Catch a Fine Lunar Planetary Grouping This Weekend

Image Credit: Andrew Symes (@FailedProtostar).

Phew! Our eyes and thoughts have been cast so far out into the outer reaches of the solar system following New Horizons and Pluto this week, that we’re just now getting to the astronomical action going on in our own backyard.

You’ll recall that Venus and Jupiter have made a fine pairing in the evening sky since their close approach on July 1st. Despite some of the incredulous ‘Star of Bethlehem’ claims that this was a conjunction that happens ‘once every two thousand years,’ this sort of pairing is actually quite common. In fact, Venus and Jupiter are set to meet up again in the dawn sky later this year on October 25th. Continue reading “Catch a Fine Lunar Planetary Grouping This Weekend”

Naming Pluto: Christening Features on Brave New Worlds

Artist's impression of Charon (left) and Pluto (right), showing their relative sizes. Credit:

‘Here be Dragons…’ read the inscriptions of old maps used by early seafaring explorers. Such maps were crude, and often wildly inaccurate.

The same could be said for our very understanding of distant planetary surfaces today. But this week, we’ll be filling in one of those ‘terra incognita’ labels, as New Horizons conducts humanity’s very first reconnaissance of Pluto and its moons.

The closest approach for New Horizons is set for Tuesday, July 14th at 11:49 UT/7:49 AM EDT, as the intrepid spacecraft passes 12,600 kilometres (7,800 miles) from Pluto’s surface. At over 4 light hours or nearly 32 astronomical units (AUs) away, New Horizons is on its own, and must perform its complex pirouette through the Pluto system as it cruises by at over 14 kilometres (8 miles) a second.

This also means that we’ll be hearing relatively little from the spacecraft on flyby day, as it can’t waste precious time pointing its main dish back at the Earth. With a downlink rate of 2 kilobits a second—think ye ole 1990’s dial-up, plus frozen molasses—it’ll take months to finish off data retrieval post flyby. A great place to watch a simulation of the flyby ‘live’ is JPL’s Eyes on the Solar System, along with who is talking to New Horizons currently on the Deep Space Network with DSN Now.

A snapshot of the current July 13th view of New Horizons as it nears Pluto. (Image credit: NASA's Eyes on the Solar System).
A snapshot of the current July 13th view of New Horizons as it nears Pluto. (Image credit: NASA’s Eyes on the Solar System).

Launched in 2006, New Horizons is about to join the ranks of nuclear-fueled explorers that have conducted first time reconnaissance of solar system objects.

Bob King also wrote up an excellent timeline of New Horizons events for Universe Today yesterday. Also be sure to check out the Planetary Society’s in-depth look at what to expect by Emily Lakdawalla.

Seems strange that after more than a decade of recycling the same blurry images and artist’s conceptions in articles, we’re now getting a new and improved shot of Pluto and Charon daily!

To follow the tale of Pluto is to know the story of modern planetary astronomy. Discovered in 1930 by American astronomer Clyde Tombaugh from the Lowell Observatory, Pluto was named by 11-year old Venetia Burney. Venetia just passed away in 2009, and there’s a great short documentary interview with her entitled Naming Pluto.

Blink comparitor
The blink comparitor Clyde Tombaugh used to discover Pluto, on display at the Lowell Observatory. Image Credit: David Dickinson

Fun fact: Historians at the Carnegie Institute recently found images of Pluto on glass plates… dated 1925, from five years before its discovery.

Despite the pop culture reference, Pluto was not named after the Disney dog, but after the Roman god of the underworld. Pluto the dog was not named in Disney features until late 1930, and if anything, the character was more than likely named after the buzz surrounding the newest planet on the block.

We’re already seeing features on Pluto and Charon in the latest images, such as the ‘heart,’ ‘donut,’ and the ‘whale’ of Pluto, along with chasms, craters and a dark patch on Charon. The conspicuous lack of large craters on Pluto suggests an active world.

The International Astronomical Union (IAU) convention for naming any new moons discovered in the Plutonian system specifies characters related to the Roman god Pluto and tales of the underworld.

Image credit:
Brake for New Horizons on July 14th… Image credit: David Dickinson

With features, however, cartographers of Pluto should get a bit more flexibility. Earlier this year, the Our Pluto campaign invited the public to cast votes to name features on Pluto and Charon related to famous scientists, explorers and more. The themes of ‘fictional explorers and vessels’ has, of course, garnered much public interest, and Star Trek’s Mr. Spock and the Firefly vessel Serenity may yet be memorialized on Charon. Certainly, it would be a fitting tribute to the late Leonard Nimoy. We’d like to see Clyde Tombaugh and Venetia Burney paid homage to on Pluto as well.

We’ve even proposed the discovery of a new moon be named after the mythological underworld character Alecto, complete with a Greek ‘ct’ spelling to honor Clyde Tombaugh.

The discovery and naming of Charon in 1978 by astronomer Robert Christy set a similar precedent. Christy choose the name of the mythological boatman who plied the river Styx (which also later became a Plutonian moon) as it included his wife Charlene’s nickname ‘Char.’ This shibboleth  also set up a minor modern controversy as to the exact pronunciation of Charon, as the mythological character is pronounced with a hard ‘k’ sound, but most folks (including NASA) say the moon as ‘Sharon’ in keeping with Christy’s in-joke that slipped past the IAU.

And speaking of Pluto’s large moon, someone did rise to the occasion and take our ‘Charon challenge,’ we posed during the ongoing Pluto opposition season recently. Check out this amazing capture of the +17th magnitude moon winking in and out of view next to Pluto courtesy of Wendy Clark:

Image credit
Click here to see the animation of the possible capture of Charon near Pluto. Image credit and copyright: Wendy Clark

Clark used the 17” iTelescope astrograph located at Siding Spring Observatory in Australia to tease out the possible capture of the itinerant moon.

Great job!

What’s in a name? What strange and wonderful discoveries await New Horizons this week? We should get our very first signal back tomorrow night, as New Horizons ‘phones home’ with its message that it survived the journey around 9:10 PM EDT/1:10 UT. Expect this following Wednesday—in the words of New Horizons principal Investigator Alan Stern—to begin “raining data,” as the phase of interpreting and evaluating information begins.

