Photobomb: The Moon Occults Aldebaran Wednesday

An occultation of Aldebaran by the Moon: before and after. Image credit and copyright: Eliot Herman.

How about that Hunter’s Supermoon this past weekend, huh? Follow that Moon, as it’s meeting up with the Hyades again this week, and occults (passes in front of) Aldebaran Tuesday night into Wednesday morning.

Here’s the lowdown on the event:

The 86% illuminated waning gibbous Moon occults the +0.9 magnitude star Aldebaran across North America, the Northern Atlantic and Europe. The Moon is three days past Full during the event. Both are located 136 degrees west of the Sun at the time of the event. The central time of conjunction is ~6:40 Universal Time (UT). The event occurs during the daylight hours over western Europe and northwestern Africa and under darkness for southeastern North America, including the eastern United States and Mexico. The Moon will next occult Aldebaran on November 15th, 2016. This is occultation 24 in the current series of 49 running from January 29th, 2015 to September 3rd 2018.

The occultation of Aldebaran by the Moon as seen from London on December 23rd, 2015. Image credit and copyright: Roger Hutchinson.
The occultation of Aldebaran by the Moon as seen from London on December 23rd, 2015. Image credit and copyright: Roger Hutchinson.

The graze line is of particular interest during this event. We’re talking about the very edge of the footprint of the Moon’s ‘shadow’ cast by Aldebaran, running through Canada and bisecting the United States. Observers based along this line could see a spectacular ‘grazing occultation’ of Aldebaran by the Moon. We usually think of the limb of the Moon as a smooth curve, but it’s actually jagged. What you may see is Aldebaran wink in and out as light shines down those lunar valleys and is alternately blocked out behind peaks and crater rims. This is an unforgettable sight, and makes for great video. A record of a grazing occultation by multiple observers can also be used to create a profile of the lunar limb. That light from Aldebaran took 65 years to get here, only to be blocked by our Moon at the very last second.

The occultation footpring for tonight's event. The solid lines denote where the occultation occurs under dark night time skies, while the blue lines denote twilight and the broken lines describe where the event occurs in the daytime. Image credit: Occult 4.2.
The occultation footprint for tonight’s event. The solid lines denote where the occultation occurs under dark nighttime skies, while the blue lines denote twilight, and the broken lines describe where the event occurs in the daytime. Image credit: Occult 4.2.

And observers (myself one of them) based in Europe shouldn’t count themselves out. Like brighter planets, you can spy a +1 magnitude star such as Aldebaran near the daytime Moon using binoculars or a telescope… if, of course, you have a high contrast deep blue sky and know exactly where to look for it. The International Occultation Timing Association has a page for the event with a complete list of ingress and egress times for key cities on three continents in the path. We’ll be watching the Wednesday event – clear skies willing — from our present basecamp in the Andalusian foothills just outside of Jimena de la Frontera, Spain.

The northern graze line for tonight's occultation. Note that several major cities lie along the crucial path. Image credit: Dave Dickinson.
The northern graze line for tonight’s occultation. Note that several major cities lie along the crucial path. Image credit: Dave Dickinson.

During our current epoch, the Moon can only occult four +1st magnitude stars: Regulus, Spica, Antares and Aldebaran. The slow motion movement of the Moon, the Earth and the background stars make this prestigious A-list change over time: until about two millennia ago, you could also count the bright star Pollux in Gemini among them.

In the current century, (2001-2100 AD) the Moon occults Aldebaran 247 times, topped only by Antares (386 times) and barely beating out Spica (220 times).

Timing an occultation is fun and as easy as shooting video of the Moon through a telescope at the appointed time of ingress or egress. Practice on framing the dazzling Moon first well in advance — probably the toughest part is getting the exposure of the bright limb stopped down enough to still see and image the star. We find that shooting anywhere from 1/100th to 1/500th frame rate for a gibbous Moon is about right. Don’t be afraid to crank up the magnification a bit, so you can place the bulk of the Moon out of view. Also, catching occultations of stars and planets during waning Moon phases are more challenging than waxing, as the star will ingress behind the bright leading limb and later reappear behind the dark trailing limb (waxing is vice versa).

Observing: Running an audible time hack in the background such as WWV radio out of Fort Collins, Colorado can provide a precise record of the occultation.

But wait, there’s more. When the Moon occults Aldebaran, its also crossing the background V-shaped open star cluster known as the Hyades. Worldwide the waning gibbous Moon also occults Gamma, 51, and Theta^1 and Theta^2, SAO 93975, and 119 Tauri. Chances are, there’s an occultation for YOU to catch this week, regardless of your location.

Want more? Well, the Moon continues to occult Aldebaran every lunation through 2017, and will also start a cycle of passes in front of Regulus on December 18th. In fact, the next occultation of Aldebaran on November 15th favors central Asia, and the event two lunations from now on December 13th brings the path back around the North America.

A great close out for 2016, for sure. Don’t miss this week’s occultation!

This Weekend: A Hunter’s Full Moon Kicks Off Supermoon Season

The #MemoriesInDNA project intends to create an archive of human knowledge which will be sent to the Moon. Credit and copyright: John Brimacombe.

Ready for some lunar action of proxigean proportions? This weekend’s Full Moon ushers in that most (infamous?) of internet ready cultural memes: that of the Supermoon. This moniker stands above the Blood, Mini, and Full Moons both Black and Blue as the Full Moon of the year that folks can’t seem to get enough of, and astronomers love to hate.

