Planets can sneak up on you. Especially the ones that don’t rise till you’re in bed. Take Mars for instance. It’s been ambling east along the morning zodiac all winter long; today it enters Scorpius, rising around 1:30 a.m. Not two days later, the planet will have a spectacularly close conjunction with Beta Scorpii, the topmost star in the scorpion’s head.
Also known as Graffias, Beta shines at magnitude +2.6 next to the fiery, zero-magnitude Mars. With their striking color contrast, the two would make a superb ring setting: a tiny diamond nestled next to a plump garnet. They’ll be together for several mornings, their separation changing each day: 15 arc minutes on Tuesday (1/2 the diameter of the Full Moon); 9 arc minutes when closest on Wednesday and back out to 23 minutes on Thursday.
It’s a gas to see two celestial objects approach so closely, but this conjunction offers a rare treat. Did you know that Beta is one of the finest double stars in the sky? It has a fifth magnitude companion 14 arc seconds northeast of the primary. Any telescope will split this jewel and show Mars in the same field of view at both high and low magnifications. That’s just so cool — I sure hope you’ll get to see them.
Mars now measures 10 arc seconds in diameter, small for sure, but big enough to see the larger dark markings and a hint of the north polar cap. The planet is heading for opposition on May 22nd, when it will shine at magnitude -2.0 (brighter than Sirius) with a disk 18.4 arc seconds across, its biggest and closest since 2005.
Let this week’s lovely conjunction serve as a warm-up to the forthcoming season of Mars.
Way up in the constellation Cancer there’s a 14th magnitude speck of light you can claim in a 10-inch or larger telescope. If you saw it, you might sniff at something so insignificant, yet it represents the final farewell of chewed up stars as their remains whirl down the throat of an 18 billion solar mass black hole, one of the most massive known in the universe.
Astronomers know the object as OJ 287, a quasar that lies 3.5 billion light years from Earth. Quasars or quasi-stellar objects light up the centers of many remote galaxies. If we could pull up for a closer look, we’d see a brilliant, flattened accretion disk composed of heated star-stuff spinning about the central black hole at extreme speeds.
As matter gets sucked down the hole, jets of hot plasma and energetic light shoot out perpendicular to the disk. And if we’re so privileged that one of those jet happens to point directly at us, we call the quasar a “blazar”. Variability of the light streaming from the heart of a blazar is so constant, the object practically flickers.
A recent observational campaign involving more than two dozen optical telescopes and NASA’s space based SWIFT X-ray telescope allowed a team of astronomers to measure very accurately the rotational rate the black hole powering OJ 287 at one third the maximum spin rate — about 56,000 miles per second (90,000 kps) — allowed in General Relativity A careful analysis of these observations show that OJ 287 has produced close-to-periodic optical outbursts at intervals of approximately 12 years dating back to around 1891. A close inspection of newer data sets reveals the presence of double-peaks in these outbursts.
To explain the blazar’s behavior, Prof. Mauri Valtonen of the University of Turku (Finland) and colleagues developed a model that beautifully explains the data if the quasar OJ 287 harbors not one buy two unequal mass black holes — an 18 billion mass one orbited by a smaller black hole.
OJ 287 is visible due to the streaming of matter present in the accretion disk onto the largest black hole. The smaller black hole passes through the larger’s the accretion disk during its orbit, causing the disk material to briefly heat up to very high temperatures. This heated material flows out from both sides of the accretion disk and radiates strongly for weeks, causing the double peak in brightness.
The orbit of the smaller black hole also precesses similar to how Mercury’s orbit precesses. This changes when and where the smaller black hole passes through the accretion disk. After carefully observing eight outbursts of the black hole, the team was able to determine not only the black holes’ masses but also the precession rate of the orbit. Based on Valtonen’s model, the team predicted a flare in late November 2015, and it happened right on schedule.
The timing of this bright outburst allowed Valtonen and his co-workers to directly measure the rotation rate of the more massive black hole to be nearly 1/3 the speed of light. I’ve checked around and as far as I can tell, this would make it the fastest spinning object we know of in the universe. Getting dizzy yet?
On January 20th, 2016, researchers Konstantin Batygin and Michael E. Brown of Caltech announced that they had found evidence that hinted at the existence of a massive planet at the edge of the Solar System. Based on mathematical modeling and computer simulations, they predicted that this planet would be a super-Earth, two to four times Earth’s size and 10 times as massive. They also estimated that, given its distance and highly elliptical orbit, it would take 10,000 – 20,000 years to orbit the Sun.