Image credit
The women who power the New Horizons mission to Pluto. Image credit: SwRI/JHUAPL

And there’s more in store, as the New Horizons team will make the decision to maneuver the spacecraft for a rendezvous with a Kuiper Belt Object (KBO) next month. Said KBO flyby will occur in the 2019-2020 timeframe, and perhaps, we’ll one day see a Pluto orbiter mission or lander in the decades to come…

Maybe one way journeys to ‘the other Red Planet’ are the wave of the future.’ Pluto One anyone?

Catching Earth at Aphelion

Image credit:

Do you feel a little… distant today? The day after the 4th of July weekend brings with it the promise of barbecue leftovers and discount fireworks. It also sees our fair planet at aphelion, or its farthest point from the Sun. In 2015, aphelion (or apoapsis) occurs at 19:40 Universal Time (UT)/3:40 PM EDT today, as we sit 1.01668 astronomical units (AU) from the Sun. This translates to 152.1 million kilometres, or 94.5 million miles. We’re actually 3.3% closer to the Sun in early January than we are today. This also the latest aphelion has occurred on the calendar year since 2007, and it won’t fall on July 6th again until 2018. The insertion of an extra day every leap year causes the date for Earth aphelion to slowly vary between July 3rd and July 6th in the current epoch.

Image credit:
Perihelion and aphelion versus the solstices and the equinoxes. Image credit: Gothika/Duoduoduo/Wikimedia commons 3.0 license

Aphelion sees the Earth 4.8 million kilometers farther from the Sun than perihelion in early January. The eccentricity of our orbit—that is, how much our planet’s orbit varies from circular to elliptical—currently sits at 0.017 or 1.7%.

It is ironic that we’re actually farther from the Sun in the middle of northern hemisphere summer. It sure doesn’t seem like it on a sweltering Florida summer day, right? That’s because the 23.44 degree tilt of the Earth’s rotational axis is by far the biggest driver of the seasons. But our variation in distance from the Sun does play a factor in long term climate as well. We move a bit slower farther from the Sun, assuring northern hemisphere summers are currently a bit longer (by about 4 days) than winters. The variation in solar insolation between aphelion and perihelion currently favors hot dry summers in the southern hemisphere.

Image credit:
Perihelion and aphelion circumstances for the remainder of the decade. Credit: David Dickinson

But these factors are also slowly changing as well.

The eccentricity of our orbit varies from between 0.000055 and 0.0679 over a span of a ‘beat period’ of 100,000 years. Our current trend sees eccentricity slowly decreasing.

The tilt of our rotational axis varies between 22.1 and 24.5 degrees over 41,000 years. This value is also currently on a decreasing trend towards its shallow minimum around 11,800 AD.

And finally, the precession of the Earth’s axis and apsidal precession combine to slowly move the date of aphelion and perihelion one time around our calendar once every 21,000 years.

Image credit
The precession of the line of apsides versus the seasons. Image credit: Krishnavedala/Wikimedia commons 3.0 license.

These combine to form what are known as Milankovitch Cycles of long-term climate variation, which were first expressed by astronomer Milutin Milankovic in 1924. Anthropogenic climate change is a newcomer on the geologic scene, as human civilization does its very best to add a signal of its very own to the mix.

We also just passed the mid-point ‘pivot of the year’ on July 2nd. More than half of 2015 is now behind us.

Want to observe the aphelion and perihelion of the Earth for yourself? If you have a filtered rig set to photograph the Sun, try this: take an image of the Sun today, and take another on perihelion next year on January 2nd. Be sure to use the same settings, so that the only variation is the angular size of the Sun itself. The disk of the Sun varies from 33’ to 31’ across. This is tiny but discernible. Such variations in size between the Sun and the Moon can also mean the difference between a total solar and annular eclipse.

Image credit:
A perihelion versus aphelion day Sol. Image credit: David Dickinson

Should we term the aphelion Sun a #MiniSol? Because you can never have too many internet memes, right?

And did you know: the rotational axis of the Sun is inclined slightly versus the plane of the ecliptic to the tune of 7.25 degrees as well. In 2015, the Sun’s north pole was tipped our way on March 7th, and we’ll be looking at the south pole of our Sun on September 9th.

And of course, seasons on other planets are much more extreme. We’re just getting our first good looks at Pluto courtesy of New Horizons as it heads towards its historic flyby on July 14th. Pluto reached perihelion in 1989, and is headed towards aphelion 49 AU from the Sun on the far off date in 2114 AD. Sitting on Pluto, the Sun would shine at -19th magnitude—about the equivalent of the twilight period known as the ‘Blue Hour’ here on Earth—and the Sun would appear a scant one arc minute across, just large enough to show a very tiny disk.

All thoughts to consider as we start the long swing inward towards perihelion next January.

Happy aphelion!

See Pluto for Yourself Ahead of New Horizons’ Historic Encounter

Image credit:

Are you ready for July? The big ticket space event of the year is coming right up, as NASA’s New Horizons spacecraft is set to make its historic flyby targeting a pass 12,500 kilometres (7,750 miles) from the surface of Pluto at 11:50 UT on July 14th. Already, Pluto and its moons are growing sharper by the day, as New Horizons closes in on Pluto at over 14 kilometres per second.

And the good news is, this flyby of the distant world occurs just eight days after Pluto reaches opposition for 2015, marking a prime season to track down the distant world with a telescope.

Image credit
The path of Pluto through 2015. Image credit: Starry Night Education Software

Pluto and its large moon Charon are snapping into focus as we reach the two week out mark. Discovered in 1930 by astronomer Clyde Tombaugh while working at the Lowell observatory in Flagstaff Arizona, these far off worlds are about to become real places in the public imagination. It’s going to be an exciting—if tense—few weeks, as new details and features are seen on these brave new worlds, all calling out for names. Are there undiscovered moons? Does Pluto host a ring system? What is the history of Pluto?

Image credit
A wide field view of Sagittarius and Pluto with inset (see chart above) Image credit: Starry Night education software

Hunting for Pluto with a backyard telescope is difficult, though not impossible. We suggest an aperture of 10-inches or greater, though the tiny world has been reliably spotted using a 6-inch reflector. Pluto reaches opposition on July 6th at 10:00 UT/6:00 AM EDT, marking a period when it will rise opposite to the setting Sun and transit highest near local midnight. Pluto spends all of 2015 in the constellation Sagittarius. This presents two difficulties: 1). We’re currently looking at Pluto against the very star-rich backdrop towards the center of the Milky Way Galaxy, and 2). Its southerly declination means that it won’t really ‘clear the weeds’ much for northern hemisphere observers.

