Planetpalooza: All Bright Planets Visible in the July Dusk Sky

Moon and Venus
Venus and the waxing crescent Moon above the Grand Palais in Paris, France from May 17th. Image credit: Gwenael Blanck
Moon and Venus
Venus and the waxing crescent Moon above the Grand Palais in Paris, France from May 17th. Image credit: Gwenael Blanck

Missed the planets in the dusk sky in early 2018? This summer’s astronomical blockbuster sees the return of all the classical naked eye planets in the dusk sky, in a big way.

The Sky Scene in July

This coming July 2018 features a rare look at the solar system in profile: you can see Mercury and Venus low in the dusk looking westward immediately after sunset, with Jupiter high to the south, Saturn rising in the east, and Mars rising just behind. This isn’t a true grouping or grand conjunction, as the planets span a 170 degree swath of the ecliptic from Mercury to Mars (too bad they’re not in orbital order!) but a product of our Earthly vantage point looking out over the swath of inner solar system in the evening sky.

Can you manage a “planetary marathon” and collect all five this coming Fourth of July weekend? Here’s a quick rundown of all the planetary action from west to east:

Mercury
An amazing view – Mercury through the telescope from May 5th. Image credit and copyright: Roger Hutchinson.

Mercury’s July apparition – fleeting Mercury is always the toughest of the planets to catch, low to the west. -0.3 magnitude Mercury actually forms a straight line with the bright +1st/2nd magnitude stars Castor and Pollux in Gemini the Twins later this week on the evening of June 27th. Mercury reaches greatest elongation 26 degrees east of the Sun on July 12th, presenting a half illuminated, 8” disk. The angle of the evening ecliptic is canted southward in July, meaning that the position of the planets in the evening sky also favors southern viewers. July also presents another interesting mercurial challenge, as Mercury passes in front of the Beehive Open cluster (Messier 44) in the heart of the constellation Cancer on the night of July 3rd/4th.

planets
The span of the planets through late-July at dusk. Credit: Stellarium.

Venus this summer – higher up at dusk, brilliant Venus rules the evening sky, shining at magnitude -4. Venus is so bright that you can easily pick it up this month before sunset… if you know exactly where to look for it. Venus reaches greatest elongation 46 degrees east of the Sun on August 17th, presenting a featureless half-illuminated disk 25” in diameter near a point known as dichotomy. Venus also flirts with the bright star Regulus (Alpha Leonis) in July, passing a degrees from the star on July 10th. Fun fact: Venus can actually occult (pass in front of) Regulus and last did so on July 7th, 1959 and will do so next on October 1st, 2044.

Jupiter
Jupiter, with the shadow of Europa in transit from June 6th. Image credit and copyright: Ralph Smyth.

Jupiter Rules – The King of the Planets, Jupiter rules the sky after darkness falls, crossing the astronomical constellation Libra the Scales. Fresh off of its May 9th opposition, Jupiter still shines at a respectable magnitude -2 in July, with a disk 36” across. Jupiter heads towards quadrature 90 degrees east of the Sun on August 6th, meaning the planet and its retinue of four Galilean moons cast their respective shadows off to one side. In fact, we also see a series of fine double shadow transits across the Jovian cloud tops involving Io and Europa starting on July 29th.

saturn
The glorious planet Saturn. Image credit and copyright: Paul Stewart

…and Saturn makes five: Stately Saturn never fails to impress. Also just past its June 27th opposition, the rings are still tipped open narrowing down only slightly from last year’s widest angle of 27 degrees, assuring an amazing view. Shining at magnitude 0 and subtending 42” (including rings) in July, Saturn traverses the star-rich fields of the astronomical constellation Sagittarius the Archer this summer. Look at Saturn, and you’re glimpsing the edge of the known solar system right up until William Herschel discovered Uranus on the night of March 13th, 1781.

The origins of a dust storm: Mars from late May. Image credit and copyright: Efrain Morales.

Enter Mars: We saved the best for last. The Red Planet races towards a fine opposition on July 27th. This is the best approach of Mars since the historic 2003 opposition, and very nearly as favorable: Mars shines at magnitude -2.8 at the end of July, and presents a 24.3” disk. More to come as Mars approaches!

