A Triple Occultation Bonanza: A Challenging Series of Occultations This Weekend and More

The 1st Quarter Moon occults Saturn during the last event in the series on August 5th, 2015. Sequence courtesy of Teale Britstra.

Got clear skies? This week’s equinox means the return of astronomical Fall for northern hemisphere observers and a slow but steady return of longer nights afterwards. And as the Moon returns to the evening skies, all eyes turn to the astronomical action transpiring low to the southwest at dusk.

Three planets and two “occasional” planets lie along the Moon’s apparent path this coming weekend: Mars, Saturn, Mercury and the tiny worldlets of 4 Vesta and 1 Ceres. Discovered in the early 19th century, Ceres and Vesta enjoyed planetary status initially before being relegated to the realm of the asteroids, only to make a brief comeback in 2006 before once again being purged along with Pluto to dwarf planet status.

Credit: Stellarium.
The Moon approaches Saturn on the evening of September 28th as seen from latitude 30 degrees north. Credit: Stellarium.

On Sunday September 28th, the four day old Moon will actually occult (pass in front of) Saturn, Ceres, and Vesta in quick succession. The Saturn occultation is part of a series of 12 in an ongoing cycle. This particular occultation is best for Hawaiian-based observers on the evening of September 28th. Astute observers will recall that Ceres and Vesta fit in the same 15’ field of view earlier this summer. Both are now over six degrees apart and slowly widening. Unfortunately, there is no location worldwide where it’s possible to see all (or two) of these objects occulted simultaneously. The best spots for catching the occultations of +7.8 magnitude Vesta and +9.0 magnitude Ceres are from the Horn of Africa and just off of the Chilean coast of South America, respectively. The rest of us will see a close but photogenic conjunction of the trio and the Moon. To our knowledge, an occultation of Ceres or Vesta by the dark limb of the Moon has yet to be recorded. Vesta also reaches perihelion this week on September 23rd at 4:00 UT, about 2.2 astronomical units from the Sun and 2.6 A.U.s from Earth.

Credit: Andrew Symes
4 Vesta and 1 Ceres share the same field of view this past summer. Credit: Andrew Symes @FailedProtostar.

The reappearance of the Moon in the evening skies is also a great time to try your hand (or eyes) at the fine visual athletic sport of waxing crescent moon-spotting. The Moon passes New phase marking the start of lunation 1135 on Wednesday, September 24th at 6:12 UT/2:12 AM EDT. First sighting opportunities will occur over the South Pacific on the same evening, with worldwide opportunities to spy the razor-thin Moon low to the west the following night. Aim your binoculars at the Moon and sweep about three degrees to the south, and you’ll spy Mercury and the bright star Spica just over a degree apart.

This week’s New Moon is also notable for marking the celebration of Rosh Hashanah, and the beginning of the Jewish year 5775 A.M. at sundown on Wednesday. The Jewish calendar is a hybrid luni-solar one, and inserted an embolismic or intercalculary month earlier this spring to stay in sync with the solar year.

Occult 4.0
The occultation footprint of Saturn. The dashed line denotes where the event occurs in the daytime, while the solid line marks where it can be seen after sunset. Created using Occult 4.1.0.

The Moon also visits Mars and Antares on September 29th. The ruddy pair sits just three degrees apart on the 28th, making an interesting study in contrast. Which one looks “redder” to you? Antares was actually named by the Greeks to refer to it as the “equal to,” “pseudo,” or “anti-Mars…” Mars can take on anything from a yellowish to pumpkin orange appearance, depending on the current amount of dust suspended in its atmosphere. The action around Mars is also heating up, as NASA’s MAVEN spacecraft just arrived in orbit around the Red Planet and India’s Mars Orbiter is set to join it this week… and all as Comet A1 Siding Spring makes a close pass on October 19th!

And speaking of spacecraft, another news maker is photo-bombing the dusk scene, although of course it’s much too faint to see. NASA’s Dawn mission is en route to enter orbit around Ceres in early 2015, and currently lies near R.A. 15h 02’ and declination -14 37’, just over a degree from Ceres as seen from Earth. The Moon will briefly “occult” the Dawn spacecraft as well on September 28th.

Credit: Starry Night
Crowded skies: the Moon approaching Saturn, 4 Vesta, 1 Ceres and the Dawn spacecraft on the 28th. The red arrow shows the direction of the Moon. Created using Starry Night Education Software.

Be sure to keep an eye out for Earthshine on the dark limb of the Moon as our natural neighbor in space waxes from crescent to First Quarter. What you’re seeing is the reflection of sunlight from the gibbous Earth illuminating the lunar plains on the nighttime side of the Moon. This effect gives the Moon a dramatic 3D appearance and can vary depending on the amount of cloud and snow cover currently facing the Moon.

Such a close trio of conjunctions raises the question: when was the last time the Moon covered two or more planets at once? Well, on April 23rd 1998, the Moon actually occulted Venus and Jupiter at the same time, although you had to journey to Ascension Island to witness it!

Credit: Stellarium
The waning crescent Moon approaches Jupiter and Venus on April 23rd, 1998. Credit: Stellarium.

Such bizarre conjunctions are extremely rare. You need a close pairing of less than half a degree for two bright objects to be covered by the Moon at the same time. And often, such conjunctions occur too close to the Sun for observation. A great consequence of such passages, however, is that it can result in a “smiley-face” conjunction, such as the one that occurs on October 15th, 2036:

Credit: Starry Night.
Smile: A close pass of the Moon, Saturn, and Regulus in 2036. Credit: Stellarium.

Such an occurrence lends credence to a certain sense of cosmic irony in the universe.

