Chilean Telescopes OK, ESO, Gemini Report

The ESO Very Large Array atop Cerro Paranal, northern Chile (ESO).

[/caption]

The European Southern Observatory, which has several telescopes housed in the mountains of Chile, issued a press release that none of the observatories suffered any damage, and they have no reports of any staff that were injured or killed in the magnitutde 8.8 earthquake that struck central Chile on February 27, 2010:

Despite being the 7th strongest earthquake ever recorded worldwide, the ESO observatory sites did not suffer any damage, partly as they are engineered to withstand seismic activity and partly due to their distances from the epicentre. At La Silla, a power cut caused observations to stop during the night. Paranal Observatory, the APEX telescope and the ALMA Operations Support Facility and Array Operations Site were unaffected.

Additionally, the Gemini South Observatory posted on their website that they experienced no significant damage:

Sunset over Gemini South. Credit: Gemini

Gemini was fortunate that there were no significant structural damages to any of our facilities. The earthquake disrupted observations on early Saturday morning for less than 30 minutes. Subsequent operations have been essentially normal with the exception of Internet connectivity. We are dealing with communications and minor power inconsistencies that should be solved once general Chilean infrastructure issues are resolved. The temblor struck about 700 kilometers south of Gemini South which is on Cerro Pachón.

ESO reported that they are experiencing power outages and network interruptions, which means that communication may be limited. “Disruption to staff travel plans within, to, and from Chile should be expected. We urge Visiting Astronomers with observations planned at ESO observatories to put their trips to Chile on hold until further notice. International flights to and from Santiago International Airport are currently either cancelled or diverted. Information about observing programmes will be provided at a later date,” the press release said.

Other observatories in Chile include Cerro Tololo (CTIO) and SLOOH. The servers for the websites for these observatories were down on Saturday, but are now back up.

The SLOOH Twitter account reported late Sunday that their observatory has no power but scope, pier and dome appear to be OK. “Won’t know more until power is restored,” they said.

Update (3/1/2010): Mark T. Adams from NRAO sent this report via Facebook (thanks to Richard Drumm for forwarding it on to UT!):

“We’ve been able to contact or have heard from most of our staff based in or visiting Chile, and we are relieved to report that there appear to be no injuries to our staff or their families. Communication remains very difficult: land-lines, cell-phones, and the Internet are intermittent and unreliable.

“The ALMA Array Operations Site and Operations … See MoreSupport Facilities in northern Chile suffered no damage other than loss of communications. It may take a few days for the completion of a safety inspection of the NRAO/AUI and JAO offices in Santiago, which suffered some damage.”

The earthquake epicentre was 115 km north-northeast of the city of Concepción and 325 km south-west of the capital Santiago. The earthquake caused significant casualties and damage in the country.

Source: ESO, Gemini South

Elements of the Universe Shown in New Image

New image of NGC 346, the Small Magellanic Cloud. Credit: ESO

[/caption]

It’s not Earth, Wind and Fire*, but light, wind and fire in this dramatic new image of the Small Magellanic Cloud (NGC 346) that will make you want to Keep Your Head to the Sky**. The light, wind and heat given off by massive, Mighty Mighty ** Shinging Star(s)** have dispersed the glowing gas within and around this star cluster, forming a surrounding wispy nebular structure that looks like a cobweb. As yet more stars form from lose matter in the area, they will ignite, scattering leftover dust and gas, carving out great ripples and altering the face of this lustrous object. But, That’s the Way of the World** in this open cluster of stars, that we just Can’t Hide Love** for.

You’ll really get a Happy Feelin’** by looking at the zoomable image of the Small Magellanic Cloud, or see below for a video zooming into the region.

The nebula containing this clutch of bright stars can really Sparkle **. It is known as an emission nebula, meaning that gas within it has been heated up by stars until the gas emits its own light, just like the neon gas used in electric store signs.

This image was taken with the Wide Field Imager (WFI) instrument at the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. Images like this help astronomers Turn It Into Something Good** by helping to chronicle star birth and evolution, while offering glimpses of how stellar development influences the appearance of the cosmic environment over time.

If you want more information about this image, you can Let Your Feelings Show** by visiting the ESO website.