And as with many an opposition, dust storm season has engulfed Mars. Be vigilant, as the ‘Red’ Planet often takes on a sickly yellowish tint during a large dust storm, and this cast will often be apparent even to the naked eye. NASA’s aging Opportunity rover has fallen silent due to the lack of sunlight and solar power, and it’s to be seen if the rover can ride out the storm.

The path of the Moon – The Moon makes a good guidepost as it visits the planets in July. The first eclipse season of 2018 also begins in July, with a partial solar eclipse for Tasmania, SE Australia and the extreme southernmost tip of New Zealand on July 13th and wrapping up with a fine total lunar eclipse favoring Africa, Europe, Asia and Australia on July 27th. Note that this eclipse is only 14 hours after Mars passes opposition… we expect to see plenty of pictures of a ruddy Mars near a Blood Moon eclipse.

The Moon also makes a handy guide to catch each of the planets in the daytime sky… though you’ll need binoculars or a telescope to nab Mercury or Saturn (also, be sure the Sun is physically blocked out of view while hunting for Mercury in the daytime sky!) Here are the respective passes of the Moon near each planet in July:

Planet Date Time Moon Phase/illumination Distance
Mercury July 14th 23UT/7PM EDT Waxing crescent/5% 2.1 degrees
Venus July 16th 4UT/00AM EDT Waxing crescent/14% 1.5 degrees
Jupiter July 21st 2UT/10PM EDT Waxing gibbous/63% 4.2 degrees
Saturn July 25th 5UT/1AM EDT Waxing gibbous/94% 2 degrees
Mars July 27th 16UT/12 EDT Full Moon/100% 8 degrees

Unfortunately, the telescopic planets Uranus and Neptune are left out of the July evening view; Uranus is currently crossing the constellation Aries and Neptune resides in Aquarius, respectively. Pluto is, however, currently in the direction of Sagittarius, and you can also wave to NASA’s New Horizons spacecraft en route to its New Year’s Day 2019 KBO destination Ultima Thule (nee 2014 MU69) near the waxing gibbous Moon on the night of July 26th.

The Moon, Pluto and New Horizons on the evening of July 26th. Credit: Starry Night

And finally, another solar system destination in Ophiuchus the Serpent Bearer beckons telescope owners in July: asteroid 4 Vesta.

All of this is more than enough planetary action to keep planetary observers and imagers up late on forthcoming July evenings.

Astro Challenge: Spotting 4 Vesta at its Best for Decades

The asteroid Vesta, courtesy of NASA's Dawn spacecraft. Meteorites ejected from Vesta may have helped form Earth's water. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA
The asteroid Vesta, courtesy of NASA's Dawn spacecraft. Meteorites ejected from Vesta may have helped form Earth's water. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA
Vesta
The brave new world of 4 Vesta, courtesy of NASA’s Dawn spacecraft. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA

Up for a challenge? Planetary action is certainly heating up this summer: Jupiter passed opposition last month, Saturn does so in June, and Mars reaches favorable viewing next month. And with dazzling Venus in the west and Mercury to joining it starting in late June, we’ll soon have all of the naked eye classical planets in the evening sky.

Now, I want to turn your attention towards a potential naked eye object, one you’ve probably never seen: asteroid 4 Vesta.

Vesta
Vesta and the planet(s)… looking east in early June, about 45 minutes after sunset. Stellarium.

Vistas of Vesta

Vesta reaches opposition in 2018 on the night of June 19th. At 1.14 Astronomical Units (AU, 170.8 million kilometers) distant, this year’s opposition is slightly more favorable than any other since 1989. We won’t get another pass nearly as close until May 2036. Vesta orbits the Sun once every 3.6 years, ranging from a perihelion of 2.15 AU to an aphelion of 2.57 AU.

Although Vesta was the fourth asteroid discovered, it’s actually the brightest, and the only one visible with the naked eye—that is, if you have dark skies, and know exactly where to look for it. This summer, Vesta loiters in the star rich realm of the astronomical constellation Sagittarius, “in the weeds” for viewers up north, but high in the sky for southern viewers.

Vesta
The path of 4 Vesta through mid-September. Credit: Starry Night Education software.