But wait a minute: is this weekend’s Full Moon really the closest of the year?

Nope, though it’s close. But this month’s Full Moon does, however, usher in what we like to call Supermoon season.

Let us explain.

First, we’ll let you in on the Supermoon’s not so secret history. Yes, the meme arose over the last few decades, mostly due to the dastardly deeds of astrologers. Y’know, that well meaning friend/coworker/relative/anonymous person on Twitter that constantly mistakes your passion for the night sky as ‘astrology.’ Anyhow, the idea of the Supermoon has gained new life via the internet, and loosely translates as the closest Full Moon of the year. Sometimes, its dressed up with the slightly science-y sounding ‘a Full Moon along the closest 90% of its orbit’ (!) definition.

Now, to know the orbit of the Moon is to understand celestial mechanics. The Moon’s orbit is indeed elliptical, ranging from an average perigee (its closest point to the Earth) of 362,600 kilometers, to an apogee of 405,400 kilometers distant.

Fun fact: the time it takes the Moon to go from one perigee to the next (27.55 days) is one anomalistic month, a fine pedantic point to bring up to said relative/coworker the next time they refer to you as an astrologer.

And yes, the perigee Full Moon is a thing. We even like to throw about the quixotic term of the proxigean Moon, a time when tidal variations are at an extreme. Plus, all perigees are not created equal, but range from 356,400 kilometers to 370,400 kilometers distant, as the Earth-Moon system not only swings around its common barycenter, but the Sun also drags the entire orbit of the Moon around the Earth, completing one complete revolution every 8.85 years in what’s known as the precession of the line of apsides. Note that the nodes of the Moon’s orbit actually move in the opposite direction, with an 18.6 year period.

The complex motion of the Moon. Image credit: Wikimedia Commons/Geologician/Homunculus2.
The complex motion of the Moon. Image credit: Wikimedia Commons/Geologician/Homunculus2.

Yup, the motion of the Moon has given humanity a fine study in Celestial Mechanics 101. Anyhow, we contend that a more succinct definition for a perigee ‘Supermoon’ is simply a Full Moon that falls within 24 hours of perigee. Under this definition, the Full Moon this Sunday on October 16th occurring at 4:23 Universal Time (UT) certainly meets the criterion, occurring 19 hours and 24 minutes before perigee… as does the Full Moon of November 14th (2.4 hours from perigee) and December 13th (just under 24 hours from perigee).

For extra fun, said November 14th perigee Full Moon is the closest in 30 years; expect Supermoon lunacy to ensue.

A fun place to play with Full and New Moons vs perigee and apogee past present and future is Fourmilab’s Lunar Apogee and Perigee Calculator. Hey, it’s what we do for fun. Looking over these cycles, you’ll notice a pattern of ‘supermoon seasons’ emerge, which moves forward along the calendar about a lunation a year. (that’s our friend the precession of the line of apsides at work again).

(another fun fact: the time it takes for the Moon to return to a similar phase—for example, Full back to Full—is 29.5 days, and known as a synodic month.)

The Full Moon does appear slightly larger at perigee than apogee, to the tune of 29.3′ versus 34.1′ across. This change is enough to notice with the unaided eye, though the Moon is deceptively smaller than it appears: you could, for example, line up 654 ‘Supermoons’ around the local horizon from end to end.

A 'super' vs average Full Moon. Image credit: Marco Langbroek.
A ‘super’ vs average Full Moon. Image credit: Marco Langbroek.

The October Moon is also referred to by the Algonquin Native Americans as the ‘Hunter’s Moon,’ a time to use that extra illumination to track down vital sustenance as the harsh winter approaches. Very occasionally, the Harvest Full Moon falling near the September southward equinox falls in early October (as occurs next year in 2017) and bumps the Hunter’s Moon from its monthly slot.

Be sure to stalk the rising Hunter’s Moon near perigee this weekend. Of course, we’ll be shooting at our prey with nothing more than a camera, as the Full Moon rises from behind the Andalusian foothills.

Celebrate the Power of Naked-Eye Observing With New Book

Credit: Bob King
The cover of my new book "Night Sky with the Naked Eye". The book is currently available for pre-order on Amazon and Barnes and Noble. Publication date is November 8.
This is the cover of my new book “Night Sky with the Naked Eye”, a non-technical guide to all the great things visible with the naked eye at night. It’s published by Page Street Publishing and distributed by Macmillan and currently available for pre-order on Amazon and Barnes and Noble. Publication date is November 8. Look for it here on Universe Today soon!

If you’re like a lot of people, you don’t own a telescope but still have a passionate curiosity for what’s going on over your head. Good news!  There’s lots to see up there without any equipment at all. This is the premise of my new book titled Night Sky with the Naked Eye, a guide to the wonders of the night sky that anyone can enjoy and understand whether you live in an apartment in the city or cabin 50 miles from nowhere.

This diagram from the book depicts why many satellites are visible during twilight before they're eclipsed by Earth's shadow. Credit: Gary Meader
This diagram from the book depicts why many satellites are visible during twilight before they’re eclipsed by Earth’s shadow. Credit: Gary Meader

I’ve always been amazed at how accessible the universe is. To make that personal connection to the cosmos we only need acquire the habit looking up. Total eclipses, monster auroras and rich meteor showers get a lot of coverage and rightly so, but there’s a lot of other stuff up there. Little things that stoke our sense of wonder happen all the time: Earth’s rising shadow at sunset, nightly satellite flyovers, the beauty of an earth-lit crescent moon or seeing your shadow by the light of Venus.