Image credit
The path of Pluto through July 2015. Image credit: Starry Night Education software

But don’t despair. With a good finder chart and patience, you too can cross Pluto off of your life list. In fact, the month of July sees Pluto thread its way between the 27’ wide  +4th magnitude pair Xi Sagittarii, making a great guidepost to spot the 14th magnitude world.

Don’t own a telescope? You can still wave in the general direction of New Horizons and Pluto on the evening of July 1st, using the nearby Full Moon as a guide:

Image credit
Pluto near the Full Moon on the night of July 1st. Image credit: Stellarium

Pluto orbits the Sun once every 248 years, and reaches opposition every 367 days. A testament to this slow motion is the fact that Mr. Tombaugh first spied Pluto south of the star Delta Gemini, and it has only moved as far as Sagittarius in the intervening 85 years. Pluto also passed perihelion in 1989, when it was about half a magnitude brighter than it currently is now. Pluto’s distance from the Sun varies from 30 AU to 49 AU, and Pluto will reach aphelion just under a century from now on 2114.

Image credit;
Pluto versus Charon at greatest elongation. Image credit: Starry Night Education software

Up for a challenge? Hunting down Pluto’s elusive moon Charon is an ultimate feat of astronomical athletics. Amazingly, this has actually been done before, as reported here in 2008 on Universe Today.

Image credit:
Pluto… and Charon! Image credit: Antonello Medugno and Daniele Gasparri

Charon reaches greatest elongation 0.8” from Pluto once every three days. Shining at +16th magnitude,  Charon is a faint catch, though not impossible. We’re already seeing supporting evidence from early New Horizons images that these two worlds stand in stark contrast, with dark Charon covered in relatively low albedo dirty water-ice and while brighter Pluto is coated with reflective methane snow.

Credit: Ed Kotapish
Greatest elongation times and dates for Charon through the month of July 2015. Credit: Ed Kotapish

The current forward-looking view from New Horizons of Pluto is amazing to consider. As of July 1st, the spacecraft is 0.11 AU (17 million kilometres) from Pluto and closing, and the world appears as a +1.7 magnitude object about 30 arc seconds across.  The views of Pluto are courtesy of New Horizons’ LORRI (Long Range Reconnaissance Imager), which in many ways is very similar to a familiar backyard 8-inch Schmidt-Cassegrain telescope. It’s interesting to note that the views we’re currently getting very closely resemble amateur views of Mars near opposition, though we suspect that will change radically in about a week.

And it will take months for all of the New Horizons data to make its way back to Earth. The real nail-biter will be the 20 hour period of close rendezvous on July 14th, a period in which the spacecraft will have to acquire Pluto and Charon, do its swift ballet act, and carry out key observations—all on its own before phoning home. This will very likely be the only mission to Pluto in our lifetimes, as New Horizons will head out to rendezvous with several Kuiper Belt Objects in the 2020 time frame before joining the Voyager I & II and Pioneer 10 & 11 spacecraft in an orbit around the Milky Way Galaxy.

Image credit:
Pluto (marked) from the morning of June 25th, 2015. Image credit and copyright: Jim Hendrickson

Just think, in less than a few weeks time, science writers will (at last!) have a wealth of Plutonian imagery to choose from courtesy of New Horizons, and not just a few blurry pics and artist’s conceptions that we’ve recycled for decades… let us know of your tales of tribulation and triumph as you attempt to hunt down Pluto this summer!

Venus and Jupiter Meet At Last

Venus and Jupiter at dusk over Australia's Outback on June 27, 2015. Credit: Joseph Brimacombe

The year’s finest conjunction is upon us. Chances are you’ve been watching Venus and Jupiter at dusk for some time.

Like two lovers in a long courtship, they’ve been slowly approaching one another for the past several months and will finally reach their minimum separation of  just over 1/4° (half a Full Moon diameter) Tuesday evening June 30.

Venus and Jupiter will appear to nearly converge in the western sky starting about an hour after sunset on June 30. Venus is the brighter planet. If you miss the show because of bad weather, they'll be nearly as close on July 1 at the same time. Source: Stellarium
The view facing west-northwest about 50 minutes after sunset on June 30 when Venus and Jupiter will be at their closest. If bad weather moves in, they’ll be nearly as close tonight (June 29) and July 1.  Two celestial bodies are said to be in conjunction when they have the same right ascension or “longitude”and line up one atop the other. Source: Stellarium

Most of us thrill to see a single bright planet let alone the two brightest so close together. That’s what makes this a very special conjunction. Conjunctions are actually fairly common with a dozen or more planet-to-planet events a year and 7 or 8 Moon-planet match-ups a month. It’s easy to see why.

The planets, including Earth, orbit within a relatively flat plane. As we watch them cycle through their orbits, two or more occasionally bunch close together in a conjunction. We see them projected against the
From our perspective in the relatively flat plane of the Solar System we watch the planets cycle around the Sun projected against the backdrop of the zodiac constellations. They – and the Moon – follow the ecliptic and occasionally pass one another in the sky to make for wonderful conjunctions. Credit: Bob King

All eight planets travel the same celestial highway around the sky called the ecliptic but at different rates depending upon their distance from the Sun. Distant Saturn and Neptune travel more slowly than closer-in planets like Mercury and Mars. Over time, we see them lap one another in the sky, pairing up for a week or so and inspiring the gaze of those lucky enough to look up. After these brief trysts, the worlds part ways and move on to future engagements.

Venus and Jupiter above St. Peter's Dome in Rome on Sunday June 28, 2015. Details: Canon 7D Mark II DSLR, with a 17-55-f/2.8 lens at 24mm f/4 and exposure time was 1/40". Credit: Gianluca Masi
Venus and Jupiter above St. Peter’s Dome in Rome on Sunday June 28, 2015. Details: Canon 7D Mark II DSLR, with a 17-55-f/2.8 lens at 24mm f/4 and exposure time was 1/40″. Credit: Gianluca Masi

In many conjunctions, the planets or the Moon and planet are relatively far apart. They may catch the eye but aren’t exactly jaw-dropping events. The most striking conjunctions involve close pairings of the brightest planets. Occasionally, the Moon joins the fray, intensifying the beauty of the scene even more.