Early June finds Vesta about 5 degrees northwest of the +3.8 magnitude star Mu Sagittarii, threading between the deep sky objects Messier 24 and Messier 25. Vesta then loops westward through the constellation Ophiuchus the Serpent Bearer starting on July 1st, before heading back to Sagittarius on September 5th.

Vesta in 2018

Catching Vesta with the naked eye isn’t easy. You’ll need dark rural skies with a limiting magnitude down to about +5.5, and a good beforehand knowledge of the fixed stars in the region. Vesta also spends 2018 weaving around the star-dappled plane of the Milky Way galaxy, making it an especially challenging target.

Binoculars or a telescope can bring the challenge within reach of suburban and urban skies, making it a pleasure to trace the track of Vesta from night to night. Sketch the background star field and you just might tease out the presence of Vesta as it slowly moves about 30′ arcminutes per night (the diameter of a Full Moon) through June. Crank up the magnification a bit using a large (10 inches aperture or greater) light bucket telescope, and you just might see the faint hint of an oblong disk… 348 by 277 miles (560 by 446 kilometers) in size, Vesta’s apparent size is 0.7” arcseconds around opposition, 1/3 the size of Neptune at its best.

occultation vesta
The occultation footprint for the June 27th event. Credit: Occult 4.2 software.

The 99% illuminated, waxing gibbous Moon will actually occult 4 Vesta for Hawaii, Central America and the Galapagos Islands just eight days after opposition on the night of June 27th.

ceres vesta
Ceres (left) and Vesta (right) imaged by the Hubble Space Telescope. Credit: NASA/HST/STl

Discovered on the night of March 29th, 1807 by prolific asteroid hunter Heinrich Olber, the Hubble Space Telescope gave us our first blurry images of 4 Vesta back in 2007. NASA’s Dawn spacecraft gave us our first good views of Vesta as a world starting in mid- 2011, orbiting the potato-shaped asteroid for just over a year before departing for 1 Ceres in late 2012.

The south pole Rheasilvia impact basin. Based on images obtained by NASA’s Dawn spacecraft, the lower false color map shows the elevation scale scooped out by an ancient impact. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

Attack of the Vestoid(s)

And did you know: we actually have identified samples of Vesta to study, right here on Earth. Vesta sustained a massive impact about a billion years ago, raining debris through the inner solar system. Dawn chronicled the resulting Rheasilvia impact basin on Vesta’s south pole, and asteroids such as 1981 Midas match the spectral composition of Vesta and are collectively known as “Vestoids”.

Vesta Meteorites
Meteorites recovered on Earth, courtesy of 4 Vesta. Credit: NASA/University of Tennessee.

On Earth, meteorites such as QUE 97053 found in Antarctica and the 1913 Moore County fall in North Carolina also match up in composition to Vesta, and make up a subgroup known as Howardite-Eucrite-Diogenite (HED) meteorites. Collectively, space rocks from this single impact on 4 Vesta contribute to an amazing 5% of all the meteorites recovered on Earth.

Fascinating thoughts to ponder, as we follow the brightest asteroid through the summer sky.

Planets on Parade: Saturn at Opposition 2018

2018 planets
Saturn, Mars and Jupiter all beckon this summer. Image credit and copyright: Sharin Ahmad (@shahgazer)
2018 planets
Saturn, Mars and Jupiter all beckon this summer. Image credit and copyright: Sharin Ahmad (@shahgazer).

We’re in the midst of a parade of planets crossing the evening sky. Jupiter reached opposition on May 9th, and sits high to the east at dusk. Mars heads towards a fine opposition on July 27th, nearly as favorable as the historic opposition of 2003. And Venus rules the dusk sky in the west after the setting Sun for most of 2018.

June is Saturn’s turn, as the planet reaches opposition this year on June 27th, rising opposite to the setting Sun at dusk.

In classical times, right up until just over two short centuries ago, Saturn represented the very outer limit of the solar system, the border lands where the realm of the planets came to an end. Sir William Herschel extended this view, when he spied Uranus—the first planet discovered in the telescopic era—slowly moving through the constellation Gemini just across the border of Taurus the Bull using a 7-foot reflector (in the olden days, telescopes specs were often quoted referring to their focal length versus aperture) while observing from his backyard garden in Bath, England on the night of March 13th, 1781.

vesta
Looking east tonight at sunset… note Vesta to the upper left. Credit: Stellarium.