Skywatching not only informs and delights, it has the power to expand our perspective and sense of place in the scheme of things. Gazing up at the Milky Way on a dark summer night, we feel both humbled and fortunate to be alive. The night sky’s elixir of beauty, timelessness and possibility feeds an inner quietude that can be our strength in stressful times.

Night sky observing sometimes means pleasant surprises like seeing this rare Venus pillar and corona. The book explores both celestial and atmospheric phenomena. Credit: Bob King
Night sky observing sometimes means pleasant surprises like seeing this rare Venus pillar and corona. The book explores both celestial and atmospheric phenomena. Credit: Bob King

While the book touches on the contemplative aspects of skywatching, the bulk of it is activity-oriented, intended to inspire you to get outside. I’ve got tips on weather-watching and making the most of online resources like Clear Dark Sky and satellite imagery to help you find clear skies for that must-see special event. And if light pollution is a problem where you live, we explore ways to make a difference in reducing it as well as using online atlases to find a dark observing site.

The book covers the basics of celestial and planetary motions, how to find the brighter constellations and naked-eye deep sky objects along with suggested night sky viewing activities to share with friends and family. There are 1o chapters in all:

Chapter 1: Wave “Hi!” to the Astronauts
Chapter 2: Anticipating the Night
Chapter 3: Rockin’ N’ Rollin’ Earth
Chapter 4: Dive Into the Dippers
Chapter 5: Four Seasons of Starlight
Chapter 6: Meet the Rabbit in the Moon
Chapter 7: Face to Face with the Planets
Chapter 8: Wish Upon a Shooting Star
Chapter 9: Awed by Aurora
Chapter 10: Curiosities of the Night

This is back cover of the Night Sky with the Naked Eye book jacket.
This is back of the Night Sky with the Naked Eye book jacket. My book will appear back to back with another space book, titled Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos, by Universe Today contributing editor Nancy Atkinson. Watch for her announcement shortly.

Not everything is a billion miles away. We also take time to examine and appreciate closer-to-home phenomena that are part of  the nighttime experience like lunar halos, light pillars and the aurora borealis. No observers’ guide would be complete without challenges. How about seeing craters on the moon with no optical aid or spotting the gegenschein? It’s all here.

Because the Internet has become an integral part of our lives, the book includes numerous online resources as well as useful mobile phone apps related to constellation finding and aurora tracking and tips on night sky photography.

Whether for yourself or to give as a holiday gift for a budding skywatcher, I hope you check out my book, which will be featured in a special promotion here at Universe Today. It would be my privilege to serve as your night sky guide.

Seeing Double: Jupiter Returns at Dawn

double shadow transit
Io and Europa cast simultaneous shadows on Jupiter on March 22nd, 2016. Image credit and copyright: Andrew Symes.

Missing Jove? The largest planet in our solar system is currently on the far side of the Sun and just passed solar conjunction on September 26th, 2016. October now sees Jupiter slowly return to the dawn sky. Follow that gas giant, as an interesting set of double shadow transits transpires in late October leading in to early November.

This particular cycle of double shadow transits involves the large Jovian moons of Europa and Ganymede.

The scene on October 24th at 23:55 UT. Image credit: Created using Starry Night Education software.
The scene on October 24th at 23:55 UT. Image credit: Created using Starry Night Education software.

Europa and Ganymede double shadow transit season begins later this month, as both cast shadows on the Jovian cloud tops. This series of simultaneous shadow transits runs from October 17th to November 8th, and includes four weekly events.

The inner three large moons Io, Europa and Ganymede are in a 4:2:1 resonance. Europa orbits Jove once every 3.6 days and makes two circuits for Ganymede’s one. This means there’s a double shadow transit once every week in the current season:

The double shadow transit season of 2016. Created by author.
The double shadow transit season of 2016. Created by author.

When can you first spy Jupiter, post solar conjunction? Catching this particular series of double shadow transits is challenging this time around, owing to the planet’s position low in the dawn twilight. The first event on October 17th starts with Jupiter just 16 degrees west of the Sun, and the cycle ends with Jove 38 degrees west of the Sun on November 8th.

Keep in mind, it is possible to track Jupiter up in to the daytime sky, post sunrise. To do this, you’ll need a ‘scope with a solid equatorial mount and good sidereal tracking. The trick is to lock on to Jupiter before sunrise and track it up in to the dawn sky. Be sure to physically block that dazzling rising Sun out of view behind a hill or building, and NEVER aim your telescope at the Sun!

Using this method opens up the possibility of nabbing a given double shadow event to longitudes due east of the quoted locales above.

The waning crescent Moon also passes 1.4 degrees NNE of Jupiter on October 28th, offering another chance to spy the gas giant in the dawn sky, using the nearby crescent Moon as a guide.

The Moon and Jupiter in the daytime skies on Novemebr.
The Moon and Jupiter in the daytime skies on October 28th. Image credit: Stellarium.

