Dreams of space are often tied to jet engines or solar sails or taking a ride on a rocketship. But it’s often quite efficient to do research from Earth, especially from the high reaches of the atmosphere where there are few molecules to get in the way of observations.
NASA wants to do more of this kind of astronomy with an airship — but at an extreme height of 65,000 feet (20 kilometers) for 20 hours. No powered-airship mission has managed to last past eight hours at this height because of the winds in that zone, but NASA is hoping that potential creators would be up to the challenge.
This isn’t a guaranteed mission yet. NASA has a solicitation out right now to gauge interest from the community, and to figure out if it is technically feasible. This program would be a follow-on to ideas such as SOFIA, a flying stratospheric telescope that the agency plans to defund in future budgets.
Their goal is to fly an airship with a 44-pound (20-kilogram) payload at this altitude for 20 hours. If a company is feeling especially able, it can even try for a more difficult goal: a 440-pound (200-kilogram) payload for 200 hours.
“We are seeking to take astronomy and Earth science to new heights by enabling a long-duration, suborbital platform for these kinds of research,” stated lead researcher Jason Rhodes, an astrophysicist at NASA’s Jet Propulsion Laboratory in California.
And why not just use a balloon? It comes down to communications, NASA says: “Unlike a balloon, which travels with air currents, airships can stay in one spot,” the agency states. “The stationary nature of airships allows them to have better downlink capabilities, because there is always a line-of-sight communication.”
The quest for optimal sites to carry out astronomical observations has taken scientists to the frigid Arctic. Eric Steinbring, who led a team of National Research Council Canada experts, noted that a high Arctic site can, “offer excellent image quality that is maintained during many clear, calm, dark periods that can last 100 hours or more.” The new article by Steinbring and colleagues conveys recent progress made to obtain precise observations from a 600 m high ridge near the Eureka research base on Ellesmere Island, which is located in northern Canada.
The new telescope that Steinbring and his colleagues tested was located at the Polar Environment Atmospheric Research Laboratory (PEARL). The observatory can be accessed in winter by 4 x 4 trucks via a 15 km long road from a base facility at sea-level. That base camp is operated by Environment Canada and serviced by an airstrip and resupply ship in summer. Recently, wide-field cameras developed at the University of Toronto were deployed near Eureka to monitor thousands of stars, with the objective of expanding the exoplanet database.
Earlier work by Steinbring and colleagues indicated that data obtained from PEARL imply that clear weather prevails 68% of the time. After significant testing, the team concluded that the site “can allow reliable, uninterrupted temporal coverage during successive dark periods, in roughly 100 hour blocks with clear skies and good seeing.”
However, the optimal conditions can be interrupted by brief but potentially intense storms. In the article the team added that, “the primary issue is wind rather than the cold temperatures.” The PEARL facility is equipped with an important weather probe that conveys on-site conditions at 10 minute intervals, thanks to the Canadian Network for the Detection of Atmospheric Change (CANDAC).
There are numerous challenges that arise when observing from the Arctic, but scientists like Steinbring have worked to overcome them, potentially enabling new studies of gravitational lenses and other pertinent phenomena. Indeed, astronomical observations are likewise being obtained from Antarctica. For example, there is the Antarctic Search for Transiting Exoplanets (ASTEP) 40 cm telescope at Dome C, and three 50 cm Antarctic Survey Telescopes (AST3) at Dome A, Antarctica. Steinbring remarked that floorspace is potentially available for up to 5 more telescopes at PEARL, if the compact design they studied was adopted.
E. Steinbring and his colleagues B. Leckie and R. Murowinski are associated with the National Research Council Canada, Herzberg Astronomy and Astrophysics in Victoria, Canada. An electronic preprint of their article is available on arXiv, and the findings were presented recently at theAdapting to the Atmosphere Conference in Durham, UK.
There are so many fun sights to see in the sky that are pure astronomical magic. And then there are the spectacular human-created sights. One of those sights is watching satellites from the Iridium constellation that — because of their odd shape — produce spectacular flares that can be brighter than the planet Venus.
Because most of these satellites are still under control by their parent company, their flare timings are easy to predict. And now astrophotographer Thierry Legualt has caught them in action on a video.
“Usually they are photographed in long exposures,” Legault told Universe Today via email. “But last summer I filmed three of them in the Big Dipper and Orion, and they were so bright a pond reflected the flare. In video you can see the real speed of the event.”