Orbiting the Sun once every 29.5 years, Saturn is the slowest moving of the naked eye planets, fitting for a planet named after Father Time. Saturn slowly loops from one astronomical constellation along the zodiac to the next eastward, moving through one about every two years.

path of saturn
The path of Saturn through 2018. Image credit: Starry Night Education software.

2018 sees Saturn in the constellation Sagittarius the Archer, just above the ‘lid’ of the Teapot asterism, favoring the southern hemisphere for this apparition. Saturn won’t cross the celestial equator northward again until 2026. Not that that should discourage northern hemisphere viewers from going after this most glorious of planets. A low southerly declination also means that Saturn is also up in the evening in the summertime up north, a conducive time for observing. Taking 29-30 years to complete one lap around the ecliptic as seen from our Earthly vantage point, Saturn also makes a great timekeeper with respect to personal life milestones… where were you back in 1989, when Saturn occupied the same spot along the ecliptic?

Saturn also shows the least variation of all the planets in terms of brightness and size, owing to its immense distance 9.5 AU from the Sun, and consequently 8.5 to 10.5 AU from the Earth. Saturn actually just passed its most distant aphelion since 1959 on April 17th, 2018 at 10.066 AU from the Sun.

Saturn’s in 2018 Dates with Destiny

Saturn sits just 1.6 degrees south of the waning gibbous Moon tonight. The Moon will lap it again one lunation later on June 28th. Note that the brightest of the asteroids, +5.7 magnitude 4 Vesta is nearby in northern Sagittarius, also reaching opposition on June 19th. Can you spy Vesta with the naked eye from a dark sky site? 4 Vesta passes just 4 degrees from Saturn on September 23rd, and both flirt with the galactic plane and some famous deep sky targets, including the Trifid and Lagoon Nebulae.

Saturn reaches quadrature 90 degrees east of the Sun on September 25th, then ends its evening apparition when it reaches solar conjunction on New Year’s Day, 2019.

Saturn is well clear of the Moon’s path for most of this year, but stick around: starting on December 9th, 2018, the slow-moving planet will make a great target for the Moon, which will begin occulting it for every lunation through the end of 2019.

It’s ironic: Saturn mostly hides its beauty to unaided eye. Presenting a slight saffron color in appearance, it never strays much from magnitude -0.2 to +1.4 in brightness. One naked eye observation to watch for is a sudden spurt in brightness known as the opposition surge or Seeliger Effect. This is a retro reflector type effect, caused by all those tiny iceball moonlets in the rings reaching 100% illumination at once. Think of how the Full Moon is actually 3 to 4 times brighter than the 50% illuminated Quarter Moon… all those little peaks, ridges and crater rims no longer casting shadows do indeed add up.

Saturn
Saturn in all its glory (note the moons Enceladus and Tethys, too!). Image credit and copyright: Efrain Morales.

And this effect is more prominent in recent years for another reason: Saturn’s rings passed maximum tilt (26.7 degrees) with respect to our line of sight just last year, and are still relatively wide open in 2018. They’ll start slimming down again over the next few oppositions, reaching edge-on again in 2028.

Even using a pair of 7×50 hunting binoculars on Saturn, you can tell that something is amiss. You’re getting the same view that Galileo had through his spyglass, the pinnacle of early 17th century technology. He could tell that something about the planet was awry, and drew sketches showing an oblong world with coffee cup handles on the side. Crank up the magnification using even a small 60 mm refractor, and the rings easily jump into view. This is what makes Saturn a star party staple, an eye candy feast capable of drawing the aim of all the telescopes down the row.

If seeing and atmospheric conditions allow, crank up the magnification up to 150x or higher, and the dark groove of the Cassini division snaps into view. Can you see the shadow of the disk of Saturn, cast back onto the plane of the rings? The shadow of the planet hides behind it near opposition, then becomes most prominent towards quadrature, when we get to peek around its edge. Can you spy the limb of the planet itself, through the Cassini Gap?

Though the disk of Saturn is often featureless, tiny swirls of white storms do occasionally pop up. Astrophotographer Damian Peach noted just one such short-lived storm on the ringed planet this past April 2018.

