Beyond WIMPs: Exploring Alternative Theories Of Dark Matter

Image from Dark Universe, showing the distribution of dark matter in the universe. Credit: AMNH

The standard model of cosmology tells us that only 4.9% of the Universe is composed of ordinary matter (i.e. that which we can see), while the remainder consists of 26.8% dark matter and 68.3% dark energy. As the names would suggest, we cannot see them, so their existence has had to be inferred based on theoretical models, observations of the large-scale structure of the Universe, and its apparent gravitational effects on visible matter.

Since it was first proposed, there have been no shortages of suggestions as to what Dark Matter particles look like. Not long ago, many scientists proposed that Dark Matter consists of Weakly-Interacting Massive Particles (WIMPs), which are about 100 times the mass of a proton but interact like neutrinos. However, all attempts to find WIMPs using colliders experiments have come up empty. As such, scientists have been exploring the idea lately that dark matter may be composed of something else entirely. Continue reading “Beyond WIMPs: Exploring Alternative Theories Of Dark Matter”

New Horizons Team Releases First Papers On Pluto And Its Moons

This image of Pluto taken by the New Horizons spacecraft shows the blue color of Pluto's high-altitude haze. Image: NASA/New Horizons.
This image of Pluto taken by the New Horizons spacecraft shows the blue color of Pluto's high-altitude haze. Image: NASA/New Horizons.

The New Horizons team is releasing their first set of five research papers on Pluto and its moons. What the team is calling a “comprehensive set of papers” is the result of the New Horizons spacecraft’s close encounter with Pluto and its moons last summer. New Horizons has been transmitting data from the encounter that time, and will be sending data back for months to come.

We can tell from images that Pluto is not what we thought it was. Images and data show that Pluto is a much more active planet than we thought, and its surface shows a diversity of landscapes and geological processes. There’s been a lot of discussion about Pluto and its moons, and a lot of educated guesses about what’s going on there, but the 5 papers released by the team will take the discussion to a new level.

“These five detailed papers completely transform our view of Pluto – revealing the former ‘astronomer’s planet’ to be a real world with diverse and active geology, exotic surface chemistry, a complex atmosphere, puzzling interaction with the sun and an intriguing system of small moons,” said Alan Stern, New Horizons principal investigator from the Southwest Research Institute (SwRI), Boulder, Colorado.

The surface of Pluto is a constantly changing palette, shaped by the interactions between the volatile compounds nitrogen, methane, and carbon monoxide ices with the much sturdier and more predictable water ice. The evaporation and condensation of these compounds shapes the surface of Pluto. “These cycles are a lot richer than those on Earth, where there’s really only one material that condenses and evaporates – water,” said Will Grundy of the Lowell Observatory, Flagstaff, Arizona.

The New Horizons team used "principal component analysis" to get this false-color image of Pluto that highlights the different regions of Pluto. Image: NASA/New Horizons/JHAPL
The New Horizons team used “principal component analysis” to get this false-color image of Pluto that highlights the different regions of Pluto. Image: NASA/New Horizons/JHAPL

Images from New Horizons showed that Pluto’s moons are highly reflective, much more reflective than other bodies in the Kuiper Belt. This led scientists to believe that rather than being captured from the Kuiper Belt and drawn into orbit around Pluto, the moons may have been a result of a collision that formed the Pluto system.

The New Horizons team has found evidence to support this, and evidence that the surface ages of some moons are at least 4 billion years old. “These latter two results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary system,” said Hal Weaver, New Horizons project scientist from the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

There’s a lot of material in these papers, and I direct interested readers to a summary here: Top New Horizons Findings.

The papers are published in Science.

New Lenses To Help In The Hunt For Dark Energy

Since the 1990s, scientists have been aware that for the past several billion years, the Universe has been expanding at an accelerated rate. They have further hypothesized that some form of invisible energy must be responsible for this, one which makes up 68.3% of the mass-energy of the observable Universe. While there is no direct evidence that this “Dark Energy” exists, plenty of indirect evidence has been obtained by observing the large-scale mass density of the Universe and the rate at which is expanding.

But in the coming years, scientists hope to develop technologies and methods that will allow them to see exactly how Dark Energy has influenced the development of the Universe. One such effort comes from the U.S. Department of Energy’s Lawrence Berkeley National Lab, where scientists are working to develop an instrument that will create a comprehensive 3D map of a third of the Universe so that its growth history can be tracked.