And be sure to keep an eye on the Moon, as eclipse season 2 of 2 for 2014 kicks off next week, with the second total lunar eclipse of the year visible from North America.

More to come!

A 3-D Printed Telescope Took This Picture Of The Moon — And The Plans Are Coming

A shot of the moon taken by a telescope created by 3-D printing. Credit: University of Sheffield

What would Galileo think of this? Here’s a shot of our closest large celestial neighbor, the Moon, taken through a 3-D printed telescope. Better yet — before long, the creators of this telescope promise, the plans will be made available on the Internet for all to use.

The concept (called PiKon) is based on a Newtonian reflecting telescope, with the rays of light focused onto a Raspberry Pi camera’s photo sensor.

“This is all about democratizing technology, making it cheap and readily available to the general public,” stated Mark Wrigley, who-co led the design. He runs a one-person company (Alternative Photonics) and built the telescope with support from the University of Sheffield in the United Kingdom.

“And the PiKon is just the start. It is our aim to not only use the public’s feedback and participation to improve it, but also to launch new products which will be of value to people.”

The mirror size of the telescope was not disclosed in a press release, but its magnification is 160. This makes it able to look at planets, moons, galaxies and star clusters. Stacking images is also possible to look for moving objects such as comets, the university stated.

The creators say it only costs £100 ($165) to make, so we can hardly wait to see what the plans contain. More information on the telescope is available on the PiKon website.

Source: University of Sheffield

Stalking Uranus: A Complete Guide to the 2014 Opposition Season

Uranus as seen through the automated eyes of Voyager 2 in 1986. (Credit: NASA/JPL).

It’s no joke… now is the time to begin searching the much-maligned (and mispronounced) planet Uranus as it reaches opposition in early October leading up to a very special celestial event.

Last month, we looked at the challenges of spying the solar system’s outermost ice giant world, Neptune. Currently located in the adjacent constellation Aquarius, Neptune is now 39 degrees from Uranus and widening. The two worlds had a close conjunction of just over one degree of separation in late 1993, and only long time observers of the distant worlds remember a time waaaay back in the early-1970s where the two worlds appeared farther apart than 2014 as seen from our Earthly vantage point.

Stellarium
Uranus rising to the east the evening of October 7th, just prior to the start of the October 8th lunar eclipse later the same evening. Created  using Stellarium.

In 2014, opposition occurs at 21:00 Universal Time (UT)/5:00 PM EDT on October 7th. If this date sounds familiar, it’s because Full Moon and the second total lunar eclipse of 2014 and the ongoing lunar tetrad of eclipses occurs less than 24 hours afterwards. This puts Uranus extremely close to the eclipsed Moon, and a remote slice of the high Arctic will actually see the Moon occult (pass in front of) Uranus during totality. Such a coincidence is extremely rare: the last time the Moon occulted a naked eye planet during totality occurred back during Shakespearian times in 1591, when Saturn was covered by the eclipsed Moon. This close conjunction as seen from English soil possibly by the bard himself was mentioned in David Levy’s book and doctoral thesis The Sky in Early Modern English Literature, and a similar event involving Saturn occurs in 2344 AD.

Credit:
The footprint of the October 8th occultation of Uranus. Credit: Occult 4.1.

We’re also in a cycle of occultations of Uranus in 2014, as the speedy Moon slides in front of the slow moving world every lunation until December 2015. Oppositions of Uranus — actually pronounced “YOOR-un-us” so as not to rhyme with a bodily orifice — currently occur in the month of September and move forward across our calendar by about 4 days a year.

Credit:
Uranus (lower left) near the limb of the gibbous Moon of September 11th, 2014. Credit: Roger Hutchinson.

This year sees Uranus in the astronomical constellation Pisces just south of the March equinoctial point. Uranus is moving towards and will pass within a degree of the +5.7 magnitude star 96 Piscium in late October through early November. Shining at magnitude +5.7 through the opposition season, Uranus presents a disk 3.7” in size at the telescope. You can get a positive ID on the planet by patiently sweeping the field of view: Uranus is the tiny blue-green “dot” that, unlike a star, refuses to come into a pinpoint focus.

The apparent path of Uranus from September 2014 through January 2015 across the constellation Pisces. The inset shows the tilt and orbit of its major moons across a 2′ field of view. Created by the author using Starry Night Education software.

Uranus also presents us with one of the key mysteries of the solar system. Namely, what’s up with its 97.8 degree rotational tilt? Clearly, the world sustained a major blow sometime in the solar system’s early history. In 2014, we’re viewing the world at about a 28 degree tilt and widening. This will continue until we’re looking straight at the south pole of Uranus in early 2030s. Of course, “south” and “north” are pretty arbitrary when you’re knocked back over 90 degrees on your axis! And while we enjoy the September Equinox next week on September 23rd, the last equinox for any would-be “Uranians” occurred on December 16th, 2007. This put the orbit of its moons edge-on from our point of view from 2006-2009 for only the third time since discovery of the planet in 1781. This won’t occur again until around 2049. Uranus also passed aphelion in 2009, which means it’s still at the farther end of its 19.1 to 17.3 astronomical unit (A.U.) range from the Sun in its 84 year orbit.

The moons of Uranus and Neptune as imaged during the 2011 opposition season. Credit: Rolf Wahl Olsen, used with permission.
The moons of Uranus and Neptune as imaged during the 2011 opposition season. Credit: Rolf Wahl Olsen, used with permission.

And as often as Uranus ends up as the butt (bad pun) of many a scatological punch line, we can at least be glad that the world didn’t get named Georgium Sidus (Latin for “George’s Star”) after William Herschel’s benefactor, King George the III. Yes, this was a serious proposal (!). Herschel initially thought he’d found a comet upon spying Uranus, until he realized its slow motion implied a large object orbiting far out in the solar system.