The third sequence on the video might look a little odd, but Legault said he rotated the camera 90°. “I found it funny like that,” he said. “Tilt your head or your screen!?”
According to a July Sky & Telescope article, the constellation includes 66 satellites — down from the planned 77 — and is named after element 77 in the periodic table. Normally these machines drift along like a faint star, but when the sunlight catches the side just right, out comes the flash.
“A really bright one can take your breath away,” wrote Bob King, who is also a writer here on Universe Today. “I’ve been lucky enough to witness a few –8 passes and can only describe the experience as alarming. It’s not natural to see a starlike object glow so brilliantly. If you’ve ever wondered what a nearby supernova might look like, treat yourself to one of these.”
Astronomy is all about humility and thinking big in terms of space and time. It’s routine for astronomers to talk of comets on thousand year orbits, or stars with life spans measured in billions of years…
Yup, the lifespan of your average humanoid is indeed fleeting, and pales in comparison to the universe, that’s for sure. But one astronomical series that you can hope to live through is the cycle of eclipses.
I remember reading about the total solar eclipse of February 26th, 1979 as a kid. Carter was in the White House, KISS was mounting yet another comeback, and Voyager 1 was wowing us with images of Jupiter. That was also the last total solar eclipse to grace mainland United States in the 20th century.
But the ongoing “eclipse-drought” is about to be broken.
One thousand days from this coming Monday, November 24th on August 21st 2017, the shadow of the Moon will touch down off of the Oregon coast and sweep eastward across the U.S. heartland before heading out to the Atlantic off of the coast of South Carolina. Millions live within a days’ drive of the 115 kilometre wide path, and the eclipse has the added plus of occurring at the tail end of summer vacation season. This also means that lots of folks will be camping and otherwise mobile with their RVs and able to journey to the event.
This is also the last total solar eclipse to pass over any of the 50 United States since July 11th, 1991, and the first eclipse to cross the contiguous United States from “sea to shining sea” since way back on June 8th, 1918.
Think it’s too early to prepare? Towns across the path, including Hopkinsville, Kentucky and towns in Kansas and Nebraska are already laying plans for eclipse day. Other major U.S. cities, such as Nashville, Idaho Falls, and Columbia, South Carolina also lie along the path of totality, and the spectacle promises to spawn a whole new generation of “umbraphiles” or eclipse chasers.
A total solar eclipse is an unforgettable sight. But unlike a total lunar eclipse, which can be viewed from the moonward-facing hemisphere of the Earth, one generally has to journey to the narrow path of totality to see a total solar eclipse. Totality rarely comes to you.
And don’t settle for a 99% partial eclipse just outside the path. “There’s no comparison between partial and total solar eclipses when it comes to sheer grandeur and beauty,” Michael Zeiler, longtime eclipse chaser and creator of the Great American Eclipse website told Universe Today. We witnessed the 1994 annular solar eclipse of the Sun from the shores of Lake Erie, and can attest that a 99% partial eclipse is still pretty darned bright!
There are two total solar eclipses remaining worldwide up until 2017: One on March 20th, 2015 crossing the high Arctic, and another on March 9th 2016 over Southeast Asia. The 2017 eclipse offers a maximum of 2 minutes and 41 seconds of totality, and weather prospects for the eclipse in late August favors viewers along the northwestern portion of the track.
And though an armada of cameras will be prepared to capture the eclipse along its trek across the U.S., many veteran eclipse chasers suggest that first time viewers merely sit back and take in the moment. The onset of totality sees a bizarre sort of twilight fall across the landscape, as shadow bands skip across the countryside, temperatures drop, and wildlife is fooled into thinking that nightfall has come early.
And then, all too soon, the second set of blinding diamond rings burst through the lunar valleys, the eclipse glasses go back on, and totality is over. Which always raises the question heard throughout the crowd post-eclipse:
When’s the next one?
Well, the good news is, the United States will host a second total solar eclipse on April 8th, 2024, just seven years later! This path will run from the U.S. Southwest to New England, and crisscross the 2017 path right around Carbondale, Illinois.
Will the woo that surfaced around the approach of Comet ISON and the lunar tetrad of “blood Moon eclipses” rear its head in 2017? Ah, eclipses and comets seem to bring ‘em out of the woodwork, and 2017 will likely see a spike in the talking-head gloom and doom videos ala YouTube. Some will no doubt cite the “perfection” seen during total solar eclipses as proof of divine inspiration, though this is actually just a product of our vantage point in time and space. In fact, annular eclipses are slightly more common than total solars in our current epoch, and will become more so as the Moon slowly recedes from the Earth. And we recently noted in our post on the mutual phenomena of Jupiter’s moons that solar eclipses very similar to those seen from the Earth can also be spied from Callisto.