Saturn’s retinue of moons are also interesting to follow in there own right. The first one you’ll note is +8.5 magnitude smog-shrouded Titan. Larger in diameter than Mercury, Titan would easily be a planet in its own right, were it liberated from its primary’s domain.

Though Saturn has 62 known moons, only six in addition to Titan are in range of a modest backyard telescope: Enceladus, Rhea, Dione, Mimas, Tethys and Iapetus. Two-faced Iapetus is especially interesting to follow, as it varies two full magnitudes in brightness during its 79 day orbit. Arthur C. Clarke originally placed the final monolith in 2001: A Space Odyssey on this moon, its artificial coating a beacon to astronomers. Today, we know from flybys carried out by NASA’s Cassini spacecraft that the leading hemisphere of Iapetus is coated with dark in-falling material, originating from the dark Phoebe ring around Saturn.

iapetus
Two-faced Iapetus as imaged by Cassini. Image credit: NASA/JPL/Space Science Institute.

Owners of large light bucket telescopes may also want to try from two fainter +15th magnitude moons: Hyperion and Phoebe.

Fun fact: Saturn’s moons can also cast shadows back on the planet itself, much like the Galilean moons do on Jupiter… the catch, however, is that these events only occur around equinox season in the years around when Saturn’s rings are edge-on. This next occurs starting in 2026.

Cassini finished up its thrilling 20 year mission just last year, with a dramatic plunge into Saturn itself. It will be a while before we return again, perhaps in the next decade if NASA selects a nuclear-powered helicopter to explore Titan. Until then, be sure to explore Saturn this summer, from your Earthbound backyard.

Love to observe the planets? Check out our new forthcoming book, The Universe Today Ultimate Guide to Viewing the Cosmos – out on October 23rd, now up for pre-order.

Are We Headed Towards Another Deep Solar Minimum?

Solar SDO
A (nearly) naked Sol... more the norm than the exception these days. Credit: NASA/SDO AIA 512/1600 imager.
Solar SDO
A (nearly) naked Sol… more the norm than the exception these days. Credit: NASA/SDO AIA 512/1600 imager.

Have you been keeping an eye on Sol lately? One of the top astronomy stories for 2018 may be what’s not happening, and how inactive our host star has become.

The strange tale of Solar Cycle #24 is ending with an expected whimper: as of May 8th, the Earthward face of the Sun had been spotless for 73 out of 128 days thus far for 2018, or more than 57% of the time. This wasn’t entirely unexpected, as the solar minimum between solar cycle #23 and #24 saw 260 spotless days in 2009 – the most recorded in a single year since 1913. Cycle #24 got off to a late and sputtering start, and though it produced some whopper sunspots reminiscent of the Sol we knew and loved on 20th century cycles past, it was a chronic under-performer overall. Mid-2018 may see the end of cycle #24 and the start of Cycle #25… or will it?

solar minimum
The story thus far… and the curious drama that is solar cycle #24. Credit: David Hathaway/NASA Marshall Spaceflight Center.

One nice surprise during Cycle #24 was the appearance of massive sunspot AR 2192, which popped up just in time for the partial solar eclipse of October 23rd, 2014. Several times the size of the Earth, the spot complex was actually the largest seen in a quarter century. But just as “one swallow does not a Summer make,” one large sunspot group couldn’t save Solar Cycle #24.

partial solar eclipse
The partial eclipse of the Sun, October 23, 2014, as seen from Jasper, Alberta, shot under clear skies through a mylar filter, on the front of a 66mm f/6 apo refractor using the Canon 60Da for 1/8000 (!) sec exposure at ISO 100. The colors are natural, with the mylar filter providing a neutral “white light” image. The big sunspot on the Sun that day is just beginning to disappear behind the Moon’s limb. The mylar filter gave a white Sun, its natural colour, but I have tinted the Sun’s disk yellow for a more pleasing view that is not just white Sun/black sky. Image credit and copyright: Alan Dyer/Amazing Sky.net

The Sun goes through an 11-year sunspot cycle, marked by the appearance of new spots at mid- solar latitudes, which then slowly progress to make subsequent appearances closer towards the solar equator, in a pattern governed by what’s known as Spörer’s Law. The hallmark of a new solar cycle is the appearance of those high latitude spots. The Sun actually flips overall polarity every cycle, so a proper Hale Cycle for the Sun is actually 11 x 2 = 22 years long.