A replica... Credit:
A replica of the reflecting telescope that Herschel used to discover Uranus. Credit: Alun Salt/Wikimedia Commons image under a Creative Commons Attribution Share-Alike 2.0 license.

Spurious sightings of Uranus actually crop up on star maps prior to Herschel’s time, and in theory, it hovers juuusst above naked eye visibility near opposition as seen from a dark sky site… can you pick out Uranus without optical assistance during totality next month? Hershel and Lassell also made claims of spotting early ring systems around both Uranus and Neptune, though the true discovery of a tenuous ring system of Uranus was made by the Kuiper Airborne Observatory (a forerunner of SOFIA) during an occultation of a background star in 1977.

Credit: Ed Kotapish
A corkscrew chart for the moons of Uranus through October. Credit: Ed Kotapish/Rings PDS node.

Looking for something more? Owners of large light buckets can capture and even image (see above) 5 of the 27 known moons of Uranus. We charted the orbital elongations for favorable apparitions through October 2014 (to the left). Check out last year’s chart for magnitudes, periods, and maximum separations for each respective moon. An occulting bar eyepiece may help you in your quest to cut down the ‘glare’ of nearby Uranus.

When will we return to Uranus? Thus far, humanity has explored the world up close exactly once, when Voyager 2 passed by in 1986. A possible “Uranus Probe” (perhaps, Uranus Orbiter is a better term) similar to Cassini has been an on- and off- proposal over the years, though it’d be a tough sell in the current era of ever dwindling budgets. Plutonium, a mandatory power source for deep space missions, is also in short supply. Such a mission might take up to a decade to enter orbit around Uranus, and would represent the farthest orbital reconnaissance of a world in our solar system. Speedy New Horizons is just whizzing by Pluto next July.

All great thoughts to ponder as you scour the skies for Uranus in the coming weeks!

How to Take Great Pictures of the Northern Lights

A group of amateur photographers set up on a beach on Lake Superior near Duluth to photograph the northern lights. To shoot the aurora you'll need a tripod and middle to high end digital camera. Pocket cameras work well in daylight and can be used to shoot bright northern lights, but the images will be noisy. Credit: Bob King

Everybody loves pictures of the northern lights! If you’ve never tried to shoot the aurora yourself but always wanted to, here are a few tips to get you started.

"T" stands for a terrific aurora seen last winter from near Duluth, Minn. US. Photo taken with a high-end digital camera (Canon Eos 1 Mark III) at ISO 800, 30-second exposure. Credit: Bob King
“T” stands for a terrific aurora seen last winter near Duluth, Minn. U.S. Photo taken with a high-end digital camera (Canon EOS 1-D Mark III) at ISO 800, 30-second exposure. Credit: Bob King

The strong G3 geomagnetic storm expected tonight should kick out a reasonably bright display, perfect for budding astrophotographers. Assuming the forecasters are correct, you’ll need a few things. A location with a nice open view to the north is a good start. The aurora has several different active zones. There are bright, greenish arcs, which loll about the northern horizon, parallel rays midway up in the northern sky and towering rays and diffuse aurora that can surge past the zenith. Often the aurora hovers low and remains covered by trees or buildings, so find a road or field with good exposure.

15-second time exposure of Vega rising taken with a typical digital pocket camera. Notice the grainy texture. Credit: Bob King
15-second time exposure of Vega rising taken with a typical digital pocket camera. Notice the grain or noise throughout. Credit: Bob King

Second, a tripod. You can do so much with this three-legged beast. No better astro tool in the universe. Even the brightest auroras will require a time exposure of at least 5 seconds. Since no human can be expected to hold a camera steady that long, a tripod is a necessity. After that, it comes down to a camera. Most “point-and-shoot” models have limited time exposure ability, often just 15 seconds. That may be long enough for brighter auroras, but to compensate, you’ll have to increase your camera’s sensitivity to light by increasing the “speed” or ISO. The higher you push the ISO, the grainier the images appear especially with smaller cameras. But you’ll be able to get an image, and that may be satisfaction enough.

I use a Canon EOS-1 Mark III camera to shoot day and night. While not the latest model, it does a nice job on auroras. The 16-35mm zoom wide-angle lens is my workhorse as the aurora often covers a substantial amount of sky. My usual routine is to monitor the sky. If I see aurora padding across the sky, I toss the my equipment in the car and drive out to one of several sites with a clear exposure to the north. Once the camera meets tripod, here’s what to do:

A bright, very active aurora. I used my zoom lens at 16mm at f/2.8 and a 15-second exposure at ISO 800.
A bright, active aurora. I used my zoom lens at 16mm at f/2.8 and about a 15-second exposure at ISO 800. Credit: Bob King

* Focus: Put the camera in manual mode and make sure my focus is set to infinity. Focusing is critical or the stars will look like blobs and the aurora green mush. There are a couple options. Use autofocus on a cloud or clouds in the daytime or the moon at night. Both are at “infinity” in the camera’s eye. Once focused at infinity, set the camera to manual and leave it there the rest of the evening to shoot the aurora. OR … note where the little infinity symbol (sideways 8) is on your lens barrel and mark it with a thin sharpie so you can return to it anytime. You can also use your camera in Live View mode, the default viewing option for most point-and-shoot cameras where you compose and frame live. Higher-end cameras use a viewfinder but have a Live View option in their menus. Once in Live View, manually focus on a bright star using the back of the camera. On higher-end cameras you can magnify the view by pressing on the “plus” sign. This allows for more precision focus.