*The band Earth, Wind and Fire is sometimes known as Elements of the Universe
** indicates song titles recorded by Earth, Wind and Fire

All-Sky Radio Image in 60 Seconds, No Moving Parts

First LOFAR high-band image (MPIfR)

[/caption]
This image is a software-calibrated image with high signal-to-noise ratio at a frequency of 120 MHz, of the radio sky above Effelsberg, Germany, on November10, 2009. It has North at the top and East at the left, just as a person would have seen the entire sky when lying on their back on a flat field near Effelsberg late in the afternoon on November 10, if their eyes were sensitive to radio waves.

The two bright (yellow) spots are Cygnus A – a giant radio galaxy powered by a supermassive black hole – near the center of the image, and Cassiopeia A – a bright radio source created by a supernova explosion about 300 years ago – at the upper-left in the image. The plane of our Milky Way galaxy can also be seen passing by both Cassiopeia A and Cygnus A, and extending down to the bottom of the image. The North Polar Spur, a large cloud of radio emission within our own galaxy, can also be seen extending from the direction of the Galactic center in the South, toward the western horizon in this image. “We made this image with a single 60 second “exposure” at 120 MHz using our high-band LOFAR field in Effelsberg”, says James Anderson, project manager of the Effelsberg LOFAR station.

“The ability to make all-sky images in just seconds is a tremendous advancement compared to existing radio telescopes which often require weeks or months to scan the entire sky,” Anderson went on. This opens up exciting possibilities to detect and study rapid transient phenomena in the universe.

LOFAR, the LOw Frequency ARray, was designed and developed by ASTRON (Netherlands Institute for Radio Astronomy) with 36 stations centered on Exloo in the northeast of The Netherlands. It is now an international project with stations being built in Germany, France, the UK and Sweden connected to the central data processing facilities in Groningen (NL) and the ASTRON operations center in Dwingeloo (NL). The first international LOFAR station (IS-DE1) was completed on the area of the Effelsberg radio observatory next to the 100-m radio telescope of the Max-Planck-Institut für Radioastronomie (MPIfR).

Operating at relatively low radio frequencies from 10 to 240 MHz, LOFAR has essentially no moving parts to track objects in the sky; instead digital electronics are used to combine signals from many small antennas to electronically steer observations on the sky. In certain electronic modes, the signals from all of the individual antennas can be combined to make images of the entire radio sky visible above the horizon.

IS-DE1: Some of the 96 low-band dipole antennas, Effelsberg LOFAR station (foreground); high-band array (background) (Credit: James Anderson, MPIfR)

LOFAR uses two different antenna designs, to observe in two different radio bands, the so-called low-band from 10 to 80 MHz, and the high-band from 110 to 240 MHz. All-sky images using the low-band antennas at Effelsberg were made in 2007.

Following the observation for the first high-band, all-sky image, scientists at MPIfR made a series of all-sky images covering a wide frequency range using both the low-band and high-band antennas at Effelsberg.

Effelsberg sky through LOFAR eyes (Credit: James Anderson, MPIfR)

The movie of these all-sky images has been compiled and is shown above. The movie starts at a frequency of 35 MHz, and each subsequent frame is about 4 MHz higher in frequency, through 190 MHz. The resolution of the Effelsberg LOFAR telescope changes with frequency. At 35 MHz the resolution is about 10 degrees, at 110 MHz it is about 3.4 degrees, and at 190 MHz it is about 1.9 degrees. This change in resolution can be seen by the apparent size of the two bright sources Cygnus A and Cassiopeia A as the frequency changes.

Scientists at MPIfR and other institutions around Europe will use measurements such as these to study the large-sky structure of the interstellar matter of our Milky Way galaxy. The low frequencies observed by LOFAR are ideal for studying the low energy cosmic ray electrons in the Milky Way, which trace out magnetic field structures through synchrotron emission. Other large-scale features such as supernova remnants, star-formation regions, and even some other nearby galaxies will need similar measurements from individual LOFAR telescopes to provide accurate information on the large-scale emission in these objects. “We plan to search for radio transients using the all-sky imaging capabilities of the LOFAR telescopes”, says Michael Kramer, director at MPIfR, in Bonn. “The detection of rapidly variable sources using LOFAR could lead to exciting discoveries of new types of astronomical objects, similar to the discoveries of pulsars and gamma-ray bursts in the past decades.”