Continue reading “New Lenses To Help In The Hunt For Dark Energy”

VLA Shows Early Stages Of Planet Formation In Unprecedented Detail

The million-year-old star HL Tau and its protoplanetary disk. Image: Carrasco-Gonzalez et. al.; Bill Saxton, NRAO/AUI/NSF
The million-year-old star HL Tau and its protoplanetary disk. Image: Carrasco-Gonzalez et. al.; Bill Saxton, NRAO/AUI/NSF

The currently accepted theory of planet formation goes like this: clouds of gas and dust are compressed or begin to draw together. When enough material clumps together, a star is formed and begins fusion. As the star, and its cloud of gas and dust rotate, other clumps of matter coagulate within the cloud, eventually forming planets. Voila, solar system.

There’s lots of evidence to support this, but getting a good look at the early stages of planetary formation has been difficult.

But now, an international team of astronomers using the Karl G. Jansky Very Large Array (VLA) have captured the earliest image yet of the process of planetary formation. “We believe this clump of dust represents the earliest stage in the formation of protoplanets, and this is the first time we’ve seen that stage,” said Thomas Henning, of the Max Planck Institute for Astronomy (MPIA).

This story actually started back in 2014, when astronomers studied the star HL Tau and its dusty disk with the Atacama Large Millimetre/sub-millimetre Array (ALMA.) That image, which showed gaps in HL Tau’s proto-planetary disk caused by proto-planets sweeping up dust in their orbits, was at the time the earliest image we had of planet formation. HL Tau is only about a million years old, so planet formation in HL Tau’s system was in its early days.

Now, astronomers have studied the same star, and its disk, with the VLA. The capabilities of the VLA allowed them do get an even better look at HL Tau and its disk, in particular the denser area closest to the star. What VLA revealed was a distinct clump of dust in the innermost region of the disk that contains between 3 to 8 times the mass of the Earth. That’s enough to form a few terrestrial planets of the type that inhabit our inner Solar System.

On the left is the ALMA image of HL Tau. On the right is the VLA image showing the clump of dust near the star. Image: Carrasco-Gonzalez et al,; Bill Saxton, NRAO/AUI/NSF
On the left is the ALMA image of HL Tau. On the right is the VLA image showing the clump of dust near the star. Image: Carrasco-Gonzalez et al,; Bill Saxton, NRAO/AUI/NSF

“This is an important discovery, because we have not yet been able to observe most stages in the process of planet formation,” said Carlos Carrasco-Gonzalez from the Institute of Radio Astronomy and Astrophysics (IRyA) of the National Autonomous University of Mexico (UNAM).

Of course the star in question, HL Tau, is interesting as well. But the formation and evolution of stars is much more easily studied. It’s our theory of planet formation which needed some observational confirmation. “This is quite different from the case of star formation, where, in different objects, we have seen stars in different stages of their life cycle. With planets, we haven’t been so fortunate, so getting a look at this very early stage in planet formation is extremely valuable,” said Carrasco-Gonzalez.

Sun-Like Star Shows Magnetic Field Was Key For Early Life On Earth

Our Sun in all its intense, energetic glory. When life appeared on Earth, the Sun would have been much different than it is now; a more intense, energetic neighbor. Image: NASA/SDO.
Our Sun in all its intense, energetic glory. When life appeared on Earth, the Sun would have been much different than it is now; a more intense, energetic neighbor. Image: NASA/SDO.

The early Solar System was a much different place than it is now. Chaos reigned supreme before things settled down into their present state. New research shows that the young Sun was more chaotic and expressive than it is now, and that Earth’s magnetic field was key for the development of life on Earth.

Researchers at the Harvard Smithsonian Centre for Astrophysics have been studying a star called Kappa Ceti, about 30 light years away in the Cetus constellation. Kappa Ceti is in many ways similar to our own Sun, but it’s estimated to be between 400 million to 600 million years old, about the same age as our Sun when life appeared on Earth. Studying Kappa Ceti gives scientists a good idea of the type of star that early life on Earth had to contend with.