Heads up to any future interplanetary eclipse resort developer: Callisto is prime real estate.
One of the better asteroid occultations of 2014 is coming right up tonight, and Canadian and U.S. observers in the northeast have a front row seat.
The event occurs in the early morning hours of Thursday, November 20th, when the asteroid 3 Juno occults the 7.4 magnitude star SAO 117176. The occultation kicks off in the wee hours as the 310 kilometre wide “shadow” of 3 Juno touches down and crosses North America from 6:54 to 6:57 Universal Time (UT), which is 12:54 to 12:57 AM Central, or 1:54 to 1:57 AM Eastern Standard Time.
The maximum predicted length of the occultation for observers based along the centerline is just over 27 seconds. Note that 3 Juno also shines at magnitude +8.5, so both it and the star are binocular objects. The event will sweep across Winnipeg and Lake of the Woods straddling the U.S. Canadian border, just missing Duluth Minnesota before crossing Lake Superior and over Ottawa and Montreal and passing into northern Vermont and New Hampshire. Finally, the path crosses over Portland Maine, and heads out to sea over the Atlantic Ocean.
Don’t live along the path? Observers worldwide will still see a close pass of 3 Juno and the +7th magnitude star as both do their best to impersonate a close binary pair. If you’ve never crossed spotting 3 Juno off of your astro-“life list,” now is a good time to try.
The position of the target star HIP43357/SAO 117176 is:
Right Ascension: 8 Hours 49’ 54”
Declination: +2° 21’ 44”
Generally, the farther east you are along the track, the higher the pair will be above the horizon when the event occurs, and the better your observing prospects will be in terms of altitude or elevation. From Portland Maine — the last port of call for the shadow of 3 Juno on dry land — the pair will be 35 degrees above the horizon in the constellation of Hydra.
As always, the success in observing any astronomical event is at the whim of the weather, which can be fickle in North America in November. As of 48 hours out from the occultation, weather prospects look dicey, with 70%-90% cloud cover along the track. But remember, you don’t necessarily need a fully clear sky to make a successful observation… just a clear view near the head of Hydra asterism. Remember the much anticipated occultation of Regulus by the asteroid 163 Erigone earlier this year? Alas, it went unrecorded due to pesky but pervasive cloud cover. Perhaps this week’s occultation will fall prey to the same, but it’s always worth a try. In asteroid occultations as in free throws, you miss 100% of the shots that you don’t take!
Why study asteroid occultations? Sure, it’s cool to see a star wink out as an asteroid passes in front of it, but there’s real science to be done as well. Expect the star involved in Thursday’s occultation to dip down about two magnitudes (six times) in brightness. The International Occultation Timing Association (IOTA) is always seeking careful measurements of asteroid occultations of bright stars. If enough observations are made along the track, a shape profile of the target asteroid emerges. And the possible discovery of an “asteroid moon” is not unheard of using this method, as the background star winks out multiple times.
3 Juno was discovered crossing Cetus by astronomer Karl Harding on September 1st, 1804 from the Lilienthal Observatory in Germany. The 3rd asteroid discovered after 1 Ceres and 2 Pallas, 3 Juno ranks 5th in size at an estimated 290 kilometres in diameter. In the early 19th century, 3 Juno was also considered a planet along with these other early discoveries, until the ranks swelled to a point where the category of asteroid was introduced. A denizen of the asteroid belt, 3 Juno roams from 2 A.U.s from the Sun at perigee to 3.4 A.U.s at apogee, and can reach a maximum brightness of +7.4th magnitude as seen from the Earth. No space mission has ever been dispatched to study 3 Juno, although we will get a good look at its cousin 1 Ceres next April when NASA’s Dawn spacecraft enters orbit around the king of the asteroids.
3 Juno reaches opposition and its best observing position on January 29th, 2015.
3 Juno also has an interesting place in the history of asteroid occultations. The first ever predicted and successfully observed occultation of a star by an asteroid involved 3 Juno on February 19th, 1958. Another occultation involving the asteroid on December 11th, 1979 was even more widely observed. Only a handful of such events were caught prior to the 1990s, as it required ultra-precise computation and knowledge of positions and orbits. Today, dozens of asteroid occultations are predicted each month worldwide.