Since that time, many researchers have responded with their own studies about the possible existence of this mysterious “Planet 9”. One of the latest comes from the University of Arizona, where a research team from the Lunar and Planetary Laboratory have indicated that the extreme eccentricity of distant Kuiper Belt Objects (KBOs) might indicate that they crossed paths with a massive planet in the past.
For some time now, it has been understood that there are a few known KBOs who’s dynamics are different than those of other belt objects. Whereas most are significantly controlled by the gravity of the gas giants planets in their current orbits (particularly Neptune), certain members of the scattered disk population of the Kuiper Belt have unusually closely-spaced orbits.
When Batygin and Brown first announced their findings back in January, they indicated that these objects instead appeared to be highly clustered with respect to their perihelion positions and orbital planes. What’s more, their calculation showed that the odds of this being a chance occurrence were extremely low (they calculated a probability of 0.007%).
Instead, they theorized that it was a distant eccentric planet that was responsible for maintaining the orbits of these KBOs. In order to do this, the planet in question would have to be over ten times as massive as Earth, and have an orbit that lay roughly on the same plane (but with a perihelion oriented 180° away from those of the KBOs).
Such a planet not only offered an explanation for the presence of high-perihelion Sedna-like objects – i.e. planetoids that have extremely eccentric orbits around the Sun. It would also help to explain where distant and highly inclined objects in the outer Solar System come from, since their origins have been unclear up until this point.
In a paper titled “Coralling a distant planet with extreme resonant Kuiper belt objects“, the University of Arizona research team – which included Professor Renu Malhotra, Dr. Kathryn Volk, and Xianyu Wang – looked at things from another angle. If in fact Planet 9 were crossing paths with certain high-eccentricity KBOs, they reasoned, it was a good bet that its orbit was in resonance with these objects.
To break it down, small bodies are ejected from the Solar System all the time due to encounters with larger objects that perturb their orbits. In order to avoid being ejected, smaller bodies need to be protected by orbital resonances. While the smaller and larger objects may pass within each others’ orbital path, they are never close enough that they would able to exert a significant influence on each other.
This is how Pluto has remained a part of the Solar System, despite having an eccentric orbit that periodically cross Neptune’s path. Though Neptune and Pluto cross each others orbit, they are never close enough to each other that Neptune’s influence would force Pluto out of our Solar System. Using this same reasoning, they hypothesized that the KBOs examined by Batygin and Brown might be in an orbital resonance with the Planet 9.
As Dr. Malhotra, Volk and Wang told Universe Today via email:
“The extreme Kuiper belt objects we investigate in our paper are distinct from the others because they all have very distant, very elliptical orbits, but their closest approach to the Sun isn’t really close enough for them to meaningfully interact with Neptune. So we have these six observed objects whose orbits are currently fairly unaffected by the known planets in our Solar System. But if there’s another, as yet unobserved planet located a few hundred AU from the Sun, these six objects would be affected by that planet.”
After examining the orbital periods of these six KBOs – Sedna, 2010 GB174, 2004 VN112, 2012 VP113, and 2013 GP136 – they concluded that a hypothetical planet with an orbital period of about 17,117 years (or a semimajor axis of about 665 AU), would have the necessary period ratios with these four objects. This would fall within the parameters estimated by Batygin and Brown for the planet’s orbital period (10,000 – 20,000 years).
Their analysis also offered suggestions as to what kind of resonance the planet has with the KBOs in question. Whereas Sedna’s orbital period would have a 3:2 resonance with the planet, 2010 GB174 would be in a 5:2 resonance, 2994 VN112 in a 3:1, 2004 VP113 in 4:1, and 2013 GP136 in 9:1. These sort of resonances are simply not likely without the presence of a larger planet.
“For a resonance to be dynamically meaningful in the outer Solar System, you need one of the objects to have enough mass to have a reasonably strong gravitational effect on the other,” said the research team. “The extreme Kuiper belt objects aren’t really massive enough to be in resonances with each other, but the fact that their orbital periods fall along simple ratios might mean that they each are in resonance with a massive, unseen object.”
But what is perhaps most exciting is that their findings could help to narrow the range of Planet 9’s possible location. Since each orbital resonance provides a geometric relationship between the bodies involved, the resonant configurations of these KBOs can help point astronomers to the right spot in our Solar System to find it.
But of course, Malhotra and her colleagues freely admit that several unknowns remain, and further observation and study is necessary before Planet 9 can be confirmed:
“There are a lot of uncertainties here. The orbits of these extreme Kuiper belt objects are not very well known because they move very slowly on the sky and we’ve only observed very small portions of their orbital motion. So their orbital periods might differ from the current estimates, which could make some of them not resonant with the hypothetical planet. It could also just be chance that the orbital periods of the objects are related; we haven’t observed very many of these types of objects, so we have a limited set of data to work with.”