Kappa Ceti, at its young age, is much more magnetically active than our 4.6 billion year old Sun, according to this new research. It emits a relentless solar wind, which the research team at Harvard says is 50 times as powerful as the solar wind from our Sun. It’s surface is also much more active and chaotic. Rather than the sunspots that we can see on our Sun, Kappa Ceti displays numerous starspots, the larger brother of the sunspot. And the starspots on Kappa Ceti are much more numerous than the sunspots observed on the Sun.

We’re familiar with the solar flares that come from the Sun periodically, but in the early life of the Sun, the flares were much more energetic too. Researchers have found evidence on Kappa Ceti of what are called super-flares. These monsters are similar to the flares we see today, but can release 10 to 100 million times more energy than the flares we can observe on our Sun today.

So if early life on Earth had to contend with such a noisy neighbour for a Sun, how did it cope? What prevented all that solar output from stripping away Earth’s atmosphere, and killing anything alive? Then, as now, the Earth’s electromagnetic field protected it. But in the same way that the Sun was so different long ago, so was the Earth’s protective shield. It may have been weaker than it is now.

The researchers found that if the Earth’s magnetic field was indeed weaker, then the magnetosphere may have been only 34% to 48% as large as it is now. The conclusion of the study says “… the early magnetic interaction between the stellar wind and the young Earth planetary magnetic field may well have prevented the volatile losses from the Earth exosphere and created conditions to support life.”

Or, in plain language: “The early Earth didn’t have as much protection as it does now, but it had enough,” says Do Nascimento.

Evidently.

NASA’s About To Do The Most Dangerous Thing You Can Do In Space

The logo for Saffire, NASA's Spacecraft Fire Experiment. Image: NASA
The logo for Saffire, NASA's Spacecraft Fire Experiment. Image: NASA

Intentionally lighting a fire onboard a spacecraft might seem like a bad idea. But in order to understand how fire behaves on a spacecraft, and in order to reduce the risk from fire to crew members and equipment, NASA engineers are doing just that. The test, dubbed Spacecraft Fire Experiment, or Saffire, will be conducted on the Orbital ATK Cygnus cargo vehicle, on March 22nd.

The fire will be ignited remotely inside a 3ft. x 3ft. x 5ft. container inside Cygnus, once the craft has delivered its supplies to the ISS and is returning to Earth. Until now, the only combustion tests performed have been small fires aboard the ISS, in microgravity conditions. The containers at the heart of the Saffire experiments will allow the team of engineers conducting the tests to burn larger materials, and get a better understanding of how a larger fire will behave.

The tests will be performed prior to the destruction of Cygnus as it re-enters Earth’s atmosphere. Data and images from the fire will be transmitted to the researchers at the Glenn Research Center, home of the Saffire experiment, and shared with international partners.

Jason Crusan is NASA’s Advanced Exploration Systems director, and he had this to say about the experiment: “NASA’s objective is to reduce the risk of long-duration exploration missions, and a spacecraft fire is one of the biggest concerns for NASA and the international space exploration community.”

A fire aboard a deep space mission could be disastrous, with no possibility of escape or rescue for crew members. Inside a spacecraft, there’s no way for the heat and pressure generated by a fire to escape. If the fire generates any toxic by-products, they can’t escape either, which creates a very dangerous situation.

The Soviet space station MIR suffered a fire in 1997. The fire lasted either 90 seconds, or 14 minutes, depending on who you ask. American astronaut Jerry Linenger was on-board MIR at the time. Here’s his description of the fire, from his memoir “Off the Planet.”

As the fire spewed with angry intensity, sparks – resembling an entire box of sparklers ignited simultaneously – extended a foot or so beyond the flame’s furthest edge. Beyond the sparks, I saw what appeared to be melting wax splattering on the bulkhead opposite the blaze. But it was not melting max. It was molten metal. The fire was so hot that it was melting metal.

Jerry Linenger onboard Mir in 1997. Image: NASA
Jerry Linenger onboard Mir in 1997. Image: NASA

A catastrophic spacecraft fire hit NASA in the early years of the Apollo missions. Apollo 1, which was the first of the manned Apollo missions, never got off the ground. A cabin fire broke out during a launch rehearsal test in January 1967, and killed the entire crew.

