9 can be landed under the most difficult of conditions.

But earlier today, SpaceX finally reached that milestone as their CRS-08 mission, which was launched from Cape Canaveral at 4:43 pm (ET), made it back to Earth in one piece. After sending its payload of a Dragon Capsule to rendezvous with the International Space Station, the first-stage rocket successfully made a soft landing on a drone ship in the Atlantic Ocean. This one achievement brings SpaceX one step closer to fulfilling the goal Musk founded the company upon, which is achieving cost-effective, commercial spaceflight.

Continue reading “SpaceX Achieves Historic Landing!”

A Star With A Disk Of Water Ice? Meet HD 100546

Young stars have a disk of gas and dust around them called a protoplanetary disk. Credit: NASA/JPL-Caltech

It might seem incongruous to find water ice in the disk of gas and dust surrounding a star. Fire and ice just don’t mix. We would never find ice near our Sun.

But our Sun is old. About 5 billion years old, with about 5 billion more to go. Some younger stars, of a type called Herbig Ae/Be stars (after American astronomer George Herbig,) are so young that they are surrounded by a circumstellar disk of gas and dust which hasn’t been used up by the formation of planets yet. For these types of stars, the presence of water ice is not necessarily unexpected.

Water ice plays an important role in a young solar system. Astronomers think that water ice helps large, gaseous, planets to form. The presence of ice makes the outer section of a planetary disk more dense. This increased density allows the cores of gas planets to coalesce and form.

Young solar systems have what is called a snowline. It is the boundary between terrestrial and gaseous planets. Beyond this snowline, ice in the protoplanetary disk encourages gas planets to form. Inside this snowline, the lack of water ice contributes to the formation of terrestrial planets. You can see this in our own Solar System, where the snowline must have been between Mars and Jupiter.

A team of astronomers using the Gemini telescope observed the presence of water ice in the protoplanetary disk surrounding the star HD 100546, a Herbig Ae/Be star about 320 light years from us. At only 10 million years old, this star is rather young, and it is a well-studied star. The Hubble has found complex, spiral patterns in the disk, and so far these patterns are unexplained.

HD 100546 is also notable because in 2013, research showed the probable ongoing formation of a planet in its disk. This presented a rare opportunity to study the early stages of planet formation. Finding ice in the disk, and discovering how deep it exists in the disk, is a key piece of information in understanding planet formation in young solar systems.

Finding this ice took some clever astro-sleuthing. The Gemini telescope was used, with its Near-Infrared Coronagraphic Imager (NICI), a tool used to study gas giants. The team installed H2O ice filters to help zero in on the presence of water ice. The protoplanetary disk around young stars, as in the case of HD 100546, is a mixed up combination of dusts and gases, and isolating types of materials in the disk is not easy.

Water ice has been found in disks around other Herbig Ae/Be stars, but the depth of distribution of that ice has not been easy to understand. This paper shows that the ice is present in the disk, but only shallowly, with UV photo desorption processes responsible for destroying water ice grains closer to the star.

It may seem trite so say that more study is needed, as the authors of the study say. But really, in science, isn’t more study always needed? Will we ever reach the end of understanding? Certainly not. And certainly not when it comes to the formation of planets, which is a pretty important thing to understand.

Supermassive Black Hole Found In The Cosmic Boonies

A supermassive black hole has been found in an unusual spot: an isolated region of space where only small, dim galaxies reside. Image credit: NASA/JPL-Caltech
A team of astronomers from South Africa have noticed a series of supermassive black holes in distant galaxies that are all spinning in the same direction. Credit: NASA/JPL-Caltech

Astronomers have found a massive black hole in a place they never expected to find one. The hole comes in at 17 billion solar masses, which makes it the second largest ever found. (The largest is 21 billion solar masses.) And though its enormous mass is noteworthy, its location is even more intriguing.

Supermassive black holes are typically found at the centers of huge galaxies. Most galaxies have them, including our own Milky Way galaxy, where a comparatively puny 4 million solar mass black hole is located. Not only that, these gargantuan holes tend to be located in galaxies that are part of a large cluster of galaxies. Being surrounded by all that mass is a prerequisite for the formation of supermassive black holes. The largest one known, at 21 billion solar masses, is located in a very dense region of space called the Coma Cluster, where over 1,000 galaxies have been identified.

The largest supermassive holes also tend to be surrounded by bright companions, who have also grown large from the plentiful mass in their surroundings. (Of course, its not the black holes that are bright, but the quasars that surround them.) The long and the short of it is that supermassive black holes are usually found in galaxy clusters, and usually have other supermassive companions in the same region of space. They’re not found in isolation.