And another interesting pairing is coming right up on the morning of Tuesday, October 11th, when Mercury passes just 0.8 degrees (48′) NNE of Jupiter. Both are only 12 degrees west of the Sun at closest approach, which occurs around 10:00 UT. Still, both will appear as an interesting pseudo-double star, with Mercury shining at magnitude -1.1 and Jupiter only half a magnitude fainter at -1.6.

You can even see Jupiter coming off of solar conjunction and headed toward dawn skies courtesy of SOHO’s LASCO C3 camera:

Jupiter (arrowed) exiting the 15 degree wide field of view of SOHO's LASCO C3 camera on October 5th. Image credit: NASA/ESA/SOHO.
Jupiter (arrowed) exiting the 15 degree wide field of view of SOHO’s LASCO C3 camera on October 5th. Image credit: NASA/ESA/SOHO.

Callisto, the outermost large moon of Jupiter, ceased casting its shadow on Jupiter earlier this year on September 1st 2016. Callisto is the only large moon that can ‘miss’ the gas giant’s cloud tops. Callisto must be involved for a triple shadow transit to occur, and the moon resumes regularly casting its shadow on Jove on December 4th, 2019.

Callisto can also experience total solar eclipses similar to those seen from the Earth during the mutual eclipse season for Jupiter’s moons, albeit shorter in duration:

And don ‘t forget: we’ve got a spacecraft currently exploring Jupiter for the next year and a half: NASA’s very own Juno.

Be sure to check out the Jovian action over the next month, gracing a dawn sky near you.

Tears of the Hunter: Our Guide to the 2016 Orionid Meteor Shower

Orionid
A 2014 Orionid meteor. Image credit and copright: Sharin Ahmad (@Shahgazer).

The month of October is upon us this coming weekend, and with it, one of the better annual meteor showers is once again active: the Orionids.

In 2016, the Orionid meteors are expected to peak on October 22nd at 2:00 UT (10:00 PM U.S. Eastern Time on October 21st) , favoring Europe and Africa in the early morning hours. The shower is active for a one month period from October 2nd to November 2nd, and can vary with a Zenithal Hourly Rate (ZHR) of 10-70 meteors per hour. This year, the Orionids are expected to produce a maximum ideal ZHR of 15-25 meteors per hour. The radiant of the Orionids is located near right ascension 6 hours 24 minutes, declination 15 degrees north at the time of the peak. The radiant is in the constellation of Orion very near its juncture with Gemini and Taurus.

A gallery of Fall meteor shower radiants, including the October Orionids. Image credit: Stellarium
A gallery of Fall meteor shower radiants, including the October Orionids. Image credit: Stellarium

The Moon is at a 55% illuminated, waning gibbous phase at the peak of the Orionids, making 2016 an unfavorable year for this shower, though that shouldn’t stop you from trying. It’s true that the Moon is only 19 degrees east of the radiant in the adjacent constellation Gemini at its peak on the key morning of October 22, though it’ll move farther on through the last week of October.

In previous recent years, the Orionids produced a Zenithal Hourly Rate (ZHR) of 20 (2014) and a ZHR of 30 (2013).

The Orionid meteors strike the Earth at a moderately fast velocity of 66 km/s, and the shower tends to produce a relatively high ratio of fireballs with an r value of = 2.5. The source of the Orionids is none other than renowned comet 1/P Halley. Halley last paid the inner solar system a visit in early 1986, and will once again reach perihelion on July 28, 2061. Let’s see, by then I’ll be…

The orientation of the Earth's shadow vs, the zenith positions of the Sun, Moon and the radiant of the Orionid meteors at the expected peak of the shower on October 22nd. Image adapted from Orbitron
The orientation of the Earth’s shadow vs the zenith positions of the Sun, Moon and the radiant of the Orionid meteors at the expected during the peak of the shower on October 22nd. Image adapted from Orbitron.

Unlike most meteor showers, the Orionids display a very unpredictable maximum – many sources decline to put a precise date on the shower’s expected maximum at all. On some years, the Orionids barely top 10 per hour at their maximum, while on others they display a broad but defined peak. One 1982 study out of Czechoslovakia suggested a twin peak for this shower after looking at activity from 1944 to 1950. All good reasons to be vigilant for Orionids throughout the coming month of October.

And check out this brilliant meteor that lit up the skies over the southern UK this past weekend:

‘Tis the season for cometary dust particles to light up the night sky. Trace the path of a suspect meteor to the club of Orion, and you’ve likely sighted an Orionid meteor. But other showers showers are active in October, including:

The Draconids: Peaking around October 8th, these are debris shed by Comet 21P Giacobini-Zinner. The Draconids are prone to great outbursts, such as the 2011 and 2012 meteor storm, but are expected to yield a paltry ZHR of 10 in 2016.

The Taurids: Late October into early November is Taurid fireball season, peaking with a ZHR of 5 around October 10th (the Southern Taurids) and November 12th (the Northern Taurids).
The Camelopardalids: Another wildcard shower prone to periodic outbursts. 2016 is expected to be an off year for this shower, with a ZHR of 10 topping out on October 5.

And farther afield, we’ve got the Leonids (November 17th) the Geminids (December 14th) and the Ursids (December 22nd) to close out 2016.

A 2015 Orionid captured by a NASA All-Sky camera atop Mt. Lemmon, Arizona. Image credit: NASA.
A 2015 Orionid captured by a NASA All-Sky camera atop Mt. Lemmon, Arizona. Image credit: NASA.