“Gaining a better understanding of how fire behaves in space will help further NASA’s efforts in developing better materials and technologies to reduce crew risk and increase space flight safety,” said Gary A. Ruff, NASA’s Spacecraft Fire Safety Demonstration project manager.

There will actually be 3 Saffire tests in 2016. All three will be conducted on Cygnus ships, inside the same containers, but each test will burn different material samples. Three more similar tests are planned for 2018.

Virtual Reality and Space: From NASA to Smartphones

With the ever-increasing affordability of technology, Virtual Reality is making its way into people’s homes. Systems like the Oculus Rift, and Sony’s PlayStation VR when it’s released next Fall, are becoming increasingly common. These systems, and others to come, will allow people to not only watch VR movies and play VR games, but also to explore space from the comfort of their own homes. This won’t be the only intersection of Virtual Reality and space, though.

NASA, as is often the case, has already blazed a trail when it comes to VR and space. They’ve been using VR to train astronauts for quite a while now. They have a whole lab dedicated to it, called the Virtual Reality Lab, located at the Johnson Space Center in Houston, Texas. At this facility, astronauts use VR to prepare them for working aboard the ISS.

NASA has flirted with other VR solutions as well. They used an Oculus Rift and a VR Treadmill combined with Mars footage from the Curiosity rover to create a virtual walk on the surface of Mars.

NASA’s use of VR is the most advanced around, naturally, but it’s not something most of us will ever encounter. For the rest of us, VR is making it’s way into our space-loving lives in other ways.

A company called Immersive Education has created a VR simulation of the Apollo 11 mission. It allows users to re-live the mission. You can look around the inside of the spacecraft, look out the window toward Earth, even watch and listen as astronauts walk on the surface of the Moon. The company promises “Historically accurate spacecraft interiors and exteriors.”

Here, Apollo astronaut Charlie Duke checks out the Apollo 11 VR on Oculus Rift.

Companies DEEP Inc. and Freedom 360 collaborated with the Canadian Space Agency to create a VR film called “The Edge of Space.” They used 360 degree cameras to record the view from a balloon that reached an altitude of 40km above Earth. Check out their video here. To get the real interactive effect, visit their page to download their app and view it.

Then there’s what I call virtual VR. Or you could call it “headsetless” VR, I guess. Though it lacks the immersion of full VR, it’s still cool. It’s a virtual planetarium from Escapist Games Limited, called Star Chart. Star Chart allows users to cruise through the Solar System and the Universe, checking out stars, nebulae, planets and other objects along the way.

This is just the beginning of VR’s entertainment and educational capabilities. With the growing affordability of VR, and the technological advancements to come, there’s going to some great implementations of VR technology for we space enthusiasts. I expect that in the next few years, we wannabe space explorers will be able to explore the surface of other worlds with VR, right in our own living rooms.

90 Years Ago Goddard’s Liquid-Fuelled Rocket Launched Spaceflight

Dr. Robert H. Goddard and a liquid oxygen-gasoline rocket in the frame from which it was fired on March 16, 1926, at Auburn, Massachusetts. Image: NASA/Clark University Robert H. Goddard Archive
Dr. Robert H. Goddard and a liquid oxygen-gasoline rocket in the frame from which it was fired on March 16, 1926, at Auburn, Massachusetts. Image: NASA/Clark University Robert H. Goddard Archive

The invention of the rocket changed space science forever. The Universe could only be inspected from the surface of the Earth, with all that atmosphere in the way, until rockets were invented. And as far as the modern age of rocketry goes, it all started 90 years ago with Robert Goddard’s liquid-fuelled rocket.

Goddard was a dreamer. He envisioned rocket-powered spacecraft plying the solar system. Obviously, he passed away before interplanetary travel materialized, but his work on rocketry certainly laid the groundwork for that eventual achievement. The Goddard Space Flight Center is named after him, and it’s doubtful that any engineering or technology student in the world doesn’t know who he is.

Goddard’s first liquid-fuelled rocket was modest by today’s standards, of course. But he had to solve several technical challenges to achieve it, and his ability to solve these challenges led to not only this first flight, but to a total of 34 rocket flights in 15 years, from 1926 to 1941. His rockets reached the altitude of 2.6 km (1.6 miles) and speeds of 885 km/h (550 mph.) He also patented 214 inventions.