Observing an asteroid occultation can be challenging but rewarding. You can watch Thursday’s event with binoculars, but you’ll want to use a telescope to make a careful analysis. You can either run video during the event, or simply watch and call out when the star dims and brightens as you record audio. Precise timing and pinpointing your observing location via GPS is key, and human reaction time plays a factor as well. Be sure to locate the target star well beforehand. For precise time, you can run WWV radio in the background.
And finally, you also might see… nothing. Asteroid paths have a small amount of uncertainty to them, and although these negative observations aren’t as thrilling to watch, they’re important to the overall scientific effort.
Good luck, and let us know of your observational tales of anguish and achievement!
Does the atmosphere of Venus possess upper atmospheric phenomena similar to the Earth, such as aurora or nightglow?
Now, a recent announcement out of the American Astronomical Society’s 46th annual meeting of the Division of Planetary Science being held this week in Tucson, Arizona has shed new light on the dilemma.
The discovery was announced on Wednesday, November 12th at the 46th AAS meeting and was made as a collaborative effort by researchers from New Mexico State University at Las Cruces, the Stanford Research Institute (SRI) International, the University of Colorado at Boulder, the University of Koln and University of Munich, Germany, the European Space and Technology Center in the Netherlands and the Institut de Recherche en Astrophysique et Planétologie, in France.
For the study, researchers observed Venus from December 2010 to July 2012 using the Astrophysical Research Consortium (ARC)Echelle Spectrograph and the ARC 3.5 metre telescope located at Apache Point near Sunspot, New Mexico.
Timing was crucial, as the Sun was coming off of a profound deep minimum through 2009 and just beginning to become active with the start of solar cycle #24. Observers were looking for activity along the 5577.3 angstrom wavelength known as the “oxygen green line.” Activity had not been seen at this wavelength on the nighttime side of Venus since 2004.
“These are intriguing results, suggesting that it is possible to have aurora on non-magnetic planets,” said Candace Gray, Astronomer and NASA Earth and Space Science Fellow at Las Cruces and lead researcher in the study. “On Venus, this green line has been seen only intermittently.”
Earth is the oddball among the terrestrial planets in the inner solar system with its robust magnetic field. On Earth, aurorae occur when said field captures charged particles ejected from the Sun and funnels them in towards the poles. Events seen in the study tended to drop 140 to 120 kilometres in altitude in the Venusian atmosphere, highly suggestive of auroral activity seen in the ionosphere of Earth.
Researchers were fortunate during one of the recent runs at Apache Point that the Sun kicked off a coronal mass ejection that headed Venus’s way. During the July 2012 solar storm, the team detected one of the brightest green line emissions that had ever been detected by observers on Earth.
This demonstrates that perhaps, a magnetic field is optional when it comes to auroral activity, at least in the case of the planet Venus. Located only 0.7 astronomical units (108.5 million kilometres) from the Sun, our tempestuous star actually wraps the planet with its very own magnetotail.
Researchers are also looking to compare their results with observations from the European Space Agency’s Venus Express orbiter which arrived at the planet on April 2006.
“Currently, we are using observations from VIRTIS on Venus Express to try and detect the green line,” Gray told Universe Today. “We had coordinated ground based observations with them this past February, and we detected the green line from the ground when they were observing the night side limb. Additionally, we are using the Electron Spectrometer and ASPERA-4 to observe how the electron energy and density changes in the atmosphere after coronal mass ejection impacts.”
This also raises the interesting possibility that NASA’s MAVEN spacecraft — which recently arrived in orbit around Mars — might just detect similar activity in the tenuous Martian atmosphere as well. Like Venus, the Red Planet also lacks a global magnetic field.
Could this glow be connected with spurious sightings of the “Ashen Light of Venus” that have cropped up over the centuries?
Of course, ashen light, also known as Earthshine on the dark limb of the Moon, is easily explained as sunlight reflected back from the Earth. Moonless Venus, however, should be ashen light free.
“The green line emission that we see is brightest on the limb (edge) of the planet,” Gray told Universe Today. “We’re sure that there is emission all along the nightside, but because of the optical depth, it appears much brighter on the limb of the planet. I think it would be too faint to detect with the naked eye.”
Nightglow has been a leading suspect for ashen light on the Venusian nightside, and a similar green line emission detection rivaling the 2012 event was made by Tom Slanger using the Keck I telescope 1999.