As Venus orbits interior to Earth’s orbit, its apparent distance from the Sun (and phase) changes. Since June 6, the planet’s separation from the Sun in the sky has been shrinking and will reach a minimum on August 15, when the planet is directly between the Sun and Earth. Credit: Bob King
As Venus orbits interior to Earth’s orbit, its apparent distance from the Sun (and phase) changes. Since June 6, the planet’s separation from the Sun in the sky has been shrinking and will reach a minimum on August 15, when the planet is directly between the Sun and Earth. Credit: Bob King

While moving planets are behind many conjunctions, they often don’t do it alone. Earth’s orbital motion around the Sun helps move things along. This week’s event is a perfect example. Venus is currently moving away from Jupiter in the sky but not quickly enough to avoid the encounter. Each night, its apparent distance from the Sun decreases by small increments and the planet loses altitude. Meanwhile, Jupiter’s moving away from Venus, traveling east toward Regulus as it orbits around the Sun.

So how can they possibly get together? Earth to the rescue! Every day, our planet travels some 1.6 million miles in our orbit, completing 584 million miles in one year. We see this movement reflected in the rising and setting times of the stars and planets.

View of Earth’s orbit seen from above the northern hemisphere. As our planet moves to the left or counterclockwise around the Sun, the background constellations appear to drift to the right or westward. This causes constellations and planets in the western sky to gradually drop lower every night, while those in the east rise higher. Credit: Bob King
View of Earth’s orbit seen from above the northern hemisphere. As our planet moves to the left or counterclockwise around the Sun, the background constellations appear to drift to the right or westward. This causes constellations and planets in the western sky to gradually drop lower every night, while those in the east rise higher. Credit: Bob King

Every night, the stars rise four minutes earlier than the night before. Over days and weeks, the minutes accumulate into hours. When stars rise earlier in the east, those in the west set earlier. In time, all stars and planets drift westward due to Earth’s revolution around the Sun.

It’s this seasonal drift that “pushes” Jupiter westward to eventually overtake a reluctant Venus. Despite appearances, in this particular conjunction, both planets are really fleeing one another!

Johannes Kepler's depiction of the conjunction of Mercury (left), Jupiter and Saturn shortly before Christmas in the year 1603. He believed a similar conjunction or series of conjunctions may have heralded the birth of Christ.
Johannes Kepler’s depiction of the conjunction of Mercury (left), Jupiter and Saturn shortly before Christmas in the year 1603. He believed a similar conjunction or series of conjunctions – the Christmas Star – may have heralded the birth of Christ.

We’re attuned to unusual planetary groupings just as our ancestors were. While they might have seen a planetary alignment as a portent of kingly succession or ill fortune in battle, we’re free to appreciate them for their sheer beauty. Not to say that some might still read a message or experience a personal revelation at the sight. There’s something in us that sees special meaning in celestial alignments. We’re good at sensing change in our environment, so we sit up and take notice when unusual sky events occur like eclipses, bright comets and close pairings of the Moon and planets.

Venus and Jupiter over the next few nights facing west at dusk. Times and separations shown for central North America at 10 p.m. CDT. 30 minutes of arc or 30' equals one Full Moon diameter.  Source: Stellarium
Venus and Jupiter over the next few nights facing west at dusk. Times and separations shown for central North America at 10 p.m. CDT. 30 minutes of arc or 30′ equals one Full Moon diameter. Source: Stellarium

You can watch the Jupiter-Venus conjunction several different ways. Naked eye of course is easiest. Just face west starting about an hour after sunset and drink it in. My mom, who’s almost 90, will be watching from her front step. Binoculars will add extra brilliance to the sight and perhaps show several moons of Jupiter.

The view through a small telescope of Jupiter (top) and Venus on June 30 around 9:30 p.m. CDT. Jupiter's moons are G = Ganymede, E = Europa, I = Io and C = Callisto. Source: Stellarium
The view through a small telescope of Jupiter (top) and Venus on June 30 around 9:30 p.m. CDT. Jupiter’s moons are G = Ganymede, E = Europa, I = Io and C = Callisto. Source: Stellarium

If you have a telescope, I encourage you to point it at the planetary doublet. Even a small scope will let you see Jupiter’s two dark, horizontal stripes — the North and South Equatorial Belts — and several moons. Venus will appear as a pure white, thick crescent 32 arc seconds across virtually identical in apparent size to Jupiter. To tame Venus’ glare, start observing early when the sky is still flush with pale blue twilight. I think the best part will be seeing both planets in the same field of view even at moderate magnification — a rare sight!

To capture an image of these shiny baubles try using your cellphone. For many, that’s the only camera we have. First, find a pretty scene to frame the pair. Hold your phone rock-solid steady against a post or building and click away starting about an hour after sundown when the two planets have good contrast with the sky, but with light still about. If your pictures appear too dark or light, manually adjust the exposure. Here’s a youtube video on how to do it with an iPhone.

Jupiter and Venus at dusk on June 26. This is a 6-second exposure at f/2.8 and ISO 80 taken with a basic point-and-shoot digital camera. I braced the camera on top of a mailbox. Credit: Bob King
Jupiter and Venus at dusk on June 26. This is a 6-second exposure at f/2.8 and ISO 80 taken with a basic point-and-shoot digital camera. I braced the camera on top of a mailbox and stuck my phone underneath to prop up the lens. Credit: Bob King

Point-and-shoot camera owners should place their camera on a tripod, adjust the ISO or sensitivity to 100, open the aperture or f/stop to its widest setting (f/2.8 or f/4), autofocus on the planets and expose from 5-10 seconds in mid-twilight or about 1 hour to 90 minutes after sunset. The low ISO is necessary to keep the images from turning grainy. High-end digital SLR cameras have no such limitations and can be used at ISO 1600 or higher. As always, review the back screen to make sure you’re exposing properly.

I’m not a harmonic convergence kind of guy, but I believe this week’s grand conjunction, visible from so many places on Earth, will stir a few souls and help us appreciate this life that much more.

Iridium NEXT Set to Begin Deployment This Year

An artist's conception of an Iridium-NEXT satellite in low Earth orbit. Credit: Iridium Communications Inc.

The skies, they are uh changin’…  I remember reading in Astronomy magazine waaaay back in the late 1990s (in those days, news was disseminated in actual paper magazines) about a hot new constellation of satellites that were said to flare in a predictable fashion.