A big gaseous fusion bomb, the Sun actually rotates once every 25 days near its equator, and 34 days at the poles. The Sun’s rotational axis is also tipped 7.25 degrees relative to the ecliptic, with the northern rotational pole tipped towards us in early September, while the southern pole nods towards us in early March.

An animation of massive susnpot AR 2192 crossing the Earthward face of Sol from October 17th to October 29th, 2014. Credit: NASA/SDO.

What’s is store for Cycle #25? One thing’s for certain: if the current trend continues, with spotless days more the rule than the exception, we could be in for a deep profound solar minimum through the 2018 to 2020 season, the likes of which would be unprecedented in modern astronomy.

Fun fact: a similar dearth of sunspots was documented during the 1645-1715 period referred to as the Maunder Minimum. During this time, crops failed and the Thames River in London froze, making “frost fairs” along its frozen shores possible. Ironically, the Maunder Minimum also began just a few decades after the dawn of the age of telescopic astronomy. During this time, the idea of “spots on the Sun” was regulated to a controversial, and almost mythical status in mainstream astronomy.

Keeping Vigil on a Tempestuous (?) Star

We’ve managed to study the last two solar cycles with unprecedented scrutiny. NASA’s STEREO-A and -B spacecraft (Only A is currently active) monitors the farside of the Sun from different vantage points. The Solar Dynamics Observatory (NASA SDO) keeps watch on the Sun across the electromagnetic spectrum. And our favorite mission, the joint NASA/European Space Agency’s SOHO spacecraft, has monitored the Sun from its sunward L1 Lagrange vantage point since it launched in 1995—nearly through one complete 22 year Hale Cycle by mid- 2020s. Not only has SOHO kept a near-continuous eye on Sol, but it’s also discovered an amazing 3,398 sungrazing comets as of September 1st, 2017… mostly due to the efforts of diligent online amateur astronomers.

A guide to features on the Sun. The left view in Calcium-K shows the photosphere and is similar to a standard whitelight view, and the right view shows features in the chromosphere in hydrogen-alpha. Credit: Paul Stewart Instagram: @Upsidedownastronomer/annotations by Dave Dickinson

…and did you know: we can actually model the solar farside currently out of view from the Earth to a high degree of fidelity thanks to the advent of powerful computational methods used in the nascent field of solar helioseismology.

Unfortunately, this low ebb in the solar cycle will also make for lackluster aurora in the years to come. It’s a shame, really… the relatively powerful cycles of the 1970s and 80s hosted some magnificent aurorae seen from mid-latitudes (and more than a few resulting blackouts). We’re still getting some minor outbursts, but you’ll have to venture “North/South of the 60” to really see the aurorae in all of its splendor over the next few years.

But don’t take our word for it: get out there and observe the Sun for yourself. Don’t let this discourage you when it comes to observing the Sun. Even near its minimum, the Sun is a fascinating target of study… and unlike most astronomical objects, the face of the Sun can change very quickly, sometimes erupting with activity from one hour to the next.

We like to use a Coronado Personal Solar Telescope to monitor the Sun in hydrogen-alpha for prominences and filaments: such a scope can be kept at the ready to pop outside at lunch time daily for a quick look. For observing sunspots and the solar photosphere in white-light, you’ll need an approved glass filter which fits snugly over the aperture end of your telescope or camera, or you can make a safe solar filter with Baader Safety Film.

Solar scopes
Safe ways to observe the Sun: a homemade whitelight filter (left) and a Coronado PST solar telescope (right). Images by author.

Does the sunspot cycle tell the whole picture? Certainly, the Sun most likely has longer, as yet undiscovered cycles. For about a century now, astronomers have used the Wolf Sunspot Number as calculated mean average to describe the current state of activity seen on the Sun. An interesting study calls this method into question, and notes that the direction and orientation of the heliospheric current sheet surrounding the Sun seems to provide a better overall depiction of solar activity.