Ultimately, astronomers and the rest of us will simply have to wait on further observations and calculations. But in the meantime, I think we can all agree that the possibility of a 9th Planet is certainly an intriguing one! For those who grew up thinking that the Solar System had nine planets, these past few years (where Pluto was demoted and that number fell to eight) have been hard to swallow.
But with the possible confirmation of this Super-Earth at the outer edge of the Solar System, that number could be pushed back up to nine soon enough!
When the Cassini probe first saw the plumes coming from Saturn’s moon Enceladus, it was a surprise. When it dipped through the plumes, some questions about the basic nature of the phenomenon were answered. But there are still many more questions, and today Cassini has an opportunity to find some answers.
Cassini will be in a perfect position today to observe the light from Epsilon Orionis, the central star in Orion’s belt, as it passes through Enceladus’ plume. This type of observation is known as a stellar occultation, and it promises to provide new information about the composition and density of the plume. Cassini’s Ultraviolet Imaging Spectrograph (UVIS) will do the capturing, and once the information is relayed back to Earth, it will be analyzed for clues.
We already know a few things about Enceladus’ plumes. First of all, Enceladus itself is any icy world, with subsurface oceans. The moon is locked in an orbital resonance, which creates its eccentric orbit. This eccentric orbit is responsible for heating the south polar oceans, which drives material through the ice sheets and creates its stunning plumes, in a process known as cryovolcanism. (Radioactive decay might also have something to do with heating.)
Cassini has been at Saturn’s system for 12 years, and has gradually painted a more detailed picture of Enceladus. Over time, we’ve learned that the plumes themselves are similar to what comets are made of. Cassini initially detected mostly water vapor, with traces of molecular nitrogen, methane, and carbon dioxide. Later, the presence of the hydrocarbons propane, formaldehyde, and acetylene was confirmed.
This is all very interesting, but why would anyone other than chemistry geeks care? Because the universe, including our Solar System, is largely a cold, sterile place. And the plumes coming from Enceladus indicate the presence of water, potentially warm, salty, water at that. And warm water might mean life, or the potential for life.
Cassini has previously observed two other stellar occultations. But with today’s observation, we stand to learn even more about the plumes of Enceladus. We’ll not only learn more about their density and composition, but since is the third such occultation to be observed, we’ll learn something about the plume’s behaviour over time. We probably won’t learn anything definitive about Enceladus’ life-supporting potential, but we will almost certainly find another piece of the puzzle, and fill in a blank spot in our knowledge.
In the Autumn of 2014, NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft arrived at Mars and entered into orbit. MAVEN wasn’t the only visitor to arrive at Mars at that time though, as comet Siding Spring (C/2013 A1) also showed up at Mars. Most of MAVEN’s instruments were shut down to protect sensitive electronics from Siding Spring’s magnetic field. But the magnetometer aboard the spacecraft was left on, which gave MAVEN a great view of the interaction between the planet and the comet.
Unlike Earth, which has a powerful magnetosphere created by its rotating metal core, Mars’ magnetosphere is created by plasma in its upper atmosphere, and is not very powerful. (Mars may have had a rotating metal core in the past, and a stronger magnetosphere because of it, but that’s beside the point.) Comet Siding Spring is small, with its nucleus being only about one half a kilometer. But its magnetosphere is situated in its coma, the long ‘tail’ of the comet that stretches out for a million kilometers.
When Siding Spring approached Mars, it came to within 140,000 km (87,000 miles) of the planet. But the comet’s coma nearly touched the surface of the planet, and during that hours-long encounter, the magnetic field from the comet created havoc with Mars’ magnetic field. And MAVEN’s magnetometer captured the event.
Jared Espley is a member of the MAVEN team at Goddard Space Flight Center. He said of the Mars/Siding Spring event, “We think the encounter blew away part of Mars’ upper atmosphere, much like a strong solar storm would.”
“The main action took place during the comet’s closest approach,” said Espley, “but the planet’s magnetosphere began to feel some effects as soon as it entered the outer edge of the comet’s coma.”
Espley and his colleagues describe the event as a tide that washed over the Martian magnetosphere. Comet Siding Spring’s tail has a magnetosphere due to its interactions with the solar wind. As the comet is heated by the sun, plasma is generated, which interacts in turn with the solar wind, creating a magnetosphere. And like a tide, the effects were subtle at first, and the event played out over several hours as the comet passed by the planet.