“The low-frequency sky is now truly open in Effelsberg and we have the capability at the observatory to observe in a wide frequency range from 10 MHz to 100 GHz”, says Anton Zensus, also director at MPIfR. “Thus we can cover four orders of magnitude in the electromagnetic spectrum.”

Source: Max-Planck-Institut für Radioastronomie

Gemini’s New Filters Reveal the Beauty of Star Birth

Sharpless 2-106 (Gemini Observatory/AURA, right; left: copyright Subaru Telescope, National Astronomical Observatory of Japan; All rights reserved)

[/caption]
About 2,000 light-years away, in the constellation of Cygnus (the Swan), lies Sharpless 2-106 (after Stewart Sharpless who put the catalog together in 1959), the birth-place of a star cluster-to-be.

Two recent image releases – by Subaru and Gemini – showcase their new filter sets and image capabilities; they also reveal the stunning beauty of the million-year-long process of the birth of a star.

Sharpless 2-106 (Gemini Observatory/AURA)

The filter set is part of the Gemini Multi-Object Spectrograph (GMOS) toolkit, and includes ones centered on the nebular lines of doubly ionized oxygen ([OIII] 499 nm), singly ionized sulfur ([SII] 672 nm), singly ionized helium (HeII 468nm), and hydrogen alpha (Hα 656 nm). The filters are all narrowband, and are also used to study planetary nebulae and excited gas in other galaxies.

The hourglass-shaped (bipolar) nebula in the new Gemini image is a stellar nursery made up of glowing gas, plasma, and light-scattering dust. The material shrouds a natal high-mass star thought to be mostly responsible for the hourglass shape of the nebula due to high-speed winds (more than 200 kilometers/second) which eject material from the forming star deep within. Research also indicates that many sub-stellar objects are forming within the cloud and may someday result in a cluster of 50 to 150 stars in this region.

The nebula’s physical dimensions are about 2 light-years long by 1/2 light-year across. It is thought that its central star could be up to 15 times the mass of our Sun. The star’s formation likely began no more than 100,000 years ago and eventually its light will break free of the enveloping cloud as it begins the relatively short life of a massive star.

For this Gemini image four colors were combined as follows: Violet – HeII filter; Blue – [SII] filter; Green – [OIII] filter; and Red – Hα filter.

Sharpless 2-106 (Copyright Subaru Telescope, National Astronomical Observatory of Japan. All rights reserved)

The Subaru Telescope image was made by combining images taken through three broadband near-infrared filters, J (1.25 micron), H (1.65 micron), and K’ (2.15 micron).

Sources: Gemini Observatory, NAOJ

Armazones Chile to be the Site for the 42 meter European Extremely Large Telescope?

Artist impression of the Extremely Large Telescope. Credit: ESO

Question: Where are the night skies always dark, cloud-free 360 days a year, bone-dry, and orbiting 3.5 km above sea level?
Answer: Armazones Mountain, Atacama desert, Chile.
Question: Who wants to go live there?
Answer: The European Extremely-Large Telescope (E-ELT)!

“We are talking about the biggest telescope in the world, the biggest for a long time to come. That means we have to choose the best spot. Chile has a superb location. It’s the best in the world, there’s no doubt,” the European Southern Observatory’s astronomer, Massimo Tarenghi, told AFP. He is one of four astronomers – two Chileans, an Italian (Tarenghi) and a German – who were in the desert this week to evaluate its suitability compared to the main other contender: the Spanish isle of La Palma in the Canary Islands off western Africa.

The European Southern Observatory (ESO), an intergovernmental astronomical research agency that already has three facilities operating in the Atacama desert, including the Very Large Telescope array in the town of Paranal which is currently considered Europe’s foremost observatory.

Work on the E-ELT is to begin in December 2011 and cost 90 million euros (120 million dollars) … once a decision is made on the site, which will be as early as March this year.

When complete, the E-ELT will be “the world’s biggest eye on the sky,” according to the ESO, which hopes it will “address many of the most pressing unsolved questions in astronomy.”

The E-ELT is likely to be as revolutionary in the field of astronomy as Galileo’s telescope 400 years ago that determined that the Sun, and not the Earth, was the center of our universe, according to the European agency based in Munich, Germany. The German astronomer in Chile, Wolfgang Gieren, waxed happily about the possibilities of the future telescope. “In no more than 15 years we could have the first good-resolution spectra of planets outside our universe that are the same size of Earth and see if we can detect signs of life,” he said.