Other proposed suspects over the centuries for ashen light on Venus include lightning, volcanism, light pollution (!) from Venusian cities, or just plain old observer error.
Certainly, future observations are needed to cinch the solar activity connection.
“We will likely observe Venus again from Apache Point the next time Venus is visible to us in June 2015,” Gray told Universe Today. “We will continue looking at Venus Express observations until the craft dies in the atmosphere.”
Venus can currently be seen crossing through the field of view of SOHO’s LASCO C3 camera. After spending most of 2014 in the dawn sky, Venus will emerge from behind the Sun low in the dusk to head towards greatest elongation in the evening sky on June 6th, 2015. And from there, Venus will once again slender towards a crescent, presenting its nightside towards Earth, and just perhaps, continuing to present a lingering mystery of modern astronomy.
If there’s one meteor shower that has the potential to bring on a storm of epic proportions, it’s the Leonids. Peaking once every 33 years, these fast movers hail from the Comet 55P Temple-Tuttle, and radiate from the Sickle, or backwards “question mark” asterism in the constellation Leo. And although 2014 is an “off year” in terms of storm prospects, it’s always worth taking heed these chilly November mornings as we await the lion’s roar once again.
The prospects: 2014 sees the expected peak of the Leonids arriving around 22:00 Universal Time (UT) which is 5:00 PM EST. Locally speaking, a majority of meteor showers tend to peak in the early AM hours past midnight, as the observer’s location turns forward facing into the oncoming meteor stream. Think of driving in an early November snowstorm, with the car being the Earth and the flakes of snow as the oncoming meteors. And if you’ve (been fortunate enough?) to have never seen snow, remember that it’s the front windshield of the car going down the highway that catches all of the bugs!
This all means that in 2014, the Asian Far East will have an optimal viewing situation for the Leonids, though observers worldwide should still be vigilant. Of course, meteor showers never read online prognostications such as these, and often tend to arrive early or late. The Leonids also have a broad range of activity spanning November 6th through November 30th.
The predicted ideal Zenithal Hourly Rate for 2014 stands at about 15, which is well above the typical background sporadic rate, but lower than most years. Expect the actual sky position of the radiant and light pollution to lower this hourly number significantly. And speaking of light pollution, the Moon is a 21% illuminated waning crescent on the morning of November 17th, rising at around 2:00 AM local in the adjacent constellation of Virgo.
The Leonids can, once every 33 years, produce a storm of magnificent proportions. The history of Leonid observation may even extend back as far as 902 A.D., which was recorded in Arab annals as the “Year of the Stars.”
But it was the morning of November 13th, 1833 that really gained notoriety for the Leonids, and really kicked the study of meteor showers into high gear.
The night was clear over the U.S. Eastern Seaboard, and frightened townsfolk were awakened to moving shadows on bedroom walls. Fire was the first thing on most people’s minds, but they were instead confronted with a stunning and terrifying sight: a sky seeming to rain stars in every direction. Churches quickly filled up, as folks reckoned the Day of Judgment had come. The 1833 Leonid storm actually made later historical lists as one of the 100 great events in the United States for the 19th century. The storm has also been cited as single-handedly contributing to the religious fundamentalist revivals of the 1830s. Poet Walt Whitman witnessed the 1833 storm, and the song The Stars Fell on Alabama by Frank Perkins was inspired by the event as well.
But not all were fearful. Astronomer Denison Olmsted was inspired to study the radiants and paths of meteor streams after the 1833 storm, and founded modern meteor science. The Leonids continued to produce storms at 33 year intervals, and there are still many observers that recall the spectacle that the Leonids produced over the southwestern U.S. back 1966, with a zenithal hourly rate topping an estimated 144,000 per hour!
We also have a personal fondness for this shower, as we were fortunate enough to witness the Leonids from the dark desert skies of Kuwait back in 1998. We estimated the shower approached a ZHR of about 900 towards sunrise, as a fireballs seemed to light up the desert once every few seconds.
The Leonids have subsided in recent years, and have fallen back below enhanced rates since 2002. Here’s the most recent ZHR levels as per the International Meteor Organization:
2009: ZHR=80.
2010: ZHR=32.
2011: ZHR=22.
2012: ZHR=48.
Note: 2013 the shower was, for the most part, washed out by the Full Moon.
But this year is also special for another reason.