Observing a meteor shower like the Orionids is as simple as finding a dark site with a clear horizon, laying back and watching via good old Mark-1 eyeball. Blocking that gibbous Moon behind a building or hill will also increase your chances of catching an Orionid. Expect rates to pick up toward dawn, as the Earth turns forward and plows headlong into the meteor stream.

You can make a count of what you see and report it to the International Meteor Organization which keeps regular tabs of meteor activity.
Photographing Orionids this year might be problematic, owing to the proximity of the bright Moon, though not impossible. Again, aiming at a wide quadrant of the sky opposite to the Moon might just nab a bright Orionid meteor in profile. We like to just set our camera’s intervalometer to take a sequence of 30” exposures of the sky, and let it do the work while we’re observing visually. Nearly every meteor we’ve caught photographically turned up in later review, a testament to the limits of visual observing.

Clear skies, good luck, and send those Orionid images in the Universe Today’s Flickr forum.

Bright Binocular Nova Discovered in Lupus

Source: Stellarium
The possible nova in Lupus photographed on Sept. 25 from Australia. Credit: Joseph Brimacombe
The possible nova in Lupus photographed on Sunday, Sept. 25 from Australia. The star is now bright enough to see in binoculars for observers in the far southern U.S. and points south. Credit: Joseph Brimacombe

On September 20, a particular spot in the constellation Lupus the Wolf was blank of any stars brighter than 17.5 magnitude. Four nights later, as if by some magic trick, a star bright enough to be seen in binoculars popped into view. While we await official confirmation, the star’s spectrum, its tattle-tale rainbow of light, indicates it’s a nova, a sun in the throes of a thermonuclear explosion.

A bright possible nova was discovered only days ago near the 3rd magnitude star Epsilon Lupi. It shot from fainter than magnitude +17.5 to its current magnitude +6.8 in just four nights ... and it's still rising. The nova is bright enough to see in binoculars for observers in the far southern U.S., where it's visible low in the southwestern sky in late evening twilight. This map shows the sky facing southwest about an hour after sunset from Key West, Florida, latitude 24.5 degrees north. Source: Stellarium
The nova was discovered on Sept. 23 near the 3rd magnitude star Epsilon Lupi. It rose from fainter than magnitude +17.5 to its current magnitude +6.8 in just four nights … and it’s still rising. It’s visible low in the southwestern sky in late evening twilight low northern latitudes, the tropics and southern hemisphere. This map shows the sky facing southwest about an hour after sunset from Key West, Florida, latitude 24.5 degrees north. Source: Stellarium

The nova, dubbed ASASSN-16kt for now, was discovered during the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or “Assassin”), using data from the quadruple 14-cm “Cassius” telescope in CTIO, Chile. Krzysztof  Stanek and team reported the new star in Astronomical Telegram #9538. By the evening of September 23 local time, the object had risen to magnitude +9.1, and it’s currently +6.8. So let’s see — that’s about an 11-magnitude jump or a 24,000-fold increase in brightness! And it’s still on the rise.

Use this chart with binoculars to help you find the likely nova. The field of view is about 5 degrees with north up. The "new star" lies between a bright triangle of stars to the east and the naked-eye star Epsilon Lupi to the west. Stars are labeled with magnitudes. Chart: Bob King,  Source: Stellarium
Use this chart with binoculars to help you find the likely nova. The field of view is about 5 degrees with north up. The “new star” lies between a bright triangle of stars to the east and the naked-eye star Epsilon Lupi to the west. Stars are labeled with magnitudes. Chart: Bob King, Source: Stellarium

The star is located at R.A. 15h 29?, –44° 49.7? in the southern constellation Lupus the Wolf. Even at this low declination, the star would clear the southern horizon from places like Chicago and further south, but in late September Lupus is low in the southwestern sky. To see the nova you’ll need a clear horizon in that direction and observe from the far southern U.S. and points south. If you’ve planned a trip to the Caribbean or Hawaii in the coming weeks, your timing couldn’t have been better!

Novae occur in close binary systems where one star is a tiny but extremely compact white dwarf star. The dwarf pulls material into a disk around itself, some of which is funneled to the surface and ignites in a nova explosion. Credit: NASA
Novae occur in close binary systems where one star is a tiny but extremely compact white dwarf star. The dwarf draws material into a disk around itself, some of which is funneled to the surface and ignites in a nova explosion. Credit: NASA

I’ve drawn the map for Key West, one of southernmost locations on the U.S. mainland, where the nova stands about 7-8° high in late twilight, but you might also see it from southern Texas and the bottom of Arizona if you stand on your tippytoes. Other locales include northern Africa, Finding a good horizon is key. Observers across Central and South America, Africa, India, s. Asia and Australia, where the star is higher up in the western sky at nightfall, are favored.

Nova means “new”, but a nova isn’t a brand new star coming to life but rather an explosion that occurs on the surface of an otherwise faint star no one’s taken notice of – until the blast causes it to brighten 50,000 to 100,000 times.