Other mysteries of the Sun include: just why does the solar cycle seem baked in at 11 years? Why don’t we ever see spots at the poles? And what’s in store for the future? We do know that solar output is increasing to the tune of 1% every 100 million years… and a billion years from now, Earth will be a toasty place, probably too warm to sustain liquid water on its surface…

Which brings us to the final point: what role does the solar cycle play versus albedo, global dimming and climate? This is a complex game to play: Folks have literally gone broke trying to link the solar cycle with terrestrial human affairs and everything from wheat crops to stock market fluctuations. Many a climate change-denier will at least concede that the current climate of the Earth is indeed changing, though they’ll question human activity’s role in it. The rather ominous fact is, taking only current solar activity into account, we should be in a cooling trend right now, a signal in the data that anthropogenic climate change is working hard against.

See for yourself. You can keep track of Sol’s daily activity online: our favorite sites are SpaceWeather, NOAA’s space weather/aurora activity page, and the SOHO and SDO websites.

Be sure to keep tabs of Sol, as the next solar minimum approaches and we ask the question: will Cycle #25 occur at all?

Well, we’re finally emerging from our self-imposed monastic exile that is editing to mention we’ve got a book coming out later this year: The Universe Today Ultimate Guide to Viewing the Cosmos: Everything You Need to Know to Become an Amateur Astronomer, and yes, there’s a whole chapter dedicated to solar observing and aurora. The book is up for pre-order now, and comes out on October 23rd, 2018!

Recovered Asteroid 2010 WC9 Set to Buzz the Earth Tomorrow

The orbit of asteroid 2010 WC9. Credit: NASA/JPL
The orbit of asteroid 2010 WC9. Credit: NASA/JPL

Incoming: The Earth-Moon system has company tonight.

The Asteroid: Near Earth Asteroid 2010 WC9 is back. Discovered by the Catalina Sky Survey outside Tucson, Arizona on November 30th, 2010, this asteroid was lost after a brief 10 day observation window and was not recovered until just earlier this month. About 71 meters in size, 2010 WC9 is one of the largest asteroids to pass us closer than the Earth-Moon distance.

A closeup of the passage of asteroid 2010 WC9 through the Earth-Moon system on May 15th. Credit: NASA-JPL

2010 WC9 poses no threat to the Earth. About the size of the Statue of Liberty from the ground level to her crown, the asteroid is over three times bigger than the one that exploded over Chelyabinsk, Russia on the morning of February 15th, 2013.

The view from asteroid 2010 WC9 on closest approach. Credit: Starry Night

The Pass: 2010 WC9 passes just 0.5 times the Earth-Moon distance (126,500 miles or 203,500 kilometers) on Tuesday, May 15th at 22:05 UT/6:05 PM EDT. That’s only roughly five times the distance of satellites in geosynchronous orbit. The asteroid is also a relative fast mover, whizzing by at over 12 kilometers per second. An Apollo-type asteroid, 2010 WC9 orbits the Sun once every 409 days, ranging from a perihelion of 0.78 astronomical units (AU) outside the orbit of Venus out to 1.38 AU, just inside the orbit of Mars. This is the closest passage of the asteroid by the Earth for this century.

The passage of asteroid 2010 WC9 through the constellation Ophiuchus on May 15th from 00:00 to 16:00 UT. Credit Starry Night.

Observing: This one grabbed our attention when it cropped up on the Space Weather page for close asteroid passes this past weekend: a large, fast mover passing close to the Earth is a true rarity. At closest approach, 2010 WC9 will be moving at 0.22 degrees (that’s 13 arcminutes, about half the span of a Full Moon) per minute through the constellation Pavo the Peacock shining at magnitude +10, making it a good telescopic object for observers based in South Africa as it heads over the South Pole.

The southern hemisphere passage of asteroid 2010 WC9 on May 15th from 19:00 to 23:00 UT.

North American and European observers get their best look at the asteroid tonight into early tomorrow morning while it’s still twice the distance of the Moon, shining at 13th magnitude and moving southward through the constellation Ophiuchus and across the ecliptic plane.

The best strategy to ambush the space rock is to simply aim a low power field of view at the right coordinates at the right time (see below), and watch. You should be able to see the asteroid moving slowly against the starry background, in real time.

Asteroid 2010 WC9 (non-streaking dot in the center) on May 15th while it was still 730,000 km out. Credit: Gianluca Masi/Virtual Telescope Project 2.0.