* Aperture: Set the lens to its widest open setting, which for my camera is f/2.8. The lower the f-stop number, the more light allowed in and the shorter the exposure. Like having really big pupils! You want to expose the aurora in as short a time as possible because it moves. Longer exposures soften its appearance and blur exciting details like the crispness of the rays.

My friend Glenn takes a night sky shot silhouetted against the northern lights. Credit: Bob King
A friend takes a night sky shot silhouetted against the glow of the northern lights. Credit: Bob King

*  ISO speed: Set the ISO to 800 for brighter auroras or 1600 for fainter ones and set the time to 30-seconds. If the aurora is bright and moving quickly, I’ll decrease exposure times to 10-15 seconds. The current crop of high end cameras now have the capacity to shoot at ISOs of 25,000. While those speeds may not give the smoothest images, dialing back to ISO 3200 and 6400 will make for photos that look like they were shot at ISO 400 on older generation cameras. A bright aurora at ISO 3200 can be captured in 5 seconds or less.

* Framing: Compose the scene in the viewfinder or monitor. If you’re lucky or plan well, you can include something interesting in the foreground like a building, a picturesque tree or lake reflection.

* Press!: OK, ready? Now press the button. When the image pops up on the viewing screen, does the image seem faint, too bright or just right. Make exposure adjustments as needed. If you need to expose beyond the typical maximum of 30 seconds, you can hold the shutter button down manually or purchase a cable release to hold it down for you.

Great example of  a well-composed photo with an interesting foreground choice. An intense aurora on September 12, 2014 in central Maine. Credit: Mike Taylor
Great example of a well-composed photo with an interesting foreground choice. This intense aurora was shot on September 12, 2014 in central Maine. Credit: Mike Taylor

It’s easy, right? Well then, why did it take me 400 words to explain it??? Of course the magic happens when you look at the monitor. You’ll see these fantastic colorful forms and ask yourself “did I do that?”

Have fun and good luck in your photography.

Tales (Tails?) Of Three Comets

Credit:

As the Chinese proverb says, “May you live in interesting times,” and while the promise of Comet ISON dazzling observers didn’t exactly pan out as hoped for in early 2014, we now have a bevy of binocular comets set to grace evening skies for northern hemisphere observers. Comet 2012 K1 PanSTARRS has put on a fine show, and comet C/2014 E2 Jacques has emerged from behind the Sun and its close 0.085 AU passage near Venus and has already proven to be a fine target for astro-imagers. And we’ve got another icy visitor to the inner solar system beating tracks northward in the form of Comet C/2013 V5 Oukaimeden, and a grand cometary finale as comet A1 Siding Spring brushes past the planet Mars. That is, IF a spectacular naked eye comet doesn’t come by and steal the show, as happens every decade or so…

Credit
Comet E2 Jacques crossing Cassiopeia as seen from the island of Malta. Credit: Leonard Mercer.

Anyhow, here’s a rapid fire run down on what you can expect from three of these binocular comets that continue to grace the twilight skies this Fall.

(Note that mentions of comets “passing near” a given object denote conjunctions of less than an angular degree of arc unless otherwise stated).

C/2014 E2 Jacques:

Discovered by amateur astronomer Cristovao Jacques on March 13th of this year from the SONEAR Observatory in Brazil, Comet E2 Jacques has been dazzling observers as it passed 35 degrees from the north celestial pole and posed near several deep sky wonders as it transited the constellation of Cassiopeia.

Credit
Comet E2 Jacques on August 28th as seen from the MVAS dark sky site in Yellow Springs, Ohio. Credit: John Chumack.

Mid-September finds Jacques 55 degrees above the NE horizon at dusk for northern hemisphere viewers in the constellation Cygnus. It then races southward parallel to the galactic equator, keeping in the +7th to +8th magnitude range before dropping down below +10th magnitude in late October. After this current passage through the inner solar system, Comet Jacques will be on a shortened 12,000 year orbit.

-Brightest: Mid-August at +6th magnitude.

-Perihelion: July 2nd, 2014 (0.66 AU).

-Closest to Earth: August 28, 2014 (0.56 AU).

Some key upcoming dates:

Sep 10: Passes the +3.9 magnitude star Eta Cygni.

Sep 14: Passes near the famous optical double star Albireo and crosses into the constellation of Vulpecula.

Sep 16: Passes in front of the +4.4 magnitude star Alpha Vulpeculae.

Sep 20: Crosses the Coathanger asterism.

Sep 21: Crosses into the constellation Sagitta.

Sep 24: Crosses into Aquila.

The celestial path of Comet Jacques from September 12th thru November 1st.
The celestial path of Comet Jacques from September 12th through November 1st. (All simulations created using Starry Night Education software.

Oct 5: Crosses the galactic plane.

Oct 14: passes near the +7.5 magnitude open cluster NGC 6755.

Oct 15: Drops back below +10th magnitude?

C/2013 V5 Oukaïmeden

Pronounced Ow-KAY-E-Me-dah, (yes, it’s a French name, with a very metal umlaut over the “ï”!) comet C/2013 V5 Oukaïmeden was discovered by the Moroccan Oukaïmeden Sky Survey (MOSS) located in the Atlas Mountains in Morocco. After completing a brief dawn appearance in early September, the comet moves into the dusk sky and starts the month of October located 38 degrees east of the Sun at about 14 degrees above the southwestern horizon as seen from latitude 30 degrees north at sunset. Southern hemisphere observers will continue to have splendid dawn views of the comet through mid-September at its expected peak. Comet Oukaïmeden is currently at +8th magnitude “with a bullet” and is expected to top out +6th magnitude in late September shortly before perihelion and perhaps remain a binocular object as it crosses the constellation Libra in October.