You can use this AAVSO chart to find the nova and track its changing brightness. Star magnitudes are shown to the tenth with the decimal omitted. Credit: AAVSO
You can use this AAVSO chart to find the nova and track its changing brightness. Star magnitudes are shown to the tenth with the decimal omitted. Click to enlarge. Credit: AAVSO

A nova occurs in a close binary star system, where a small but extremely dense and massive (for its size) white dwarf siphons hydrogen gas from its closely-orbiting companion. After whirling around in a flattened accretion disk around the dwarf, the material gets funneled down to the star’s 150,000 F° surface where gravity compacts and heats the gas until it detonates in a titanic thermonuclear explosion. Suddenly, a faint star that wasn’t on anyone’s radar vaults a dozen magnitudes to become a standout “new star”.

Novae are relatively rare and almost always found in the plane of the Milky Way, where the stars are most concentrated. The more stars, the greater the chances of finding one in a nova outburst. Roughly a handful a year are discovered, many of those in Scorpius and Sagittarius, in the direction of the galactic bulge.

We’ll keep tabs on this new object and report back with more information and photos as they become available. You can follow the new celebrity as well as print out finder charts on the American Association of Variable Star Observers (AAVSO) website by typing ASASSN-16kt in the info boxes.

I sure wish I wasn’t stuck in Minnesota right now or I’d be staring down the wolf’s new star!

Occultation Palooza: The Moon Covers Aldebaran and More

Aldebaran
The Moon crosses the Hyades on July 29th, 2016. Image credit and copyright: Alan Dyer

This week, we thought we’d try an experiment for tonight’s occultation of Aldebaran by the Moon. As mentioned, we’re expanding the yearly guide for astronomical events for the year in 2017. We’ve done this guide in various iterations since 2009, starting on Astroguyz and then over to Universe Today, and it has grown from a simple Top 10 list, to a full scale preview of what’s on tap for the following year.

You, the reader, have made this guide grow over the years, as we incorporate feedback we’ve received.

Anyhow, we thought we’d lay out this week’s main astro-event in a fashion similar to what we have planned for the guide: each of the top 101 events will have a one page entry (two pages for the top 10 events) with a related graphic, fun facts, etc.

So in guide format, tonight’s occultation of Aldebaran would break down like this:

Wednesday, September 21st: The Moon Occults Aldebaran

The occultation footprint of tonight's Aldebaran event.
The occultation footprint of tonight’s Aldebaran event.

Image credit Occult 4.2

The 67% illuminated waning gibbous Moon occults the +0.9 magnitude star Aldebaran. The Moon is two days prior to Last Quarter phase during the event. Both are located 109 degrees west of the Sun at the time of the event. The central time of conjunction is 22:37 Universal Time (UT). The event occurs during the daylight hours over southeast Asia, China, Japan and the northern Philippines and under darkness for India, Pakistan and the Arabian peninsula and the Horn of Africa. The Moon will next occult Aldebaran on October 19th. This is occultation 23 in the current series of 49 running from January 29th 2015 to September 3rd, 2018. This is one of the more central occultations of Aldebaran by the Moon for 2016.

india-view

The view from India tonight, just before the occultation begins. Image credit: Stellarium

Fun Fact-In the current century, (2001-2100 AD) the Moon occults Aldebaran 247 times, topped only by Antares (386 times) and barely beating out Spica (220 times).

Or maybe, another fun fact could be: A frequent setting for science fiction sagas, Aldebaran is now also often confused in popular culture with Alderaan, Princess Leia’s late homeworld from the Star Wars saga.

Like it? Thoughts, suggestions, complaints?

Now for the Wow! Factor for tonight’s occultation. Aldebaran is 65 light years distant, meaning the light we’re seeing left the star in 1951 before getting photobombed by the Moon just over one second before reaching the Earth.

There are also lots of other occultations of fainter stars worldwide over the next 24 hours, as the Moon crosses the Hyades.

And follow that Moon, as a series of 20 occultations of the bright star Regulus during every lunation begins later this year on December 18th.

Gadi Eidelheit managed to catch the March 14th, 2016 daytime occultation of Aldebaran from Israel:

And also in the ‘Moon passing in front of things’ department, here’s a noble attempt at capturing a difficult occultation of Neptune by the Moon last week on September 15th, courtesy of Veijo Timonen based in Hämeenlinna Finland:

Lets see, that’s a +8th magnitude planet next to a brilliant -13th magnitude Moon, one million (15 magnitudes) times brighter… it’s amazing you can see Neptune at all!

Last item: tomorrow marks the September (southward) equinox, ushering in the start of astronomical fall in the northern hemisphere, and the beginning of Spring in the southern. The precise minute of equinoctial crossing is 14:21 UT. In the 21st century, the September equinox can fall anywhere from September 21st to September 23rd. Bob King has a great recent write-up on the equinox and the Moon.

Here's EVERY occultation of Aldebaran from 2015 through 2018. (Click to enlarge) Credit: Occult 4.2.
Here’s EVERY occultation of Aldebaran from 2015 through 2018. (Click to enlarge) Credit: Occult 4.2.

Don’t miss tonight’s passage of Aldebaran through the Hyades, and there’s lots more where that came from headed into 2017!

Incredible Images of Mars from Earth

Mars as seen from Earth on June 13, 2016. Credit and copyright: Damian Peach.

What did you do during your summer this year? Award-winning astrophotographer Damian Peach spent much of his 2016 summer capturing incredibly clear images of Mars during opposition, when the Red Planet was closest to Earth. Peach has now compiled a wonderful “rotating planet” movie of images taken between June 4th – 18th, 2016, showing amazing detail of the planet.