One of the Chilean astronomers, Mario Harmuy, said the Armazones provided an ideal location. “Several things come together here. The cold Humboldt Current, which passes by Chile’s coast, means that there is a high pressure center in the Pacific that deflects high clouds and prevents cover over this part of the continent,” he said. “To the east, the high Andes mountains prevent humidity from moving in from the Atlantic with clouds. The higher you are, the less humidity there is, and thus the light from the stars go through less of the atmosphere and is distorted less when it hits the telescope.” To boot, the Chilean location is free of the storms that hit the Canary Islands and the Sahara, he said.

Tarneghi added that the ESO’s existing Paranal observatory nearby also meant that much of the ground infrastructure was already in place.

Chile’s government was equally enthusiastic about hosting the E-ELT. Gabriel Rodriguez, in charge of the foreign ministry’s science and technology division, said Chile was ready to cede the 600 hectares (1,500 acres) needed for the project. The government is to submit its offer to the ESO next Monday, with a decision expected early March.

The Italian astronomer cautioned that despite Chile’s obvious advantages, the tender had to be weighed carefully for all its aspects. “Neither any of us nor the ESO know what the final decision will be. We need to receive the Chilean and Spanish proposals and evaluate factors of operation, work and production costs,” Tarenghi said.

The other Chilean astronomer, Maria Teresa Ruiz, remained fired up at the potential of the new instrument. The “surface area of this telescope is bigger than all the others in Chile combined, which will allow us to explore things in the universe that we can’t even imagine today,” she said.

Source: AFP

An XO For Valentine’s Day…

The planet XO-3b, and the star XO-3 positions - Credit : DSS survey

[/caption]Almost everyone the world over recognizes the letters X and O to represent a kiss and a hug, but this time the XO stands for Extrasolar Planet XO-3b. If you’d like an extra special “kiss and hug” for Valentine’s Day, then why not visit with Baraket Observatory on Februrary 13th as they present their live, on-line AstroCast of XO-3b transiting its parent star! This is definitely an event you won’t want to miss, so step inside for more information…

On February 13, 2010, Baraket Observatory will webcast (weather permitting) the transit of an extra solar planet named “XO-3b”. The event will be observed by using a highly sophisticated robotic telescope and a sensitive cooled CCD camera. The observatory will transfer live images of the transit as they’re being captured by the Bareket Internet EDU scope, while plotting its light curve through the site as the transit progress. This truly amazing process will give students and the general pubic a unique in side view to behind the observatory scenes, while presenting to the viewers how science is being done – all in real time. The event will be about 2 hours in duration, scheduled to take place at 19:00 UTC.

Live Astro-cast of the ExtraSolar Planet XO-3b Transit

Live Astro-cast of the ExtraSolar Planet XO-3b Transit (European Server)

The American Association of Variable Star Observers (AAVSO) is collaborating with Bareket Observatory on variable-object studies, of which transiting exoplanets are a key element. The AAVSO has calibrated nearby stars in each of the known transiting exoplanet systems to act as local standards against which you can compare the host star for variability. The AAVSO is also working with the XO project team to study other variable stars that they have discovered during their exoplanet survey. Exoplanet transits are hard to detect, since the dip is only one percent or so in brightness, but with care, any amateur observer with a CCD camera can watch the transit of a planet around another star. A transit means the extra solar planet acts very similar to Venus, in our own solar system, when it passed in front of our Sun (in a direct geometrical line between the sun and the Earth), featuring a “mini eclipse”. While Venus can be easily observed against the solar disc, the extended XO-3b planet only presented as a dim singular dot in the sky. While it’s total brightness only slightly vary during the extra solar planet transit, for a relatively short period of time. The drop in the brightness is proportional to the planet’s surface. Usually within a 1% for a gaseous giant (Such as Jupiter) and as low as 0.01% for an Earth–sized planet. Searching for extra solar planets by detecting their transit is well within the possibilities of many today’s Earth based observatories and now watching a transit electronically is like a dream come true!

Flowers and candy for Valentine’s Day? Sure, that’s nice… But if you want to win an astronomer’s heart, give ’em a big XO!