Note that the 2014-2015 season marks the approximate halfway mark to an expected Leonid outburst around 2032. Comet 55P Tempel-Tuttle reaches perihelion on May 20th, 2031, and if activity in the late 1990s was any indication, we expect the Leonids to start picking up again around 2030 onward.
Observing meteors is as simple as laying back and looking up. Be sure to stay warm, and trace the trail of any suspect meteor back to the Sickle to identify it as a Leonid. The Leonid meteors have one of the fastest approach velocities of any meteor stream at 71 kilometres per second, making for quick, fleeting passages in the pre-dawn sky. Brighter bolides may leave lingering smoke trails, and we like to keep a set of binoculars handy to examine these on occasion.
Looking to do some real science? You can document how many meteors you see per hour from your location and send this in to the International Meteor Organization, which tabulates and uses these volunteer counts to characterize a given meteor stream.
And taking images of Leonid meteors is as simple as setting your DSLR camera on a tripod and taking long exposure images of the night sky. Be sure to use the widest field of view possible, and aim the camera about 45 degrees away from the radiant to nab meteors in profile. We generally shoot 30 second to 3 minute exposures in series, and don’t be afraid to experiment with manual F-stop/ISO combinations to get the settings just right for the local sky conditions. And be sure to carefully review those shots on the “big screen” afterwards… nearly every meteor we’ve caught in an image has turned up this way.
Don’t miss the 2014 Leonids. Hey, we’re half way to the start of the 2030 “storm years!”
Missing the planets this month? With Mars receding slowly to the west behind the Sun at dusk, the early evening sky is nearly devoid of planetary action in the month of November 2014. Stay up until about midnight local, however, and brilliant Jupiter can be seen rising to the east. Well placed for northern hemisphere viewers in the constellation Leo, Jupiter is about to become a common fixture in the late evening sky as it heads towards opposition next year in early February.
An interesting phenomenon also reaches its climax, as we make the first of a series of passes through the ring plane of Jupiter’s moons this week on November 8th, 2014. This means that we’re currently in a season where Jupiter’s major moons not only pass in front of each other, but actually eclipse and occult one another on occasion as they cast their shadows out across space.
These types of events are challenging but tough to see, owing to the relatively tiny size of Jupiter’s moons. Followers of the giant planet are familiar with the ballet performed by the four large Jovian moons of Io, Europa, Ganymede, and Callisto. This was one of the first things that Galileo documented when he turned his crude telescope towards Jupiter in late 1609. The shadows the moons cast back on the Jovian cloud tops are a familiar sight, easily visible in a small telescope. Errors in the predictions for such passages provided 17th century Danish astronomer Ole Rømer with a way to measure the speed of light, and handy predictions of the phenomena for Jupiter’s moons can be found here.
Mutual occultations and eclipses of the Jovian moons are much tougher to see. The moons range in size from 3,121 km (Europa) to 5,262 km (Ganymede), which translates to 0.8”-1.7” in apparent diameter as seen from the Earth. This means that the moons only look like tiny +6th magnitude stars even at high magnification, though sophisticated webcam imagers such as Michael Phillips and Christopher Go have managed to actually capture disks and tease out detail on the tiny moons.
What is most apparent during these mutual events is a slow but steady drop in combined magnitude, akin to that of an eclipsing variable star such as Algol. Running video, Australian astronomer David Herald has managed to document this drop during the 2009 season (see the video above) and produce an effective light curve using LiMovie.
Such events occur as we cross through the orbital planes of Jupiter’s moons. The paths of the moons do not stray more than one-half of a degree in inclination from Jupiter’s equatorial plane, which itself is tilted 3.1 degrees relative to the giant planet’s orbit. Finally, Jupiter’s orbit is tilted 1.3 degrees relative to the ecliptic. Plane crossings as seen from the Earth occur once every 5-6 years, with the last series transpiring in 2009, and the next set due to begin around 2020. Incidentally, the slight tilt described above also means that the outermost moon Callisto is the only moon that can ‘miss’ Jupiter’s shadow on in-between years. Callisto begins to so once again in July 2016.
Mutual events for the four Galilean moons come in six different flavors:
This month, Jupiter reaches western quadrature on November 14th, meaning that Jupiter and its moons sit 90 degrees from the Sun and cast their shadows far off to the side as seen from the Earth. This margin slims as the world heads towards opposition on February 6th, 2015, and Jupiter once again joins the evening lineup of planets.
Early November sees Jupiter rising around 1:00 AM local, about six hours prior to sunrise. Jupiter is also currently well placed for northern hemisphere viewers crossing the constellation Leo.
The Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCEE) based in France maintains an extensive page following the science and the circumstances for the previous 2009 campaign and the ongoing 2015 season.
We also distilled down a table of key events for North America coming up through November and December:
Fun fact: we also discovered during our research for this piece that these events can also produce a total solar eclipse very similar to the near perfect circumstances enjoyed on the Earth via our Moon:
Note that this season also produces another triple shadow transit on January 24th, 2015.
Observing and recording these fascinating events is as simple as running video at key times. If you’ve imaged Jupiter and its moons via our handy homemade webcam method, you also possess the means to capture and analyze the eclipses and occultations of Jupiter’s moons.
Good luck, and let us know of your tales of astronomical tribulation and triumph!
I sat straight up in my seat when I learned of the discovery of a possible new supernova in the bright Virgo galaxy M61. Since bright usually means close, this newly exploding star may soon become visible in smaller telescopes. It was discovered at magnitude +13.6 on October 29th by Koichi Itagaki of Japan, a prolific hunter of supernovae with 94 discoveries or co-discoveries to his credit. Itagaki used a CCD camera and 19.6-inch (0.50-m) reflector to spy the new star within one of the galaxy’s prominent spiral arms. Comparison with earlier photos showed no star at the position. Itagaki also nabbed not one but two earlier supernovae in M61 in December 2008 and November 2006.
Overnight, Ernesto Guido and crew used a remote telescope in New Mexico to confirm the new object. We’re still waiting for a spectrum to be absolutely sure this is the real deal and also to determine what type of explosion occurred. In the meantime, it may well brighten in the coming mornings.
Supernovae are divided into two broad categories – Type Ia and Type II. In a Type Ia event, a planet-sized white dwarf star in close orbit around a normal star siphons off matter from its companion which builds up on the surface of the dwarf until it reaches critical mass at which point the core ignites and consumes itself and the star in one titanic nuclear fusion reaction. A cataclysmic explosion ensues as the star self-destructs in blaze of glory.
Type Ia explosions can become 5 billion times brighter than the Sun – the reason we can see them across so many light years – and eject matter into space at 5,000 – 20,000 km/second. Type II events mark the end of the life of a massive supergiant star. As these behemoths age, they burn by fusing heavier and heavier elements in their cores from hydrogen to carbon to silicon and finally, iron-nickel. Iron is inert and can’t be cooked or fused to create more energy. The star’s internal heat source, which has been staving back the force of gravity all these millions of years, shuts down. Gravity takes hold with a vengeance, the star quickly collapses then rebounds in a titanic explosion. Ka-boom!
Like the Type Ia event, a Type II supernova grows to fantastic brilliance. Besides a legacy of radiant light, star debris, the creation of heavy elements like gold and lead, a Type II event will sometimes leave behind a tiny, city-sized, rapidly-spinning neutron star – the much compressed core of the original star – or even a black hole. So yes, life can continue for a giant star after a supernova event. But like seeing a former classmate at your 40th high school reunion, you’d hardly recognize it.
Are you itching to see this new supernova for yourself? Here are a couple maps to help you find it. M61 is located in the middle of the “Y” of Virgo not far from the familiar bright double star Gamma Virginis. From many locations, the galaxy climbs to 15-20° altitude in the east-southeast sky just before the start of dawn, just high enough for a good view. Once you find the galaxy, look for a small “star” superimposed on its eastern spiral arm as shown in the photo at the top of this article.
I’ll be out there with my scope watching and will report back once it’s established what type of supernova happens to be blowing up in our eyepieces. More information about the new object can be found anytime at David Bishop’s Latest Supernovae site. Good luck, clear skies!
** Update Nov. 1 : M61’s supernova now has a name and type! SN 2014dt is a Type Ia (exploding white dwarf) with some peculiarities in its spectrum. It’s also little brighter at magnitude +13.2.
Psst! Ever spy the planet Mercury? The most bashful of all the naked eye planets makes its best dawn appearance of 2014 this weekend for northern hemisphere observers. And not only will Mercury be worth getting up for, but you’ll also stand a chance at nabbing that most elusive of astronomical phenomena — the zodiacal light — from a good dark sky sight.