At its closest point this year, Mars was about 46.8 million miles (75.3 million kilometers) from Earth.

Peach’s astrophotography truly sets “a new standard” as one commenter said, and Peach just won another prize in the “Planets, Comets & Asteroids” division of the Insight Astronomy Photographer of the Year 2016, awarded at the Royal Observatory in Greenwich, England last night.

Peach has said this summer held “excellent seeing,” both from his home in the UK and from a photography trip to Barbados. He even captured a fleeting localized dust storm on Mars during mid-June over Mare Erythraeum, one of the prominent dark areas on the planet that were once thought to be seas. In the image below of the dust storm, Peach also pointed out the “linear cloud streak in the southern hemisphere – clearly those Martian flying saucer pilots have been having fun!”

Images of Mars from Earth on Jun 15, 2016. Credit and copyright: Damian Peach.
Images of Mars from Earth on Jun 15, 2016. Credit and copyright: Damian Peach.

See more of Peach’s excellent astrophotography work at his website , or on Twitter. See a larger version of the lead image here.

Mars is still visible in the night sky, but if you missed seeing this planet at its brightest in 2016, the next time Mars will be at opposition will be in 2018, with close approach on July 31, 2018.

The Lowdown on September’s Harvest Moon

Credit: Alan Dyer / AmazingSky.com
The Full Moon of August 18, 2016 - the “Sturgeon Moon” - rising amid cloud over a wheatfield. This is a 5-exposure stack blended with luminosity masks, and shot with the Canon 60Da and 135mm telephoto.
The Full Moon of August 18, 2016 rises amid cloud over a wheat field. Friday night will see the rising of the annual Harvest Moon. Credit: Alan Dyer

It’s that wonderful time of year again when the Harvest Moon teeters on the horizon at sunset. You can watch the big orange globe rise on Friday (Sept. 16) from your home or favorite open vista just as soon as the Sun goes down. Despite being one of the most common sky events, a Full Moon rise still touches our hearts and minds every time. No matter how long I live, there will never be enough of them.

Friday night's Harvest Moon rises around sunset in the faint constellation Pisces the fish. Two fists above and left of the Moon, look for the four stars that outline the massive asterism of Pegasus the flying horse. Stellarium
Friday night’s Harvest Moon rises around sunset in the faint constellation Pisces the fish. Watch for it to come up almost due east around the time of sunset. Once the sky gets dark, look two fists above and left of the Moon for the four stars that outline the spacious asterism of Pegasus the flying horse. Stellarium

To see a moonrise, the most important information you need is the time the moon pops up for your city, which you’ll find by using this Moonrise and Moonset calculator. Once you know when our neighborly night light rises, pre-arrange a spot you can walk or drive to 10-15 minutes beforehand. The waiting is fun. Who will see it first? I’ll often expect to see the Moon at a certain point along the horizon then be surprised it’s over there.

A photographer finds just the right spot in Duluth along Lake Superior to photograph the Full Moon rise. The flattened shape of the Moon is caused by the layer of denser air closer to the horizon refracting or bending the bottom half of the Moon more strongly than the thinner air n
A photographer finds just the right spot in Duluth along Lake Superior to photograph a rising Full Moon. The flattened shape of the Moon is caused by the layer of denser air closer to the horizon refracting or bending the bottom half of the Moon more strongly than the thinner air along the top limb. In effect, refraction “lifts” the bottom half of the Moon upward into the top to give it a squashed appearance. Once the Moon rises high enough so we see it through much thinner (less dense) air, refraction becomes negligible and the Moon assumes its more familiar circular shape.  Credit: Bob King

Depending on how low to the horizon you can see, it’s possible, especially over water, to catch the first glimpse of lunar limb breaching the horizon. This still can be a tricky feat because the Moon is pale, and when it rises, shows little contrast against the still-bright sky. Since the Moon moves about one outstretched fist to the east (left in the northern hemisphere) each night, if you wait until one night after full phase, the Moon will rise in a much darker sky and appear in more dramatic contrast against the sky background.

As the Moon rises, we peer through hundreds of miles of the lower atmosphere, where the air is densest and dustiest. Aerosols scatter much of the blues and greens in moonlight away, leaving orange and red. Turbulence and varying air densities along the line of sight can create all manner of distortions of the lunar disk. This photo sequence showing an extraordinary moonset was taken from the shores of Garrison Lake in Port Orford, Oregon. The camera was facing west; looking across the lake, beyond the narrow foredune and out toward the Pacific Ocean. A very clear atmosphere enabled me to watch the Moon set all the way down to the horizon. The distortion that occurred as it descended was quite remarkable -- the Moon's shape was changing as fast as I could snap a picture.  Credit: Randy Scholten
This photo sequence showing an extraordinary moonset taken from the shores of Garrison Lake in Port Orford, Oregon. “The distortion that occurred as it descended was quite remarkable — the Moon’s shape was changing as fast as I could snap a picture,” said photographer Randy Scholten. As the Moon rises, we peer through hundreds of miles of the lower atmosphere, where the air is densest and dustiest. Aerosols scatter much of the blues and greens in moonlight away, leaving orange and red. Turbulence and varying air densities along the line of sight can create all manner of distortions of the lunar disk. Credit: Randy Scholten

Look closely at the rising Moon with both naked eye and binoculars and you might just see a bit of atmospheric sorcery at work. Refraction, illustrated the icy moonrise image above, is the big one. It creates the squashed Moon shape. But more subtle things are happening that depend on how turbulent or calm the air is along your line of sight to our satellite.