But this newly found black hole is in a rather sparse region of space. It’s in NGC 1600, an elliptical galaxy in the constellation Eridanus, 200 million light years from Earth. NGC 1600 is not a particularly large galaxy, and though it has been considered part of a larger group of galaxies, all its companions are much dimmer in comparison. So NGC 1600 is a rather small, isolated galaxy, with only a few dim companions.

A supermassive black hole of 17 billion solar masses has been found in the elliptical galaxy NGC 1600, a rather isolated galaxy with only dim companions. To date, supermassive black holes have only been found in huge galaxies at the centre of large clusters of galaxies. This image is a composite image from the Hubble and from ground observatories. Image Credit: NASA/ESA/Digital Sky Survey 2.
A supermassive black hole of 17 billion solar masses has been found in the elliptical galaxy NGC 1600, a rather isolated galaxy with only dim companions. To date, supermassive black holes have only been found in huge galaxies at the centre of large clusters of galaxies. This image is a composite image from the Hubble and from ground observatories. Image Credit: NASA/ESA/Digital Sky Survey 2.

There’s another way that supermassive holes can form. Instead of growing large over time, by feeding on the mass of their home galaxies and galaxy clusters, they can form when two galaxies merge, and two smaller holes become one. But even this requires that they be in a region where galaxies are plentiful, allowing for more collisions and mergers.

It may be possible that NGC is the result of a merger of two galaxies, or that it is two black holes that are currently merging. Or it could be that NGC 1600’s region of space was once extremely rich in gas, in the early days of the Universe, and that’s what gave rise to this ‘out of place’ supermassive black hole.

There is much to be learned about the conditions that give rise to these behemoth black holes. The MASSIVE study will combine several telescopes to survey and catalogue the largest galaxies and black holes. This should tell astronomers a lot about their distribution, and about the circumstances that allow them to exist. We might find even larger ones.

New Horizons Did Amazing Work Before Even Arriving At Pluto

The solar wind data collected by New Horizons will help create more accurate models of the space environment in our Solar System. Image: NASA's Goddard Space Flight Center Scientific Visualization Studio, the Space Weather Research Center (SWRC) and the Community-Coordinated Modeling Center (CCMC), Enlil and Dusan Odstrcil (GMU)
The solar wind data collected by New Horizons will help create more accurate models of the space environment in our Solar System. Image: NASA's Goddard Space Flight Center Scientific Visualization Studio, the Space Weather Research Center (SWRC) and the Community-Coordinated Modeling Center (CCMC), Enlil and Dusan Odstrcil (GMU)

Anybody with an ounce of intellectual curiosity (and an internet connection) has seen the images of Pluto and its system taken by the New Horizons probe. The images and data from New Horizons have opened the door to Pluto’s atmosphere, geology, and composition. But New Horizons wasn’t entirely dormant during its 9 year, billion-plus mile journey to Pluto.

New Horizons returned 3 years worth of data on the solar wind that sweeps through the near-emptiness of space. The solar wind is the stream of particles that is released from the upper atmosphere of the Sun, called the corona. The Sun’s solar wind is what creates space weather in our solar system, and the wind itself varies in temperature, speed, and density.

The solar wind data from New Horizons, which NASA calls an “unprecedented set of observations,” is filling in a gap in our knowledge. Observatories like the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) are studying the Sun up close, and the Voyager probes have sampled the solar wind near the edge of the heliosphere, where the solar wind meets interstellar space, but New Horizons is giving us our first look at the solar wind in Pluto’s region of space.

pluto-space-wx-sim

This solar wind data should shed some light on a number of things, including the dangerous radiation astronauts face when in space. There is a type of particle with extreme energy levels called anomalous cosmic rays. When travelling close to Earth, these high-velocity rays can be a serious radiation hazard to astronauts.

The data from New Horizons reveals particles that pick up an acceleration boost, which makes them exceed their initial speed. It’s thought that these particles could be the precursors to anomalous cosmic rays. A better understanding of this might lead to a better way to protect astronauts.

These same rays have other effects further out in space. It looks like they are partly responsible for shaping the edge of the heliosphere; the region in space where the solar wind meets the interstellar medium.

New Horizons has also told us something about the structure of the solar wind the further it travels from the Sun. Close to the Sun, phenomena like coronal mass ejections (CMEs) have a clearly discernible structure. And the differences in the solar wind, in terms of velocity, density, and temperature, are also discernible. They’re determined by the region of the Sun they came from. New Horizons found that far out in the solar system, these structures have changed.