This is the Iridium satellite constellation, a series of 66 active satellites and six in-orbit and nine ground spares. The ‘Iridium’ name comes from the element with atomic number 77 of the same name (the original project envisioned 77 satellites in low Earth orbit), and the satellites serve users with global satellite phone coverage.

A 'double Iridium flare' capture! Image credit: Mary Spicer
A ‘double Iridium flare’ capture! Image credit: Mary Spicer

Over the years, Iridium satellite flares have become a common sight in the night sky… but that may change soon.

The next generation of Iridium communications satellites begins launching later this year through 2017.

Known as Iridium-NEXT, the first launch is set for October of this year from Dombarovsky air base Russia atop a converted ICBM Dnepr rocket. The Dnepr can carry two satellites on each launch, and SpaceX has also recently agreed to deploy 70 satellites over the span of seven missions launching from Vandenberg Air Force Base in California later this year.

Both the initial Iridium satellites and Iridium NEXT are operated by Iridium Communications Incorporated. The original satellites were built by Motorola and Lockheed Martin, and the prime contract for Iridium NEXT construction went to Thales Alenia Space.

There are also several fascinating issues surrounding the history of the Iridium constellation, both past and present.

Originally fielded by Motorola in the 1990s, satellite phones were to be “the next big thing” until mobile phones took over. Conceived in the late 1980s, the concept of satellite phones was practically obsolete before the first Iridium satellite got off the ground. The high cost of satellite phone services assured they could never manage to compete with the explosive growth of the mobile phone industry, and satellite phones at best only found niche applications for remote operations worldwide.  Iridium Communications declared bankruptcy in 1999, and the $6 billion US dollar project was bought by a group of private investors for only $35 million dollars.

Airmen using an Iridium satellite phone in Antarctica. Image credit: Robert Tingle/USAF
Airmen using an Iridium satellite phone in Antarctica. Image credit: Robert Tingle/USAF

The original Iridium constellation employed a unique system of Inter-Satellite Links, enabling them to directly route signals from satellite to satellite. Iridium NEXT will use an innovative L-band phased array antenna, allowing for larger bandwidth and faster data transmission. The Iridium NEXT constellation is planned to eventually contain 81 satellites including spares, and the system will be much more robust and reliable.

The Iridium NEXT constellation will also face some stiff competition, as Google, SpaceX and OneWeb are also looking to get into the business of satellite Internet and communications. This will also place hundreds of new satellites—not to mention the growing flock of CubeSats—into an already very crowded region of low Earth orbit. The Iridium 33 satellite collision with the defunct Kosmos 2251 satellite in 2009 highlighted the ongoing issues surrounding space debris.

The company applied for a plan to deorbit the original Iridium constellation starting in 2017 as soon as the new Iridium NEXT satellites are in place.

Now, I know what the question of the hour is, as it’s one that we get frequently from other satellite spotters and lovers of artificial things that flash in the sky:

Will the Iridium NEXT satellites flare in manner similar to their predecessors?

Unfortunately, the prospects aren’t good. Missing on Iridium NEXT are the three large refrigerator-sized antennae which are the source of those brilliant -8 magnitude flares. And sure, while these flares weren’t Iridium’s sole mission purpose, they were sure fun to watch!

An 'Iridium classic...' note the trio of reflective antenae on the lower bus. Image credit: Iridium Communications inc.
An ‘Iridium classic…’ note the trio of reflective antennae on the lower bus. Image credit: Iridium Communications inc.

David Cubbage, Associate Director of NEXT Spacecraft Development and Satellite Production recently told Universe Today:

“It was very exciting when we first discovered that the Iridium Block 1 satellite vehicles (SVs) reflected the sunlight into a concentrated “flare” that could be viewed in the night sky.  The unique design of the Block 1 SV, with three highly reflective Main Mission Antennas (MMA) deployed at an angle from the SV body, is what caused that to happen.  For the Iridium NEXT constellation, the SVs will be built under a different design with a single MMA that faces the Earth — a design that requires fewer parts that do not need to be as reflective.  As a result, it will not likely produce the spectacular flares of the Block 1 design.”

But don’t despair. Though the two decade ‘Age of the Iridium flare’ may be coming to an end, lots of other satellites, including the Hubble Space Telescope, MetOp-A and B,  and the COSMO-SkyMed series of satellites can ‘slow flare’ on occasion. We recently saw something similar during a pass of the U.S. Air Force’s super-secret ATV-4 space plane currently carrying out its OTV-4 mission, suggesting that a large reflective solar panel may be currently deployed.

An Iridium flare through the constellations Orion and Lepus. Image credit: David Dickinson
An Iridium flare passing through the constellations Orion and Lepus. Image credit: David Dickinson

And though the path to commercial viability for satellite internet and communications is a tough one, we hope it does indeed take off soon… we personally love the idea of being able to stay connected from anywhere worldwide.

Be sure to catch those Iridium flares while you can… we’ll soon be telling future generations of amateur astronomers that we remember “back when…”

-Check out the chances for the next Iridium flare coming to a sky near you on Heavens-Above.

Comet C/2013 US10 Catalina: A Preview for Act I

Comet C/2013 US10 Catalina imaged on June 22nd, 2013. Image credit and copyright: Efrain Morales

Live in (or planning on visiting) the southern hemisphere soon? A first time visitor to the inner solar system is ready to put on the first of a two part act starting this month, as Comet C/2013 US10 Catalina breaks +10th magnitude and crosses southern hemisphere skies.

Though we’ve overdue for a this generation’s ‘great comet,’ we’ve had a steady stream of fine binocular comets in 2015, including 2014 Q2 Lovejoy, 2014 Q1 PanSTARRS, and 2015 G2 MASTER. US10 Catalina looks to follow this trend, topping out at just above naked eye visibility in late 2015 going into early 2016.

Discovered by the Catalina Sky Survey on Halloween 2013, the comet received its unusual ‘US10’ designation as it was initially thought to be an asteroid early on in a periodic six year orbit, until a longer observation arc was completed. This is not an unusual situation, as new objects are often lost in the Sun’s glare before their orbit can be refined.