Credit:
An early image of Comet C/2013 V5 Oukaimeden taken in February of this year. Credit: Efrain Morales Rivera.

And its also worth noting that as comet A1 Siding Spring (see below) makes a close physical pass by Mars on October 19th, Comet Oukaïmeden makes a close apparent pass by Saturn as seen from our Earthly vantage point the evening before! To be sure, the dusk apparition of Comet Oukaïmeden will be a tough one, but if you can track down these bright guidepost objects listed below, you’ll have a chance at spying it.

-Brightest: Mid-September.

-Perihelion: September 28th, 2014 (0.63 AU from the Sun).

-Closest to Earth: September 16th, 2014 (0.48 AU).

Some key upcoming dates:

Sep 10 through Oct 4: Threads across the borders of the constellations Hydra, Pyxis, Antlia and Centaurus.

Sep 18: Passes near the +3.5 magnitude star Xi Hydrae.

Sep 19: Passes near the +4.3 magnitude star Beta Hydrae.

Sep 25: Passes 1.5 degrees from the +8th magnitude Southern Pinwheel Galaxy M83.

Oct 1: Passes in front of the +10.2 globular cluster NGC 5694.

The path of Comet ... the Sun position is shown for the final date.
The path of Comet Oukaimeden through the month of October: The Sun position is shown for the final date.

Oct 3: Passes into Libra.

Oct 11: Passes near the +8.5 magnitude globular cluster NGC 5897.

Oct 16: Crosses the ecliptic plane northward.

Oct 18: Passes less than two degrees from Saturn.

Oct 25: Passes less than a degree from the 2 day old Moon and the +3.9 magnitude star Gamma Librae.

Light curve
The projected light curve for Comet Oukaimeden with observational measurements (black dots). Credit:  Seiichi Yoshida.

C/2013 A1 Siding Spring

This comet was discovered on January 3rd, 2013 from the Siding Spring observatory in Australia, and soon caught the eye of astronomers when it was discovered that it would make a nominal pass just 139,000 kilometres from Mars on October 19th.

Comet A1 Siding Spring as seen from NEOWISE early this year. Credit: NASA/JPL.
Comet A1 Siding Spring as seen from NEOWISE early this year. Credit: NASA/JPL.

As seen from the Earth, Comet A1 Siding Spring has just broken 10th magnitude and vaults up towards the planet Mars low to the southwest at dusk this Fall for northern hemisphere observers. A1 Siding Spring is expected to top out at +8th magnitude this month before its Mars encounter, and is on a one million year plus orbit.

-Brightest: Early to Mid-September.

-Perihelion: October 25th, 2014.

-Closest to Earth: October 28th, 2014 (1.4 AU).

Some key upcoming dates:

Sep 17: Passes into the constellation Telescopium.

Sep 20: Passes near the +8.5 magnitude globular NGC 6524.

Sep 21: Passes into the constellation Ara.

Sep 22: Passes the +3.6 magnitude star Beta Arae.

Sep 25: Crosses into Scorpius.

Sep 30: Passes the +3 magnitude star Iota Scorpii.

Mars and Comet A1 Siding Springs crossing paths through the month of October.
Mars and Comet A1 Siding Springs crossing paths through the month of October.

Oct 3: Passes near the +7.2 magnitude globular NGC 6441.

Oct 5: Passes 2 degrees from Ptolemy’s cluster M7.

Oct 8: Passes in front of the Butterfly cluster M6.

Oct 10: Crosses the galactic plane.

Oct 11: Crosses into Ophiuchus.

Oct 19: Passes just 2’ arc minutes from Mars as seen from Earth.

Oct 22: Passes north of the ecliptic.

Oct 30: Drops back below +10th magnitude?

Key moonless windows for evening comet viewing as reckoned from when the Moon wanes from Full to New are: September 9th to September 24th and October 8th to the 23rd.

Looking for resources to find out just what these comets and others  are up to? The COBS Comet Observers database is a great resource for recent observations, as is Seiichi Yoshida’s Weekly Comet page. For history and current info, Gary Kronk’s Cometography is also a great treasure trove to delve into, as are the Yahoo! Comet and Comet Observer mailing lists.

Be sure to check out these fine icy visitors to the inner solar system coming to a sky near you. We fully expect to see more outstanding images of these comets and more filling up the Universe Today Flickr forum!

 

How Dark Matter Could Reduce The Fleet Of Galaxies Following The Milky Way

On either side of the white line in the picture are two models of how dark matter is distributed in a galaxy similar to the Milky Way. At left, non-interacting cold dark matter creates satellite galaxies. At right, dark matter interacting with other particles makes the number of observed satellite galaxies smaller. Credit: Durham University

Funny how small particle interactions can have such a big effect on the neighbors of the Milky Way. For a while, scientists have been puzzled about the dearth of small satellite galaxies surrounding our home galaxy.

They thought that cold dark matter in our galaxy should encourage small galaxies to form, which created a puzzle. Now, a new set of research suggests the dark matter actually interacted with small bits of normal matter (photons and neutrinos) and the dark matter scattered away, reducing the amount of material available for building galaxies.

“We don’t know how strong these interactions should be, so this is where our simulations come in,” stated Celine Boehm, a particle physicist at Durham University who led the research. “By tuning the strength of the scattering of particles, we change the number of small galaxies, which lets us learn more about the physics of dark matter and how it might interact with other particles in the Universe.”