Goddard is considered the father of modern rocket science, but he is actually one of three men who are considered the main contributors to modern rocketry. Russian Konstantin Tsiolkovsky (1858-1935) and German Hermann Oberth (1894-1989) are the other founding fathers of modern rocketry.

Goddard didn’t invent rocketry, of course. The Chinese used rockets as far back as the 13th century, and rockets made appearances throughout history as weapons and fireworks. But Goddard’s success at liquid-fuelled rocketry, and the capabilities that came with it, is when rocketry really got off the ground. (Sorry.)

Nowadays, Goddard is understood to be a driven and highly-intelligent person, the type of person who is responsible for advancing science and technology. But back in his time, before he had successful flights, he and his ideas were ridiculed. Check out this criticism from the New York Times, January 13th, 1920:

“That Professor Goddard, with his ‘chair’ in Clark College and the countenancing of the Smithsonian Institution, does not know the relation of action to reaction, and of the need to have something better than a vacuum against which to react — to say that would be absurd. Of course he only seems to lack the knowledge ladled out daily in high schools.”

Stinging words, to be sure, but people who know anything about the history of science are familiar with this kind of condemnation of brilliant people, coming from those who lack vision.

Now of course, we have huge rockets. Great thundering beasts that lift enormous loads out of Earth’s gravity well. And we’re so accustomed to rocket launches now that they barely make news. But I always get a kick out of imagining what people like Goddard would feel if they were able to view a launch of one of today’s behemoths, like the Ariane 5. I’m sure his chest would swelled with pride, and he would be amazed at what people have accomplished.

But his vindication wouldn’t just come from the huge leaps we’ve made in rocket technology, and the huge rockets we now routinely launch. It would also come from this retraction, delivered decades too late but with class, by the New York Times, on July 17 1969, the day after Apollo 11 launched:

Further investigation and experimentation have confirmed the findings of Isaac Newton in the 17th Century and it is now definitely established that a rocket can function in a vacuum as well as in an atmosphere. The Times regrets the error.

Eat Your Heart Out Pluto

Sublimation of methane ice (shown in purple in the right inset) to methane gas may be eroding the cliffs of Piri Rupes. This process is creating what looks like a bite mark in Pluto's surface, and leaving the Piri Planitia in their wake. (All names for the geographical features on Pluto are still informal.) Image: NASA/JHUAPL/SwRI
Sublimation of methane ice (shown in purple in the right inset) to methane gas may be eroding the cliffs of Piri Rupes. This process is creating what looks like a bite mark in Pluto's surface, and leaving the Piri Planitia in their wake. (All names for the geographical features on Pluto are still informal.) Image: NASA/JHUAPL/SwRI

Images from the New Horizons spacecraft show a bite-mark shaped feature on the surface of Pluto. Scientists think that the feature is caused by the sublimation of methane ice, causing cliffs to erode and leaving a flat plain in their place. The images were captured just prior to New Horizon’s closest approach to Pluto on July 14th, 2015.

In the image above, which is of Pluto’s western hemisphere, three main features are shown. The first is Vega Terra, which as a raised plateau area. The second is the Piri Planitia, which is a flatter and lower area of plains. Piri Planitia shows an absence of craters, meaning it is geologically younger. Dividing Terra and Planitia are the Piri Rupes, the cliffs which have the bite-mark shaped feature that caught the interest of scientist.

The colored image on the right shows methane-rich areas in purple. Scientists think that as the methane ice of Piri Rupes is sublimated away into the atmosphere, the cliffs are removed and the flat plains of Piri Planitia take their place. The image also shows some methane mesas which have not sublimated away yet.

This image shows the location on Pluto where the sublimation of methane is leaving a bite-mark shape, and changing the surface of Pluto. Image: NASA/JHUAPL/SwRI
This image shows the location on Pluto where the sublimation of methane is leaving a bite-mark shape, and changing the surface of Pluto. Image: NASA/JHUAPL/SwRI

New Horizons’ data also shows that Piri Planitia has a higher content of water ice, which is shown in blue. Because of the frigid temperature on Pluto, it’s thought that this water ice is like bedrock. It is immobile, and as the methane ice is sublimated away, the water ice bedrock of Piri Planitia is left exposed.