Recent images of US10 Catalina from may 18th, 2015. Image credit and copyright: Joseph Brimacombe
Recent images of US10 Catalina from May 18th, 2015. Image credit and copyright: Joseph Brimacombe

We now know that US10 Catalina is on a million year long journey from the distant Oort Cloud. Most likely, it was disturbed by an unrecorded close stellar passage long ago. We say that such comets are dynamically new, and this passage will eject US10 Catalina from the solar system. The comet also has a highly inclined orbit tilted almost 149 degrees relative to the ecliptic, and was at +19th magnitude and 7.7 AU from the Earth when it was discovered, suggesting an intrinsically bright comet.

Prospects for US10 Catalina currently favor latitude 35 degrees north southward in late June, though that’ll change radically as the comet makes the plunge south this summer. As of this writing, US10 Catalina was at +11 magnitude ‘with a bullet’ and currently sits in the constellation Sculptor at a declination -30 degrees in the southern sky.

Image credit:
The orbit of Comet US10 Catalina. Image credit: NASA/JPL

Binoculars are our favorite tools for observing comets, as they’ve easy to sweep the skies with on our cometary quest. As with nebulae and deep sky objects, keep in mind that quoted magnitude for a comet is spread out over its apparent surface area, causing them to appear fainter than a star of the same magnitude.

Here’s a blow-by-blow for Act I for Comet C/2013 US10 Catalina over the next few months:

(Unless otherwise noted, we documented stellar passages below that are within 2 degrees of stars brighter than +5th magnitude, and fine NGC deep sky objects brighter than +8th magnitude)

July 1st: May break binocular visibility, at +10th magnitude.

July 6th: Crosses into the constellation of Phoenix.

July 23rd: Crosses into the constellation Grus.

July 25th: Crosses into the constellation Tucana.

July 26th: Passes the +4th magnitude star Gamma Tucanae.

Image credit: Created using Starry Night Education software
The path of Comet US10 Catalina as seen from 30 degrees south.  Image credit: Created using Starry Night Education software

August 1st: Reaches opposition.

August 2nd: Passes the +4.5th magnitude star Delta Tucanae.

August 4th: Crosses into the constellation Indus.

August 6th: Photo op: Passes 12 degrees from 47 Tucanae and the Small Magellanic Cloud.

August 8th: Crosses into the constellation Pavo.

August 12th: Passes the +4th magnitude star Epsilon Pavonis.

August 14th: Reaches its greatest declination south at almost -74 degrees.

August 15th: Sits at 1.1 AU from the Earth.

August 17th: Crosses into the constellation Apus.

August 19th: Passes 5 degrees from the +7.7 magnitude globular cluster NGC 6362.

August 22nd: Crosses into the constellation Triangulum Australe and passes the +1.9 magnitude star Atria.

August 28th: Passes the +2.8 magnitude star Beta Trianguli Australis.

August 29th: Passes 3 degrees from the +5th magnitude open cluster NGC 6025.

September 1st: Crosses into the constellation Circinus

Image credit: Starry Night Education software
The passage of Comet US10 Catalina through the southern sky from mid-June through September 1st. Image credit: Starry Night Education software

From there, Comet US10 Catalina heads towards perihelion 0.8229 astronomical units from the Sun on November 15th, before vaulting up into the northern hemisphere sky in the early dawn.  Like Comet Q2 Lovejoy last winter, US10 Catalina should top out at around +4th magnitude or so as it glides across the constellation Ursa Major just after New Years.

And like many comets, the discriminating factor between a ‘great’ and ‘binocular comet’ this time around is simply a matter of orbital geometry. Had C/2013 US10 Catalina arrived at perihelion in the May time frame, it would’ve passed less than 0.2 AU (30 million kilometres) from the Earth!

Image credit:
The projected light curve for Comet US10 Catalina. The black dots denote actual observations, and the purple vertical line marks the perihelion passage for the comet. Image credit: Seiichi Yoshida’s Weekly Information about Bright Comets

But that’s cosmic irony for you. Keep in mind, with Comet US10 Catalina being a dynamically new first time visitor to the inner solar system, it may well up brighten ahead of expectations.

And there’s more to come… watch for Act II as we follow the continuing adventures of Comet C/2013 US10 Catalina this coming September!

UK Amateur Recreates the Great Red Spot’s Glory Days

Graphical comparison showing how Jupiter's Great Red Spot has shrunk in the past 125 years. Credit: Damian Peach

Maybe it’s too soon for a pity party, but the profound changes in the size and prominence of Jupiter’s Great Red Spot (GRS) in the past 100 years has me worried. After Saturn’s rings, Jupiter’s big bloody eye is one of astronomy’s most iconic sights.

This titanic hurricane-like storm has charmed earthlings since Giovanni Cassini first spotted it in the mid-1600s.  Will our grandchildren turn their telescopes to Jove only to see a pale pink oval like so many others rolling around the planet’s South Tropical Zone?

Maybe.

Jupiter’s Great Red Spot is a cyclone larger than two Earths. (photomontage ©Michael Carroll)
Jupiter’s Great Red Spot is a cyclone that’s presently about 1.2 times as big as Earth. As recently as 1979, it was twice Earth’s diameter as illustrated here.  Photomontage ©Michael Carroll

An inspired image prompted this sad train of thought. UK astrophotographer Damian Peach came up with an ideal way to depict how the GRS  would look to us now if it we could see it as it was in 1890, 125 years ago. Those were the glory days for the “Eye of Jupiter” as Cassini was fond of calling it. With a diameter of 22,370 miles (36,000 km), the GRS spanned nearly three Earths wide. What a sight it must have been in nearly any telescope.

Peach compared measurements of the Spot in black and white photos taken at Lick Observatory in California in 1890-91 with a photo he took on April 13 this year. He then manipulated his April 13 data using the Lick photos and WINJUPOS (Jupiter feature measuring program) to carefully match the storm to its dimensions and appearance 125 years ago. Voila! Now we have a good idea of what we missed by being born too late.

At left, Photograph of Jupiter's enormous Great Red Spot in 1879 from Agnes Clerk's Book " A History of Astronomy in the 19th Century".
At left,  A crude photograph of Jupiter’s enormous Great Red Spot in 1879 from Agnes Clerk’s Book ” A History of Astronomy in the 19th Century”.

“A century ago, it truly was deserving of its name!” wrote Peach.