Artist's conception of the Milky Way galaxy based on the latest survey data from ESO’s VISTA telescope at the Paranal Observatory. A prominent bar of older, yellower stars lies at galaxy center surrounded by a series of spiral arms. The galaxy spans some 100,000 light years. Credit: NASA/JPL-Caltech, ESO, J. Hurt
Artist’s conception of the Milky Way galaxy based on the latest survey data from ESO’s VISTA telescope at the Paranal Observatory. A prominent bar of older, yellower stars lies at galaxy center surrounded by a series of spiral arms. The galaxy spans some 100,000 light years. Credit: NASA/JPL-Caltech, ESO, J. Hurt

Dark matter is a poorly understood part of the Universe, which is frustrating for scientists because it (along with dark energy) is believed to make up the majority of our Cosmos. There are several postulated types of it, but the main thing to understand is dark matter is hard to detect (except, in certain cases, through its interactions with gravity.)

This isn’t the only explanation for why the galaxies are missing, the scientists caution. Perhaps the universe’s first stars were so hot that they affected the gas that other stars formed from, for example.

A paper on the research was published in the Monthly Notices of the Royal Astronomical Society and is also available in preprint version on Arxiv.

Source: Royal Astronomical Society

Guide to Tonight’s Big Harvest Moon

"The Harvest Moon", a circa 1833 oil painting by Samuel Palmer. Closely spaced moonrises meant extra light to bring in the crops in the days before electric lighting.

Tonight, September 8, the Harvest Moon rises the color of a fall leaf and spills its light across deserts, forests, oceans and cities. The next night it rises only a half hour later. And the next, too. The short gap of time between successive moonrises gave farmers in the days before electricity extra light to harvest their crops, hence the name.

The Harvest Moon is the full moon that falls closest to the autumnal equinox, the beginning of northern autumn. As the moon orbits the Earth, it moves eastward about one fist held at arm’s length each night and rises about 50 minutes later. You can see its orbital travels for yourself by comparing the moon’s nightly position to a bright star or constellation. 

This full Moon is also a Proxigean or Perigee Full “Supermoon” (find out more about that here), which means the Moon is in a spot in its elliptical orbit where it is closer to Earth near the time it is full, making it look up to 15% larger than average full Moon.

Around the time of Harvest Moon, the full moon's path is tilted at a shallow angle to the eastern horizon making with successive moonrises only about a half hour apart instead of the usual 50 minutes. Source: Stellarium
Around the time of Harvest Moon, the full moon’s path is tilted at a shallow angle to the eastern horizon making with successive moonrises only about a half hour apart instead of the usual 50 minutes. Source: Stellarium

50 minutes is the usual gap between moonrises. But it can vary from 25 minutes to more than an hour depending upon the angle the moon’s path makes to the eastern horizon at rise time. In September that path runs above the horizon at a shallow angle. As the moon scoots eastward, it’s also moving northward this time of year.

This northward motion isn’t as obvious unless you watch the moon over the coming week. Then you’ll see it climb to the very top of its monthly path when it’s high overhead at dawn. The northward motion compensates for the eastward motion, keeping the September full moon’s path roughly parallel to the horizon with successive rise times only ~30 minutes apart.

The angle of the moon’s path to the horizon makes all the difference in moonrise times. At full phase in spring, the path tilts steeply southward, delaying successive moonrises by over an hour. In September, the moon’s path is nearly parallel to the horizon with successive moonrises just 20+ minutes apart. Times are shown for the Duluth, Minn. region. Illustration: Bob King
The angle of the moon’s path to the horizon makes all the difference in moonrise times. At full phase in spring, the path tilts steeply southward, delaying successive moonrises by over an hour. In September, the moon’s path is nearly parallel to the horizon with successive moonrises just 30+ minutes apart. Times are shown for the Duluth, Minn. region. Illustration: Bob King

Exactly the opposite happened 6 months earlier this spring, when the moon’s path met the horizon at a steep angle. While it traveled the identical distance each night then as now, its tilted path dunked it much farther below the horizon night to night. The spring full moon moves east and south towards its lowest point in the sky. Seen from the northern hemisphere, that southward travel adds in extra time for the moon to reach the horizon and rise each successive night.

If all this is a bit mind-bending, don’t sweat it. Click HERE to find when the moon rises for your town and find a spot with a great view of the eastern horizon. You’ll notice the moon is orange or red at moonrise because the many miles of thicker atmosphere you look through when you gaze along the horizon scatters the shorter bluer colors from moonlight, tinting it red just as it does the sun.

A series of photos of the full moon setting over Earth's limb taken by from space by NASA astronaut Don Pettit on April 16, 2003. Refraction causes a celestial object's light to be bent upwards, so it appears higher than it actually is. The bottom half of the moon, closer to the horizon, is refracted strongest and "pushed" upward into the top half, making it look squished. Credit: NASA
A series of photos of the full moon setting over Earth’s limb taken by from space by NASA astronaut Don Pettit on April 16, 2003. Refraction causes a celestial object’s light to be bent upwards, so it appears higher than it actually is. The bottom half of the moon, closer to the horizon, is refracted strongest and “pushed” upward into the top half, making it look squished. Credit: NASA

The moon will also appear squished due to atmospheric refraction. Air is densest right at the horizon and refracts or bends light more strongly than the air immediately above it. Air “lifts” the bottom of the moon – which is closer to the horizon – more than the top, squishing the two halves together into an egg or oval shape.

How we perceive the moon's size may have much to do with what's around it. In this illustration, most of us seen the bottom moon as smaller, but they're both exactly the same size. Crazy, isn't it? Credit: NASA
How we perceive the moon’s size may have much to do with what’s around it. In this illustration, most of us seen the bottom moon as smaller, but they’re both exactly the same size. Crazy, isn’t it? Credit: NASA

You may also be entranced Monday night by the Moon Illusion, where the full moon appears unnaturally large when near the horizon compared to when viewed higher up. No one has come up with a complete explanation for this intriguing aspect of our perception, but the link above offers some interesting hypotheses.