Clouds add their own beauty and mystery to the rising Moon. Credit: Bob King
Clouds add their own beauty and mystery to the rising Moon. Credit: Bob King

Rippling waves “sizzling” around the lunar circumference can be striking in binoculars though the effect is quite subtle with the naked eye. Much easier to see without any optical aid are the weird shapes the Moon can assume depending upon the state of the atmosphere. It can looked stretched out like a hot air balloon, choppy with a step-like outline around its bottom or top, square, split into two moons or even resemble a “mushroom cloud”.

If you make a point to watch moonrises regularly, you’ll become acquainted as much with Earth’s atmosphere as with the alien beauty of our sole satellite.

This Full Moon is special in at least two ways. First, it will undergo a penumbral eclipse for skywatchers across eastern Europe, Africa, Asia and Australia. Observers there should watch a dusky gray shading over the upper or northern half of the Moon around the time of maximum eclipse. The link will take you to Dave Dickinson’s excellent article that appeared earlier here at Universe Today.

The angle of the moon’s path to the horizon makes all the difference in moonrise times. At full phase in spring, the path tilts steeply southward, delaying successive moonrises by over an hour. In September, the moon’s path is nearly parallel to the horizon with successive moonrises just 20+ minutes apart. Times are shown for the Duluth, Minn. region. Illustration: Bob King
The angle of the moon’s path to the horizon makes all the difference in moonrise times. At full phase in spring, the path tilts steeply southward, delaying successive moonrises by over an hour. In September, the moon’s path is nearly parallel to the horizon with successive moonrises just 20+ minutes apart. Times shown are for illustration only  — so you can see the dramatic different in rise times — and don’t refer necessarily to Friday night’s moonrise. Illustration: Bob King

In the northern hemisphere, September’s Full Moon is named the Harvest Moon, defined as the Full Moon closest to the autumnal equinox, which occurs at 9:21 a.m. CDT (14:21 UT) on the 22nd. Normally, the Moon rises on average about 50 minutes later each night as it moves eastward along its orbit. But at Harvest Moon, successive moonrises are separated by a half-hour or less as viewed from mid-northern latitudes. The short gap of time between between bright risings gave farmers in the days before electricity extra light to harvest their crops, hence the name.

Use your imagination and you can see any of several figures in the Full Moon composed of contrasting maria and highlands.
Use your imagination and you can see any of several figures in the Full Moon composed of contrasting maria and highlands.

Why the faster-than-usual moonrises? Every September, the Full Moon’s nightly travels occur at a shallow angle to the horizon; as the moon scoots eastward, it’s also moving northward this time of year as shown in the illustration above. The northern and eastward motions combine to make the Moon’s path nearly level to the horizon. For several nights in a row, it only takes a half-hour for the Earth’s rotation to carry the Moon up from below the horizon. In spring, the angle is steep because the Moon is then moving quickly southward along or near the ecliptic, the path it takes around the sky.  Rising times can exceed an hour.

As you gaze at the Moon over the next several nights, take in the contrast between its ancient crust, called the lunar highlands, and the darker seas (also known as maria, pronounced MAH-ree-uh). The crust appears white because it’s rich in calcium and aluminum, while the maria are slightly more recent basaltic lava flows rich in iron, which lends them a darker tone. Thanks to these two different types of terrain it’s easy to picture a male or female face or rabbit or anything your imagination desires.

Happy moongazing!

At ISO 400,000, This 6-Minute Film Shows Why We Love the Night Sky

The pursuit of the night sky is ongoing for amateur astronomers. Credit and copyright: Ben Canales.

Obviously, you’ve seen timelapse videos of the night sky because we share them here on Universe Today all the time. But you’ve probably not seen a video like this one before. This one isn’t a timelapse, and you’ll see the night sky in all its splendor, in real time.

“I think this one may be the beginning of something damn interesting,” said filmmaker Ben Canales, who along with cohort John Waller of Uncage The Soul Productions, shot this video with new low-light technology. Using the new Canon MH20f-SH, which has the capability of shooting at 400,000 ISO, they were able to “film in the quiet moments that have been impossible to capture until now.”

“Since 2013, I’ve been tinkering with all sorts of camera/lens/software combinations trying to move beyond a long exposure still to real time video of the stars,” Canales said on Facebook. “Sooner or later, we have to move beyond a frozen photo of the stars to hear, see, feel what it is really like being out there!”

In addition to showcasing this wonderful new low-light shooting, Infinity² really captures the emotional side of amateur astronomy and the beauty of being under the night sky. He took a group of high school students out to witness the Perseid Meteor Shower in Oregon, and the students got together with the Oregon Star Party. Together, they answer the simple question “What do you feel?”

As Canales says, “Something internal and personal draws us out to the night sky.”

Check out more on Uncage The Soul Productions, Canales’ astrophoto website and Facebook.

Still image from the film Infinity ². Image Courtesy Ben Canales.
Still image from the film Infinity². Image Courtesy Ben Canales.
Still image from the film Infinity ². Image Courtesy Ben Canales.
Still image from the film Infinity ². Image Courtesy Ben Canales.

Infinity ² from Uncage the Soul Productions on Vimeo.