Painting by Italian artist Donato Creti showing a telescopic view of Jupiter above a nighttime landscape. The Great Red Spot is clearly visible.
Painting by Italian artist Donato Creti showing a telescopic view of Jupiter in 1711 above a nighttime landscape. The Great Red Spot is clearly visible above center.

The shrinking of the Great Red Spot isn’t breaking news. You read about it here in Universe Today more than year ago. Before that, Jupiter observers had grumbled for years that the once-easy feature had become anemic and not nearly as obvious as once remembered. Astronomers have been following its downsizing since the 1930s.

These two photos, taken by Australian amateur astronomer Anthony Wesley, show the dramatic fading of Jupiter's South Equatorial Belt (SEB) from a year ago. The north belt remains dark and easy to see in a small telescope. The red oval is the Great Red Spot, a hurricane-like weather system some 2 1/2 times the size of the Earth.
Dramatic fading of Jupiter’s South Equatorial Belt (SEB) between 2009 and 2010. The belt has since returned to view. The Red Spot is also seen in both images. Credit: Anthony Wesley

That doesn’t mean it’s necessarily going away, though if it did — at least temporarily — it wouldn’t be the first time. The Spot vanished in the 1680s only to reappear in 1708. Like clouds and weather fronts that keeps things lively on Earth, Jupiter’s atmosphere constantly cooks up new surprises. The entire South Equatorial Belt, one of Jupiter’s two most prominent “stripes”, has taken a leave of absence at least 17 times since the invention of the telescope, the last in 2010.

Reprocessed view by Bjorn Jonsson of the Great Red Spot taken by Voyager 1 in 1979 reveals an incredible wealth of detail.
The Great Red Spot photographed by Voyager 1 in 1979 and reprocessed by Bjorn Jonsson shows an incredible wealth of detail. Credit: NASA

Perhaps we should turn the question around? How has the Red Spot managed to last this long? Hurricanes on Earth have lifetimes measured in days, while this whirling vortex has been around for hundreds of years. Any number of things should have killed it: loss of energy through radiation of heat to outer space, or energy-sapping turbulence from nearby jet streams. But the Eye persists. So what keeps it alive? Astronomers think the storm might gain energy by devouring smaller vortices, those small white dots and ovals you see in high resolution photos of the planet. Vertical winds that transport hot and cold gases in and out of the Spot may also restore its vigor.

Just in case it disappears unexpectedly, take one last look this observing season. Jupiter’s currently getting lower in the western sky as it approaches Venus for its grand conjunction on June 30. Below are times (Central Daylight or CDT) when it crosses or transits the planet’s central meridian. The GRS will be easiest to see for a 2-hour interval starting an hour before the times shown. It’s located in the planet’s southern hemisphere just south of the prominent South Equatorial Belt. Add an hour for Eastern time; subtract one hour for Mountain and two hours for Pacific. A complete list of transit times can be found HERE.

* June 13 at 8:58 p.m.
* June 18 at 12:16 a.m.
* June 18 at 8:08 p.m.
* June 20 at 9:47 p.m.
* June 22  at 11:26 p.m.
* June 25 at 8:57 p.m.
* June 27 at 10:36 p.m.

 

 

NGC 2419: Wayward Globular or the Milky Way’s Own?

NGC 2419 as imaged by the Hubble Space Telescope. Image credit: NASA/STScl

Turns out, we may not know our extragalactic neighbors as well as we thought.

One of the promises held forth with the purchase of our first GoTo telescope way back in the late 1990s was the ability to quickly and easily hunt down ever fainter deep sky fuzzies. No more juggling star charts and red headlamps, no more star-hopping. Heck, it was fun to just aim the scope at a favorable target field, hit ‘identify,’ and see what it turned up.

One of our more interesting ‘discoveries’ on these expeditions was NGC 2419, a globular cluster that my AstroMaster GoTo controller (featuring a 10K memory database!) triumphantly announced was an ‘Intergalactic Wanderer…’

Or is it? The case for NGC 2419 as a lonely globular wandering the cosmic void between the galaxies is a romantic and intriguing notion, and one you see repeated around the echo chamber that is the modern web. First observed by Sir William Herschel in 1788 and re-observed by his son John in 1833, the debate has swung back and forth as to whether NGC 2419 is a true globular or—as has been also suggested of the magnificent southern sky cluster Omega Centauri—the remnant of a dwarf spheroidal galaxy torn apart by our Milky Way. Lord Rosse also observed NGC 2419 with the 72-inch Leviathan of Parsonstown, and Harlow Shapley made a distance estimate of about 163,000 light years to NGC 2419 in 1922.

Created by author
The relative distances of NGC 2419, the LMC, SMC and M31.  Created by author using NASA graphics.

Today, we know that NGC 2419 is about 270,000 light years from the Sun, and about 300,000 light years from the core of our galaxy.  Think of this: we actually see NGC 2419 as it appeared back in the middle of the Pleistocene Epoch, a time when modern homo sapiens were still the new hipsters on the evolutionary scene of life on Earth.  What’s more, photometric studies over the past decade suggest there is a true gravitational link between NGC 2419 and the Milky Way. This would mean at its current distance, NGC 2419 would orbit our galaxy once every 3 billion years, about 75% the age of the Earth itself.

Image credit:
NGC 2419 and the nearby +7 magnitude star HIP 37133. Image credit and copyright: Joseph Brimacombe

This hands down makes NGC 2419 the distant of the more than 150 globular clusters known to orbit our galaxy.

At an apparent magnitude of +9 and 6 arc minutes in size, NGC 2419 occupies an area of the sky otherwise devoid of globulars. Most tend to lie towards the galactic core as seen from our solar vantage point, and in fact, there are no bright globulars within 60 degrees of NGC 2419. The cluster sits 7 degrees north of the bright star Castor just across the border of Gemini in the constellation of the Lynx at Right Ascension 7 Hours, 38 minutes and 9 seconds and declination +38 degrees, 52 minutes and 55 seconds.  Mid-January is the best time to spy NGC 2419 when it sits roughly opposite to the Sun , though June still sees the cluster 20 degrees above the western horizon at dusk before solar conjunction in mid-July.

Image credit: Starry Night Education software
The location of NGC 2419 in the night sky. Image credit: Starry Night Education software

We know globular clusters (say ‘globe’ -ular, not “glob’ -ular)  are some of the most ancient structures in the universe due to their abundance of metal poor, first generation stars. In fact, it was a major mystery up until about a decade ago as to just how these clusters could appear to be older than the universe they inhabit. Today, we know that NGC 2419 is about 12.3 billion years old, and we’ve refined the age of the Universe as per data from the Planck spacecraft down to 13.73 (+/-0.12) billion years.