Siding Spring’s magnetic tide had only a subtle effect on Mars at first. Normally, Mars’ magnetosphere is situated evenly around the planet, but as the comet got closer, some parts of the planet’s magnetosphere began to realign themselves. Eventually the effect was so powerful that the field was thrown into chaos, like a flag flapping every which way in a powerful wind. It took Mars a while to recover from this encounter as the field took several hours to recover.
MAVEN’s task is to gain a better understanding of the interactions between the Sun’s solar wind and Mars. So being able to witness the effect that Siding Spring had on Mars is an added bonus. Bruce Jakosky, from the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder, is one of MAVEN’s principal investigators. “By looking at how the magnetospheres of the comet and of Mars interact with each other,” said Jakosky, “we’re getting a better understanding of the detailed processes that control each one.”
Today marks exactly 10 years since NASA’s Mars Reconnaissance Orbiter (MRO) arrived at Mars and began its journey of breathtaking discovery. It’s impossible to exaggerate the effect that the MRO has had on our understanding of Mars. Among MRO’s contributions to our knowledge of Mars is the (possible) detection of liquid water, an understanding of the seasonal changes on Mars, and the identification of underground geological structures.
To top it all off, MRO has produced some great Martian eye candy.
Martian Eye Candy: A beautiful picture of some dunes on the surface of Mars. Thanks MRO! (Image: NASA/JPL-Caltech/University of Arizona)
These kinds of discoveries are directly attributable to the mission’s longevity, and to the productivity of the science instruments aboard the orbiter. MRO’s 6 science instruments are still functioning 7 years after the principal science phase of the mission was completed.
MRO still has an important role to play, as an advance scout for rover missions and human missions. And, of course, it’s still doing important science work.
NASA is about to reach another milestone in the development of its Space Launch System (SLS.) The SLS is designed to take humans on future deep space missions, and the heart of the system is the RS-25 engine. March 10th will be the first test of this flight-model engine, which will be the most powerful rocket in the world, once in its final configuration.
SLS is the future of space flight for NASA. It’s planned uses include missions to Mars and to an asteroid. The rockets for the system have to be powerful, and they have to have a proven track record. The RS-25 fits the bill: they are a high-performance system that has seen much use.
The RS-25 has been used on over 135 shuttle missions, and they have seen over 1 million seconds of hot-fire time during ground testing. For the SLS, four RS-25s will be used to generate over 2 million pounds of thrust, and they will operate in conjunction with two solid rocket boosters.
“This year is all about collecting the data we need to adapt these proven engines for SLS’s first flight,” says Steve Wafford, the SLS Engines Manager. The team conducted a series of tests on a developmental RS-25 engine last year, but this is the first one that will fly.
Ronnie Rigney is the RS-25 project manager at the Stennis Space Center, where the tests are being conducted. “Every test is important, but there really is a different energy level associated with flight engines. It’s hard to describe the feeling you get knowing you’re going to see that engine lift off into the sky one day soon. It’s a very exciting time for all of us here,” said Rigney.
The SLS will be built in 3 stages, called blocks:
Block 1 will have a 70 metric ton lift capability.
Block 1B will be more powerful for deeper missions and will have a 105 metric ton lift capability.
Block 2 will add a pair of solid or liquid propellant boosters and will have a 130 metric ton lift capability.
Each of these blocks will use 4 RS-25 engines, and in its Block 2 configuration it will be the most powerful rocket in the world.
Engine #2059 is more than just a test engine. It will be used on the second SLS exploration mission (EM2), which will carry 4 astronauts into lunar orbit to test the SLS spacecraft.
“You can’t help but be excited about the test on A-1 (test stand,) especially when you realize that the engines that carried us to the moon and that carried astronauts on 135 space shuttle missions were tested on this very same stand. We’re just adding to a remarkable history of space exploration,” said Stennis Space Center Director Rick Gilbrech.
The team at Stennis feels the characteristic enthusiasm that NASA is known for. “We’re not just dreaming of the future. We’re enabling it to happen right now,” said Rigney.
Though the March 10th test is definitely a milestone, there’s still lots more work to do. Testing on RS-25 engines and flight controllers will continue, and in 2017, testing of the core stage will take place. 4 RS-25 engines will be tested at the same time.
We’re a long ways away from colonizing another planet—depending on who you talk to—but it’s not too soon to start understanding how we might do it when the time comes. Growing enough food will be one of the primary concerns for any future settlers of Mars. With that in mind, researchers at the Wageningen University and Research Centre in the Netherlands have created simulated Martian soil and used it to grow food crops.