This project is a part of the Bareket observatory Live-@stro outreach programs.

Airborne Observatory Passes Next Stage of Testing

SOFIA, accompanied by an F/A-18 during the open-door testing in December of 2009. Image Credit: NASA/Jim Ross

If you’ve ever been out observing and the clouds roll in, undoubtedly you’ve thought, “If I could only get above all of these stupid clouds, the sky would look great!” Well, NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) is capable of doing just that: SOFIA is an infrared telescope mounted on a 747SP airliner that used to be a passenger plane for Pan Am. By mounting the telescope on an airplane, NASA is able to fly it into the stratosphere, and get past all of the annoying gases and water vapor that get in the way when making observations.

SOFIA is still undergoing a battery of testing to ensure proper operation of the telescope before it starts observations. In December of last year, the telescope was taken up and the doors to the bay where it is mounted were opened. On January 15th, the telescope was flown to 35,000 feet (10.6 km) and the doors were left closed to test an updated gyroscope that was installed on the ‘scope.

These latest tests were designed to test how well the telescope can stabilize itself, because an airplane flying at 41,000 feet (12.5km) – the altitude at which many observations will be made – isn’t exactly a steady mount for a telescope. Gyroscopic stabilizers counteract the movement of the airplane to steady the telescope for observation.

During the test, the ability of the entire system to operate at cooler temperatures was established as well. The temperature for this latest test hovered around -15 degrees Celsius (+5 degrees Fahrenheit) even with the doors closed.

The telescope itself has a 2.5 meter (8.2 foot) mirror, with a 0.4 meter (1.3 foot) secondary mirror. The range of wavelengths that SOFIA can “see” is 0.3 microns to 1.6mm, meaning it’s capable of taking images in the infrared and submillimeter.

Some of the objects and phenomena that SOFIA will be observing include proto-planetary disks and planet formation, star formation, the chemical composition of other galaxies and interstellar cloud physics. An extensive description of SOFIA’s capabilities can be found on their site here.

SOFIA still has a few tests to undergo, and will be fully operational come 2014. In the next few years basic science observations will start up, and then other instruments will be added to the observatory. SOFIA is a collaboration between NASA and a German telescope partner, Deutsches SOFIA Institute.

Source: NASA press release

ALMA Telescope Links Third Antenna

Well, they’re 1/22 of the way there: the Atacama Large Millimeter/submillimeter Array (ALMA), planned to be one of the largest ground-based observatories in the world, successfully linked 3 of its 66 antennas together. This is the next step in working out all of the bugs associated with linking together the whole array, which should happen sometime in 2012.

ALMA is a “microwave” telescope array that will be the largest such ground-based observatory in the world once it is completely online. Telescopes like ALMA are called interferometers because they use the principle of very-long baseline interferometry – by linking separate telescopes together, a larger telescope of the effective resolution of the distance between the separate elements is achieved.

We reported on the first image taken by two of the antennas back in November. Information from a pair of the antennas was gathered to test the electronic functioning of the system, but errors from the system itself and those that creep in because of the atmosphere were weeded out by this latest test that included a third antenna. This test is called a “closure phase”, essentially the self-calibration of the antennas in terms of reconciling the information they are taking in with the signals present from noise.

Fred Lo, director of the National Radio Astronomy Observatory (NRAO) – which is the contributing organization of North America to the ALMA array – said of the test in a press release,”This successful test shows that we are well on the way to providing the clear, sharp ALMA images that will open a whole new window for observing the Universe. We look forward to imaging stars and planets as well as galaxies in their formation processes.”

ALMA can gather information in the electromagnetic spectrum at a wavelength that is less than 1 millimeter. Because the planned array is so large, it will eventually be able to resolve unprecedented images of some of the first galaxies to form after the Big Bang, and will also be able to capture the formation of planets around stars, as well as information on the late stages in the life of stars.

ALMA is located in the Atacama desert in Chile at about 5,000 meters (16,500 feet) above sea level. This high and dry location allows the telescope to receive more of the light in the submillimeter; water vapor in the atmosphere of the Earth absorbs light in this part of the spectrum.