“At this distance, the scale size of discernible structures increases, since smaller structures are worn down or merge together,” said Heather Elliott, a space scientist at the Southwest Research Institute in San Antonio, Texas, and the lead author of a paper to be published in the Astrophysical Journal. “It’s hard to predict if the interaction between smaller structures will create a bigger structure, or if they will flatten out completely.”

The Voyager probes measured the solar wind as they travelled through our Solar System into the interstellar medium. They’ve told us a lot about the solar wind in the more distant parts of our system, but their instruments aren’t as sensitive and advanced as New Horizons’. This second data set from New Horizons is helping to fill in the blanks in our knowledge.

Mysterious Pull On Cassini Probe May Help Find Planet Nine

Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign
Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign

Finding a ninth planet in our Solar System this late in the game would be fascinating. It would also be somewhat of a surprise, considering our observational capabilities. But new evidence, in the form of small perturbations in the orbit of the Cassini probe, points to the existence of an as-yet undetected planet in our solar system.

Back in January, Konstantin Batygin and Mike Brown, two planetary scientists from the California Institute of Technology, presented evidence supporting the existence of a ninth planet. Their paper showed that some Kuiper Belt Objects (KBOs) display unexpected behaviour. It appears that 6 KBOs are affected by their relationship to a large object, but the KBOs in question are too distant from the known gas giants for them to be responsible. They think that a large, distant planet, in the distant reaches of our Solar System, could be responsible for the unexpected orbital clustering of these KBOs.

The calculated orbit of Planet Nine. Credit: Nature/K. Batygin and M. E. Brown Astronom. J. 151, 22 (2016
The calculated orbit of Planet Nine. Credit: Nature/K. Batygin and M. E. Brown Astronom. J. 151, 22 (2016)

Now, the Ninth Planet idea is gaining steam, and another team of researchers have presented evidence that small perturbations in the orbit of the Cassini spacecraft are caused by the new planet. Agnès Fienga at the Côte d’Azur Observatory in France, and her colleagues, have been working on a detailed model of the Solar System for over a decade. They plugged the hypothetical orbit and size of Planet Nine into their model, to see if it fit.

Planet Nine is calculated to be about 4 times as large as Earth, and 10 times as massive. It’s orbit takes between 10,000 and 20,000 years. A planet that large can only be hiding in so many places, and those places are a long way from Earth. Fienga found a potential home for Planet Nine, some 600 astronomical units (AU) from here. That much mass at that location could account for the perturbations in Cassini’s orbit.

There’s more good news when it comes to Planet Nine. By happy accident, it’s predicted location in the sky is towards the constellation Cetus, in the southern hemisphere. This means that it is in the view of the Dark Energy Survey, a southern hemisphere project that is studying the acceleration of the universe. The Dark Energy Survey is not designed to search for planetary objects, but it has successfully found at least one icy object.

There are other ways that the existence of Planet Nine could be confirmed. If it’s as large as thought, then it will radiate enough internal heat to be detected by instruments designed to study the Cosmic Microwave Background (CMB). There is also an enormous amount of data from multiple experiments and observations done over the years that might contain an inadvertent clue. But looking through it is an enormous task.

As for Brown and Batygin, who initially proposed the existence of Planet Nine based on the behaviour of KBOs, they are already proposing a more specific hunt for the elusive planet. They have asked for a substantial amount of observing time at the Subaru Telescope on Mauna Kea in Hawaii, in order to examine closely the location that Fienga’s solar system model predicts Planet Nine to be at.

For a more detailed look at Batygin’s and Brown’s work analyzing KBOs, read Matt Williams’ article here.

GRAIL Data Points To Possible Lava Tubes On The Moon

Map showing variations in the lunar gravity field, as measured by NASA's Gravity Recovery and Interior Laboratory (GRAIL) . Credit: NASA/JPL-Caltech/MIT/GSFC

For years, scientists have been hunting for the stable lava tubes that are believed to exist on the Moon. A remnant from the Moon’s past, when it was still volcanically active, these underground channels could very well be an ideal location for lunar colonies someday. Not only would their thick roofs provide naturally shielding from solar radiation, meteoric impacts, and extremes in temperature. They could also be pressurized to create a breathable environment.

But until now, evidence of their existence has been inferred from surface features such as sinuous rilles – channel-like depressions that run along the surface that indicate the presence of subterranean lava flows – and holes in the surface (aka. “skylights”). However, recent evidence presented at the 47th Lunar and Planetary Science Conference (LPSC) in Texas indicates that one such stable lava tube could exist in the once-active region known as Marius Hills.

Continue reading “GRAIL Data Points To Possible Lava Tubes On The Moon”