Can you see craters with your naked eye? Yes! Try tonight through Wednesday night. Plato is the trickiest. Credit: Bob King
Can you see craters with your naked eye? Yes! Try tonight through Wednesday night. Plato is the trickiest. Credit: Bob King

Finally, full moon is an ideal time to see several lunar craters with the naked eye. They’re not the biggest, but all, except Plato, are surrounded by bright rays of secondary impact craters that expand their size and provide good contrast against the darker lunar “seas”. Try with your eyes alone first, and if you have difficulty, use binoculars to get familiar with the landscape and then try again with your unaided eyes.

In contrast to the other craters, Plato is dark against a bright landscape. It’s a true challenge – I’ve tried for years but still haven’t convinced myself of seeing it. The others are easier than you’d think. Good luck and clear skies!

If you don’t have clear skies, Slooh will broadcast the “Super Harvest Moon” live from the Institute of Astrophysics of the Canary Islands, off the coast of Africa. Slooh’s live coverage will begin at 6:30 PM PDT / 9:30 PM EDT /01:30 UTC (8/9) – International times here. Slooh hosts are Geoff Fox and Slooh astronomer Bob Berman. Viewers can ask questions during the show by using hashtag #Sloohsupermoon. Watch below:

Speed Demon Asteroid Sprints Safely Past Earth Today

Asteroid 2014 RC photographed 30 minutes before closest approach to Earth today. During this one-minute-long time exposure the asteroid covered more than 3/4 degree of sky. Credit: Ernesto Guido, Nick Howes, Martino Nicolini

Earth-approaching asteroid 2014 RC ripped pass Earth today, got its orbit refashioned by our planet’s gravity and now bids us adieu. I thought you’d like to see how fast this ~60-foot-wide (20-meter) space rock moved across the sky. The team of observers at Remanzacco Observatory in Italy  photographed it remotely with a telescope set up in Australia. 30 minutes before closest approach to Earth of 25,000 miles (40,000 km), 2014 RC was traveling at the rate of 49.5 arc minutes (1.6 times the diameter of the full moon) per minute.

2014 RC accelerates across the sky from 4 a.m. to 4 p.m EDT in this path created by Gianluca Masi using SkyX Pro software and the latest positions from JPL.
2014 RC accelerates across the sky from 4 a.m. to 4 p.m EDT in this path created by Gianluca Masi using SkyX Pro software and the latest positions from JPL. he asteroid’s intrinsic speed was not exceptional, but because it came so close to Earth, it covered a huge swath of sky in a hurry.

At the time, the asteroid glowed at magnitude +11.2, bright enough to see in a 4.5 inch telescope even in the bright moonlit sky at the time. Let’s try to get a feel for its speed. Just to keep 2014 RC centered in the field of view, you’d have to continually move the telescope to follow it as it you were tracking an airplane or satellite. What a thrill it must have been for observers in Australia and New Zealand who got the ride of their life across the heavens hanging onto this fleet rock with their eyeballs. In an hour’s time, centered on closest approach, the asteroid traveled approximately 48º. That more than twice the length of the constellation Orion!

The orbit of 2014 RC occasionally brings it close to Earth as it did today September 7, 2014. Credit: NASA/JPL-Caltech
The orbit of 2014 RC occasionally brings it close to Earth as it did today September 7, 2014 when it passed less than 1/10 the distance of the moon to the Earth. The asteroid orbits the sun every 1.5 years. Credit: NASA/JPL-Caltech

As  2014 RC blew by, its orbit was bent by Earth’s gravity and sent on a new trajectory. If this sounds familiar, we deliberately performed the same maneuver with the Voyager I and II spacecraft back in the late 1970s and early 1980s. A rare planetary alignment allowed scientists to swing the probes near Jupiter and Saturn to gain speed and shape their orbits for future encounters. Such gravity assist maneuvers are now commonplace.

The dot behind the hubbub. Gianluca Masi, who runs the Virtual Telescope Project, tracked 2014 RC during his time exposure, so it shows up as a tiny dot instead of a streak. Credit: Gianluca Masi
Space rock exposed! Gianluca Masi, who runs the Virtual Telescope Project, tracked 2014 RC during his time exposure, so it shows up as a tiny dot instead of a streak. Credit: Gianluca Masi

No doubt 2014 RC will approach Earth again, but no threatening encounters are in the cards for at least 100 years. For now we’re grateful it passed safely while inspiring wonder at what the solar system can throw at us.

Update: here’s an additional set of images from Peter Lake from Australia. You can see more on his blog here.

Three 30 second exposures at different times during Asteroid 2014 RC's pass by Earth on September 7, 2014. Credit and copyright: Peter Lake.
Three 30 second exposures at different times during Asteroid 2014 RC’s pass by Earth on September 7, 2014. Credit and copyright: Peter Lake.

Get Set for the Super (or Do You Say Harvest?) Full Moon 3 of 3 for 2014

Last month's supermoon within 24 hours of perigee. Credit: Blobrana

Time to dust off those ‘what is a perigee Full Moon’ explainer posts… the supermoon once again cometh this weekend to a sky near you.

Yes. One. More. Time.