DST note: This post was written whilst we we’re visiting Arizona, a land that, we’re happy to report, does not for the most part observe the archaic practice of Daylight Saving Time. Life goes on, zombies do not arise, and trains still run on time. In the surrounding world of North America, however, don’t forget to “fall back” one hour on Sunday morning, November 2nd. I know, I know. Trust me, we didn’t design the wacky system we’re stuck with today. All times noted below post-shift reflect this change, but it also means that you’ll have to awaken an hour earlier Sunday November 2nd onwards to begin your astronomical vigil for Mercury!
Mercury starts the month of November reaching greatest elongation on Saturday, November 1st at 18.7 degrees west of the Sun at 13:00 Universal Time UT/09:00 EDT. Look for Mercury about 10 degrees above the eastern horizon 40 minutes before sunrise. The planet Jupiter and the stars Denebola and Regulus make good morning guideposts to trace the line of the ecliptic down to the horizon to find -0.3 magnitude Mercury.
Sweeping along the horizon with binoculars, you may just be able to spy +0.2 magnitude Arcturus at a similar elevation to the northwest. The +1st magnitude star Spica also sits to Mercury’s lower right. Mercury passes 4.2 degrees north of Spica on November 4th while both are still about 18 degrees from the Sun, making for a good study in contrast.
Later in the month, the old waning crescent Moon will present a challenge as it passes 2.1 degrees north of Mercury on November 21st, though both will only be 9 degrees from the Sun on this date.
Mercury also passes 1.6 degrees south of Saturn November 26th, but both are only 7 degrees from the Sun and unobservable at this point. But don’t despair, as you can always watch all of the planetary conjunction action via SOHO’s sunward staring LASCO C3 camera, which has a generous 15 degree field of view.
At the eyepiece, Mercury starts off the month of November as a 57% illuminated gibbous disk about 7” in diameter. This will change to a 92% illuminated disk 5″ across on November 15th, as the planet races towards superior conjunction on the far side of the Sun on December 8th. As with Venus, Mercury always emerges in the dawn sky as a crescent headed towards full phase, and the cycle reverses for both planets when they emerge in the dusk sky.
Why aren’t all appearances of Mercury the same? Mercury orbits the Sun once every 88 days, making greatest elongations of Mercury far from uncommon: on average, we get three dawn and three dusk apparitions of the innermost world per year, with a maximum of seven total possible. Two main factors come into play to assure that not all appearances of Mercury are created equal.
One is the angle of the ecliptic, which is the imaginary plane of our solar system that planets roughly follow traced out by the Earth’s orbit. In northern hemisphere Fall, this angle is at its closest to perpendicular at dawn, and the dusk angle is most favorable in the Spring. In the southern hemisphere, the situation is reversed. This serves to place Mercury as high as possible out of the atmospheric murk during favorable times, and shove it down into near invisibility during others.
The second factor is Mercury’s orbit. Mercury has the most elliptical orbit of any planet in our solar system at a value of 20.5% (0.205), with an aphelion of 69.8 million kilometres and perihelion 46 million kilometres from the Sun. This plays a more complicated role, as an elongation near perihelion only sees the planet venture 18.0 degrees from the Sun, while aphelion can see the planet range up to 27.8 degrees away. However, this distance variation also leads to noticeable changes in brightness that works to the advantage of Mercury spotters in the opposite direction. Mercury shines as bright as magnitude -0.3 at closer apparitions, to a full magnitude fainter at more distant ones at +0.7.
In the case of this weekend, greatest elongation for Mercury occurs just a week after perihelion, which transpired on October 25th.
Mercury is also worth keeping an eye on in coming years, as it will also transit the Sun for the first time since 2006 on May 9th, 2016. This will be visible for Europe and North America. We always thought it a bit strange that while rarer transits of Venus have yet to make their sci-fi theatrical debut, a transit of Mercury does crop up in the film Sunshine.
The first week of November is also a fine time to try and spy the zodiacal light. This is a cone-shaped glow following the plane of the ecliptic, resulting from sunlight backscattered across a dispersed layer of interplanetary dust. The zodiacal light was a common sight for us from the dark skies of Arizona, often rivaling the distant glow of Tucson over the mountains. The zodiacal light vanished from our view after moving to the humid and often light polluted U.S. East Coast, though we’re happy to report that we can once again spy it as we continue to traverse the U.S. southwest this Fall.
None other than rock legend Brian May of Queen fame wrote his PhD dissertation on the zodiacal light and the distribution and relative velocity of dust particles along the plane of the solar system. Having a dark site and a clear flat horizon is key to nabbing this bonus to your quest to cross Mercury off your life list this weekend!