This is actually the second experiment the team has performed with simulated soil, and the results were promising. The team harvested not only tomatoes and peas, but also rye, garden rocket, radish, and watercress. But it’s not just the edibles that were promising, it was the overall ability of the simulated soil to produce biomass in general. According to the researchers, the soil produced biomass equal to that produced by Earth soil, which was used as a control.
The team also grew crops in simulated Moon soil, to understand how that soil performed, but it produced much less biomass, and only the humble spinach was able to grow in it. The simulated Martian and Lunar soils were provided by NASA. The Martian soil came from a Hawaiian volcano, and the Lunar soil came from a desert in Arizona.
The soil used was not exactly the same as the soil you would scoop up if you were on the Moon or Mars. It was amended with organic matter in the form of manure and fresh cut grass. While this may sound like a ‘cheat’, it’s no different than how gardens are grown on Earth, with gardeners using manure, compost, grass clippings, leaves, and even seaweed to provide organic matter.
Of course, none of these soil amendments will be available on the Moon or Mars, and we won’t be sending a supply ship full of manure. Colonists will have to make use of all of the inedible parts of their crops—and human feces—to provide the organic material necessary for plant growth. It’ll be a closed system, after all.
The crops were grown in a controlled environment, where temperature, humidity, and other factors were kept within Earthly parameters. Any crops grown on Mars will be grown in the same controlled environments, at least until genetic modification can create plants able to withstand the increased radiation and other factors.
A problem facing colonists trying to grow food on Mars is the heavy metal content of the soil. Mars soil contains mercury, lead, cadmium, and arsenic, which are all toxic to humans. The presence of these elements doesn’t bother the plants; they just keep growing. But any crops grown in this soil will have to be tested for toxicity before they can be consumed. This is the next experiment that the team has planned.
Researchers at the Wageningen University are currently crowdfunding for this next experiment. If you’d like to contribute, check out their page here.
In about 4 billion years, scientists estimate that the Andromeda and the Milky Way galaxies are expected to collide, based on data from the Hubble Space Telescope. And when they merge, they will give rise to a super-galaxy that some are already calling Milkomeda or Milkdromeda (I know, awful isn’t it?) While this may sound like a cataclysmic event, these sorts of galactic collisions are quite common on a cosmic timescale.
As an international group of researchers from Japan and California have found, galactic “hookups” were quite common during the early universe. Using data from the Hubble Space Telescope and the Subaru Telescope at in Mauna Kea, Hawaii, they have discovered that 1.2 billion years after the Big Bang, galactic clumps grew to become large galaxies by merging. As part of the Hubble Space Telescope (HST) “Cosmic Evolution Survey (COSMOS)”, this information could tell us a great about the formation of the early universe.
China has plans to build a new space telescope which should outperform Hubble. According to the Chinese English Language Daily, the new telescope will be similar to Hubble, but will have a field of view that is 300 times larger. The new telescope, which has not been named yet, will have the ability to dock with China’s modular space station, the Tiangong.
The China National Space Administration has come up with a solution to a problem that dogged the Hubble Telescope. Whenever the Hubble needed repairs or maintenance, a shuttle mission had to be planned so astronauts could service it. China will avoid this problem with its innovative solution. The Chinese telescope will keep its distance from the Tiangong, but if repairs or maintenance are needed, it can dock with Tiangong.
No date has been given for the launch of this new telescope, but its plans must be intertwined with plans for the modular Tiangong space station. Tiangong-1 was launched in 2011 and has served as a crewed laboratory and a technological test-bed. The Tiangong-2, which has room for a crew of 3 and life support for twenty days, is expected to be launched sometime in 2016. The Tiangong-3 will provide life support for 3 people for 40 days and will expand China’s capabilities in space. It’s not expected to launch until sometime in the 2020’s, so the space telescope will likely follow its launch.
The telescope, according to the People’s Daily Online, will take 10 years to capture images of 40% of space, with a precision equal to Hubble’s. China hopes this data will allow it to make breakthroughs in the understanding of the origin, development, and evolution of the universe.
This all sounds great, but there’s a shortage of facts. When other countries and space agencies announce projects like this, they give dates and timelines, and details about the types of cameras and sensors. They talk about exactly what it is they plan to study and what results they hope to achieve. It’s difficult to say what level of detail has gone into the planning for this space telescope. It’s also difficult to say how the ‘scope will dock with the space station.
It may be that China is nervous about spying and doesn’t want to reveal any technical detail. Or it may be that China likes announcing things that make it look technologically advanced. (China is in a space race with India, and likes to boast of its prowess.) In any case, they’ve been talking about a space telescope for many years now. But a little more information would be nice.
Come on China. Give us more info. We’re not spies. We promise.