We’ve written many, many times — as have many astronomy writers — about the meme that just won’t die. The supermoon really brings ‘em out, just like werewolves of yore… some will groan, some will bemoan the use of a modernized term inserted into the common astronomical vernacular that was wrought by an astrologer, while others will exclaim that this will indeed be the largest Full Moon EVER…

But hey, it’s a great chance to explain the weird and wonderful motion of our nearest natural neighbor in space. Thanks to the Moon, those astronomers of yore had some great lessons in celestial mechanics 101. Without the Moon, it would’ve been much tougher to unravel the rules of gravity that we take for granted when we fling a probe spaceward.

The Moon reaches Full on Tuesday, September 9th at 1:38 Universal Time (UT), which is 9:38 PM EDT on the evening of the 8th. The Moon reaches perigee at less than 24 hours prior on September 8th at 3:30 UT — 22 hours and 8 minutes earlier, to be precise — at a distance 358,387 kilometres distant. This is less than 2,000 kilometres from the closest perigee than can occur, and 1,491 kilometres farther away than last month’s closest perigee of the year, which occurred 27 minutes prior to Full Moon.

A Proxigean or Perigee Full “Supermoon” as reckoned by our preferred handy definition of “a Full Moon occurring within 24 hours of perigee” generally occurs annually in a cycle of three over two lunar synodic periods, and moves slowly forward by just shy of a month through the Gregorian calendar per year. The next cycle of “supermoons” starts on August 30th, 2015, and you can see our entire list of cycles out through 2020 here.

What’s the upshot of all this? Well, aside from cluttering inboxes and social media with tales of the impending supermoon this weekend, the rising Moon will appear 33.5’ arc minutes in diameter as opposed to its usually quoted average of 30’ in size. And remember, that’s in apparent size as seen from our Earthly vantage point… can you spy a difference from one Full Moon to the next? Fun fact: the rising Moon is actually farther away from you to the tune of about one Earth radius than when it’s directly overhead at the zenith.

Fed up with supermoon-mania? The September Full Moon also has a more pedestrian name: The Harvest Moon. Actually, this is the Full Moon that falls nearest to the September Equinox, marking the start of the astronomical season of Fall in the northern hemisphere and Spring in the southern. In the current first half of the 21st century, the September Equinox falls on the 22nd or 23rd, meaning that the closest Full Moon (and thus the Harvest Moon) can sometimes fall in October, as last happened in 2009 and will occur again in 2017. In this instance, the September Full Moon would then be referred to as the Corn Moon as reckoned by the Algonquins, and is occasionally referred to as the Drying Grass Moon by Sioux tribes. In 2014, the Harvest Full Moon “misses” falling in October by about 32 hours!

July 14th
The waning gibbous Moon of July 14th, 2014- shortly after the first supermoon of the year. Credit: Blobrana.

So, why is it known as the Harvest Moon? Well, in the age before artificial lighting (and artificial light pollution) the rising of the Full Moon as the Sun sets allowed for a few hours of extra illumination to bring in crops. In October, the same phenomenon gave hunters a few extra hours to track game by the light of the Full Hunters Moon, both essential survival activities before the onset of the long winter.

And that Full Harvest Moon seems to “stick around” on successive evenings. This is due to the relatively shallow angle of the evening ecliptic to the eastern horizon as seen from mid-northern latitudes in September.

September 8th
The rising Full Moon on the evening of September 8th as seen from latitude 40 degrees north. Note the shallow angle of the ecliptic. Created using Stellarium.

Here’s a sample of rising times for the Moon this month as seen from Baltimore, Maryland at 39.3 degrees north latitude:

Saturday, September 6th: 5:43 PM EDT

Sunday, September 7th: 6:23 PM EDT

Monday, September 8th: 7:05 PM EDT

Tuesday, September 9th: 7:44 PM EDT

Wednesday, September 10th: 8:22 PM EDT

Note the Moon rises only ~40 minutes later on each successive evening.

Stephen Rahn
The Full Harvest Moon of 2013 plus aircraft. Credit: Stephen Rahn.

We’re also headed towards a “shallow year” in 2015, as the Moon bottoms out relative to the ecliptic and only ventures 18 degrees 20’ north and south of the celestial equator at shallow minimum. This is due to what’s known as the Precession of the Line of Apsides as the gravitational pull of the Sun slowly drags the orbit of the Moon round the earth once every 8.85 years. The nodes where the ecliptic and path of the Moon meet — and solar and lunar eclipses occur — also move slowly in an opposite direction of the Moon’s motion, taking just over twice as long as the Precession of the Line of Apsides to complete one revolution around the ecliptic at 18.6 years. This is one of the more bizarre facts about the motion of the Moon: its orbital tilt of 5.1 degrees is actually fixed with respect to the ecliptic as traced out by the Earth’s orbit about the Sun, not our rotational axis. Native American and ancient Northern European knew of this, and the next “Long Night’s Moon” also called a “Lunar Standstill” when the Moon rides high in the northern hemisphere sky is due through 2024-2025.

Credit:
The footprint of the September 11th occultation of Uranus. Credit: Occult 4.0.

And to top it off, the Moon occults Uranus just two days after Full on September 11th as seen from northeastern North America, Greenland, Iceland and northern Scandinavia. We’re in a cycle of occultations of Uranus by the Moon from late 2014 through 2015, and this will set the ice giant up for a spectacular close pass, and a rare occultation of the planet for a remote region in the Arctic during the October 8th total lunar eclipse…

More to come!

 

 

Amazing Video Timelapse Of Big Telescopes At Work In Chile

What’s it like to spend a night at a huge telescope observatory? Jordi Busque recorded a brilliant timelapse of the Very Large Telescope (VLT) and the Atacama Large Millimeter/submillimeter Array (ALMA). What makes this video unique is not only the exotic location in Chile, but the use of sound in the area rather than music.

Continue reading “Amazing Video Timelapse Of Big Telescopes At Work In Chile”