What would the skies look like from a planet inside NGC 2419? Well, in addition to the swarm of hundreds of thousands of nearby stars, the Milky Way galaxy itself would be a conspicuous object extending about 30 degrees across and shining at magnitude -2. Move NGC 2419 up to 10 parsecs distant, and it would rival the brightness of our First Quarter Moon and be visible in the daytime shining at magnitude -9.5.

Image Credit; Starry Night Education Software
The view of the Milky Way galaxy as seen from NGC 2419. Image Credit; Starry Night Education Software

And ironically, another 2007 study has suggested that the relative velocity of Large and Small Magellanic Clouds suggest that they may not be bound to our galaxy, but are instead first time visitors passing by.

And speaking of passing by, yet another study suggests that the Milky Way and the Andromeda galaxy set on a collision course billions of years hence may be in contact… now.

Image credit: Starry Night Education software
The view of the Andromeda galaxy as seen from NGC 2419. Image credit: Starry Night Education software

Mind not blown yet?

A 2014 study looking at extragalactic background light during a mission known as CIBER suggests that there may actually be more stars wandering the universe than are bound to galaxies…

But that’s enough paradigm-shifting for one day. Be sure to check out NGC 2419 and friends and remember, everything you learned about the universe as a kid, is likely to be false.

Catch Jupiter Homing in on Venus Through June

Getting closer... Venus, Jupiter, the Moon and an iridium flare on the night of May 26th, 2015. Image credit and copyright: Chris Lyons

Are you ready to hear an upswing in queries from friends/family and/or strangers on Twitter asking “what are those two bright stars in the evening sky?”

It’s time to arm yourself with knowledge against the well-meaning astronomical onslaught. The month of June sees the celestial action heat up come sundown, as the planet Jupiter closes in on Venus in the dusk sky. Both are already brilliant beacons at magnitudes -1.5 and -4 respectively, and it’s always great to catch a meeting of the two brightest planets in the sky.

June 5th
Looking west on the evening of June 5th from latitude 30 degrees north… Image credit: Stellarium

Be sure to follow Venus and Jupiter through June, as they close in on each other at a rate of over ½ a degree—that’s more than the diameter of a Full Moon—per day.

June 20th
…and looking west on the evening of June 20th…

Venus starts June at 20 degrees from Jupiter on the first week of the month, and closes to less than 10 degrees separation by mid-month before going on to a final closing of less than one degree on the last day of the June. Th climax comes on July 1st, when Venus and Jupiter sit just over 20’ apart—2/3rds the diameter of a Full Moon—on July 1st at 3:00 UT or 11:00 PM EDT (on June 30th). This translates to a closest approach on the evening of June 30th for North America.

July 1st
… and finally, looking westward on the evening of July 1st.

Venus starts the first week of June forming a straight line equally spaced with the bright stars Castor and Pollux in the astronomical constellation Gemini. On June 12-13, Venus actually nicks the Beehive cluster M44 in the constellation Cancer, a fine sight through binoculars.

Credit: Starry night Education software
The apparent paths of Venus versus Jupiter through the month of June. Credit: Starry Night Education software

Jupiter and Venus will then be joined by the Moon on the evening of June 20th to form a skewed ‘smiley face’ emoticon pairing. Not only is the pairing of Venus and the crescent Moon represented on many national flags, But the evening of June 20th will also be a great time to try your hand at daytime planet spotting before sunset, using the nearby crescent Moon as a guide.

The daytime view of Venus, the Moon and Jupiter of the evening of June 20th. Image Credit: Stellarium
The daytime view of Venus, the Moon and Jupiter of the evening of June 20th. Image Credit: Stellarium

The Moon will actually occult Venus three times in 2015: On July 19th as seen from the South Pacific, on October 8th as seen from Australia and New Zealand, and finally, on December 7th as seen from North America in the daytime.

This conjunction of Venus and Jupiter occurs just across the border in the astronomical constellation of Leo. As Venus can always be found in the dawn or dusk sky, Jupiter must come to it, and conjunctions of the two planets occur roughly once every calendar year. A wider dawn pass of the two planets occurs this year on October 25th, and in 2019 Jupiter again meets up with Venus twice, once in January and once in November. The last close conjunction of Venus and Jupiter occurred on August 18th, 2014, and an extremely close (4’) conjunction of Venus and Jupiter is on tap for next year on August 27th. Check out our nifty list of conjunctions of Venus and Jupiter for the remainder of the decade from last year’s post.

The view through the telescope on the evenings June 30th and July 1st will be stunning, as it’ll be possible to fit a 34% illuminated 32” crescent Venus and a 32” Jupiter plus its four major moons all in the same low power field of view. Jupiter sits 6 astronomical units (AU) from Earth, and Venus is 0.5 AU away on July 1st.

30 FoV
Looking at Jupiter and Venus on July 1st using a 30 arc minute filed of view. Image credit: Starry Night Education Software

And just think of what the view from Jupiter would be like, as Venus and Earth sit less than 3 arc minutes apart:

View from jupiter
The view from Jupiter on July 1st looking at the Earth. Image credit: Starry Night Education software

Venus reaches solar conjunction this summer on August 15th, and Jupiter follows suit on August 26th. Both enter the field of view of the European Space Agency’s Solar Heliospheric Observatory (SOHO) LASCO C3 camera in mid-August, and are visible in the same for the remainder of the month before they pass into the dawn sky.

But beyond just inspiring inquires, close conjunctions of bright planets can actually raise political tensions as well. In 2012, Indian army sentries reported bright lights along India’s mountainous northern border with China. Thought to be reconnaissance spy drones, astronomers later identified the lights as Venus and Jupiter, seen on repeated evenings. We can see how they got there; back in the U.S. Air Force, we’ve seen Venus looking like a ‘mock F-16 fighter’ in the desert dusk sky as we recovered aircraft in Kuwait. Luckily, cooler heads prevailed during the India-China incident and no shots were exchanged, which could well have led to a wider conflict…

Remember:  Scientific ignorance can be harmful, and astronomical knowledge of things in the sky can save lives!