Source: NRAO press release

First (of many) Gorgeous Pictures from the New VISTA

The Flame Nebula, as taken by the new VISTA visible and near-infrared camera. Click on the image for a zoomable hi-res image. Image Credit: ESO

Well, the WISE infrared all-sky satellite may be delayed until Monday, but the new infrared southern sky survey telescope VISTA (Visible and Infrared Survey Telescope for Astronomy) right here on Earth has gone online and released its first few gorgeous pictures.

This first one is of the Flame Nebula (NGC 2024), a star-forming region in the constellation Orion. The bright star in the image is the blue supergiant Alnitak, which is the easternmost star in Orion’s belt. Also shown is the reflected glow of NGC 2023 just below center, and the outline of the Horsehead Nebula in the far lower right (it looks a little different than you might normally see it because VISTA is operating in the visible and near-infrared). This image is about half the area of the full VISTA field of view, and is measures about 40 x 50 arcminutes – that’s about half a square degree on the sky , or twice the area of the full Moon.

The VISTA telescope is operated by the European Southern Observatory, and is part of their Paranal Observatory in the Atacama Desert of Northern Chile. It’s sitting just one peak over from the Very Large Telescope, also operated by the ESO. The main mirror on VISTA is a whopping 4.1 meters across (13.5 feet), and has 16 different detectors and a 3-ton camera for a total output of 67 million pixels. This allows for some very detailed images.

Since it’s a near-infrared telescope, it detects heat, and would detect its own heat signature, so the camera is housed in a cooler that keeps it at a chilly -200 degrees Celsius (-328 degrees Fahrenheit), and it’s sealed with the largest infrared-transparent window ever made. VISTA is charged with surveying the southern sky in the visible and near-infrared, and it will do so at a sensitivity that is forty times that of other infrared sky surveys, such as the Two Micron All-Sky Survey. It will be taking in enormous amounts of data to be processed: 300 gigabytes each night, or more than 100 terabytes per year.

Here’s a few more links to the first images released from the observatory to whet your appetite. Click on the links for a zoomable, hi-resolution image. You can be sure to see more like these in the future!

The Fornax Galaxy Cluster. Image Credit: ESO

The Fornax Galaxy Cluster, including the barred-spiral galaxy NGC 1365 in the lower right, and the elliptical galaxy NGC 1399 to the left of it.A mosaic image of over one million stars near the center of the Milky Way, in the constellation Sagittarius. Image Credit: ESO

This image shows a dusty region with over one million stars near the heart of the Milky Way. The dust normally obscures the stars in visible light, but these stars are visible with the infrared eyes of VISTA.

Source: ESO

10 Years of XMM-Newton

An artist's impression of XMM-Newton, the European Space Agency's X-Ray telescope, which celebrates ten years of operation today. Image Credit: ESA/C. Carreau

[/caption]

XMM-Newton, the ESA’s premiere space-based X-ray observatory, will celebrate 10 years of spectacular X-ray imaging of our Universe today. On the 10th of December 1999 at 14:32 GMT, XMM-Newton was launched by the European Space Agency, and tasked with the mission of observing some of the most interesting objects in the Universe with its X-ray eyes. Many objects such as black holes and neutron stars have been studied using the telescope, because these energetic objects emit light in the X-ray spectrum.

To date, over 2000 published articles have utilized information from the XMM-Newton telescope. X-rays, a very energetic form of photons, are created in extreme celestial events, such as the disks that surround black holes and the intense magnetic fields surrounding stars. By studying the X-rays emitted by a variety of celestial objects, astronomers have been able to get detailed information about the workings of the Universe.

XMM-Newton has also been crucial to the study of galaxy clusters and supermassive black holes, and has helped to create the largest catalog of cosmic X-ray sources, with over a quarter of a million entries. It has even been enlisted in the hunt for dark matter, as one theory of the substance suggests that a decayed dark matter particle would potentially emit X-rays. Exotic objects far away aren’t the only target for the observatory, though; it’s helped astronomers detect the outer edges of the atmosphere of Mars and icy comets at the outer limits of our Solar System.

Here are just a few of the stories on Universe Today that feature observations by XMM-Newton:

To celebrate the first decade of XMM-Newton’s observations, the ESA will hold a celebration in Madrid, Spain on December 10th. Here’s a link to XMM-Newton’s image gallery, and here’s one to a list of publications utilizing the telescope’s images.

Source: Eurekalert