Prior to New Horizons’ arrival at Pluto, it was generally thought that not much was happening at Pluto. But as these images show, and as New Horizons keeps proving, Pluto is far from an inactive place, and there’s a lot to hold the interest of planetary scientists.

The Milky Way Galaxy’s Dark Halo Of Star Formation

Dark matter is invisible. Based on the effect of gravitational lensing, a ring of dark matter has been inferred in this image of a galaxy cluster (CL0024+17) and has been represented in blue. Image: NASA/ESA.
Dark matter is invisible. Based on the effect of gravitational lensing, a ring of dark matter has been inferred in this image of a galaxy cluster (CL0024+17) and has been represented in blue. Image: NASA/ESA.

Dark Matter is rightly called one of the greatest mysteries in the Universe. In fact, so mysterious is it, that we here in the opulent sky-scraper offices of Universe Today often joke that it should be called “Dark Mystery.” But that sounds like a cheesy History Channel show, and here at Universe Today we don’t like cheesy, so Dark Matter it remains.

Though we still don’t know what exactly Dark Matter is, we keep learning more about how it interacts with the rest of the Universe, and nibbling around at the edges of what it might be. But before we get into the latest news about Dark Matter, it’s worth stepping back a bit to remind ourselves of what is known about Dark Matter.

Evidence from cosmology shows that about 25% of the mass of the Universe is Dark Matter, also known as non-baryonic matter. Baryonic matter is ‘normal’ matter, which we are all familiar with. It’s made up of protons and neutrons, and it’s the matter that we interact with every day.

Cosmologists can’t see the 25% of matter that is Dark Matter, because it doesn’t interact with light. But they can see the effect it has on the large scale structure of the Universe, on the cosmic microwave background, and in the phenomenon of gravitational lensing. So they know it’s there.

Large galaxies like our own Milky Way are surrounded by what is called a halo of Dark Matter. These huge haloes are in turn surrounded by smaller sub-haloes of Dark Matter. These sub-haloes have enough gravitational force to form dwarf galaxies, like the Milky Way’s own Sagittarius and Canis Major dwarf galaxies. Then, these dwarf galaxies themselves have their own Dark Matter haloes, which at this scale are now much too small to contain gas or stars. Called dark satellites, these smaller haloes are of course invisible to telescopes, but theory states they should be there.

But proving that these dark satellites are even there requires some evidence of the effect they have on their host galaxies.

Now, thanks to Laura Sales, who is an assistant professor at the University of California, Riverside’s, Department of Physics and Astronomy, and her collaborators at the Kapteyn Astronomical Institute in the Netherlands, Tjitske Starkenberg and Amina Helmi, there is more evidence that these dark satellites are indeed there.

In their paper “Dark influences II: gas and star formation in minor mergers of dwarf galaxies with dark satellites,” from November 2015, they provide an analysis of theory-based computer simulations of the interaction between a dwarf galaxy and a dark satellite.

Their paper shows that when a dark satellite is at its closest point to a dwarf galaxy, the satellite’s gravitational influence compresses the gas in the dwarf. This causes a sustained period of star formation, called a starburst, that can last for billions of years.

NGC 5253 is one of the nearest of the known Blue Compact Dwarf (BCD) galaxies, and is located at a distance of about 12 million light-years from Earth in the southern constellation of Centaurus. It is experiencing a starburst of hot, young stars, which could be caused by dark satellites. Image: NASA/ESA/Hubble.
NGC 5253 is one of the nearest of the known Blue Compact Dwarf (BCD) galaxies, and is located at a distance of about 12 million light-years from Earth in the southern constellation of Centaurus. It is experiencing a starburst of hot, young stars, which could be caused by dark satellites. Image: NASA/ESA/Hubble.

Their modelling suggests that dwarf galaxies should be exhibiting a higher rate of star formation than would otherwise be expected. And observation of dwarf galaxies reveals that that is indeed the case. Their modelling also suggests that when a dark satellite and a dwarf galaxy interact, the shape of the dwarf galaxy should change. And again, this is born out by the observation of isolated spheroidal dwarf galaxies, whose origin has so far been a mystery.

The exact nature of Dark Matter is still a mystery, and will probably remain a mystery for quite some time. But studies like this keep shining more light on Dark Matter, and I encourage readers who want more detail to read it.