Keep in mind, the charts we made here are geocentric, assuming you’re observing from the center of the Earth. Parallax comes into play on a close asteroid pass, and the Earth’s gravity will deflect 2010 WC9’s orbit considerably. Your best bet for generating a refined track for the asteroid is to use NASA JPL’s Horizons web interface to generate Right Ascension/Declination coordinates for the 2010 WC9 for your location.

How do you ‘lose an asteroid?” Often, an initial observation arc for a distant asteroid is too short to pin down a refined orbit. We have a blind spot sunward, for example, and fast moving asteroids can also be difficult to track across rich star fields and movement from one celestial hemisphere to the next. Recovery of 2010 WC9 earlier this month now gives us a solid seven year observation arc to peg its orbit down to a high accuracy.

Clouded out, or live in the wrong hemisphere? Slooh will carry an observing session for 2010 WC9 starting tonight at 24:00 UT/ 8:00 PM EDT. The Northholt Branch Observatories in London, England will also stream the pass live via Facebook tonight. Check their page for a start time.

Go, little asteroid… the speedy passage of 2010 WC9. Credit: Northolt Branch Observatories.

There’s no word yet if Arecibo radar plans to ping 2010 WC9 over the coming days, but if they do, so expect to see an animation soon.

Don’t miss tonight’s passage of 2010 WC9 near the Earth, either in person or online.

By Jove: Jupiter at Opposition for 2018

A recent capture of Jupiter from April 21st. Image credit and copyright: Efrain Morales.
A recent capture of Jupiter from April 21st. Image credit and copyright: Efrain Morales Rivera.

It’s a question I’ve fielded lots this weekend leading up to last night’s April Pink Full Moon, and one I expect we’ll get again tonight: “What’s that bright star near the Moon?”

That bright “star” is actually a planet, the king of them all as far as our Solar System is concerned: Jupiter. May also ushers in Jupiter observing season, as the planet reaches opposition on May 9th, rising in the east opposite to the setting Sun to the west. Jupiter now joins Venus in the dusk sky, ending the planetary drought plaguing many an evening star party.

Looking east tonight (April 30th) at 9 PM local. Created using Stellarium.

All planetary news seems to lead back to Jupiter this season. Just last week, we wrote about a recent study, suggesting that Jupiter actually gets hit by asteroids and comets on a much more regular basis than astronomers thought.

It’s always worth keeping a sharp eye on Jupiter. Shining a magnitude -2.5 near opposition, you can even pick Jupiter out against the deep blue daytime sky… if you know exactly where to look for it. The Moon visits Jupiter once every orbit, and the next time to try this feat of visual athletics is on May 27th, just before sunset.

Jupiter is 4.4 astronomical units (658 million kilometers) distant at opposition this year, and presents a disk 45” across.

At the eyepiece, Jupiter presents a roiling upper atmosphere, completing an amazing rotation once every 9.9 hours. This is not only fast enough to give Jove a noticeable equatorial bulge at its equator, but you can also observe and image Jupiter in its entirety in just one clear evening.

One of the first things that becomes apparent observing Jupiter at low power are its retinue of four Galilean moons. These are, from interior outward: Io, Europa, Ganymede and Callisto. Speedy Io takes just 1.8 days to orbit Jupiter once, while outermost Callisto takes a leisurely 16.7 days to make one circuit around Jupiter. Not only is it fun to note the changes in configuration of Jupiter’s major moons from night to night, but it’s interesting to watch them cast shadows onto Jupiter’s cloud tops and alternately disappear and reappear in and out of Jupiter’s shadow.

Two shadows crossing the face of Jupiter on July 30th, 2018. Created using Stellarium.

A few times a year, you can catch two moons casting a shadow on Jupiter at once. These usually happen in seasons, with the next pair involving Io and Europa (the most frequent transiters) set to occur on July 30th, 2018. Rarer still are triple transits, which last occurred on January 24th, 2015 and will happen next on March 20th, 2032. You’ll never see a quadruple transit though… and the outermost moon Callisto is the only one that can “miss” Jupiter, as it does in 2018.

The celestial scene changes, too, like a spotlight cast over the stage of the sky. At opposition, for example, Jupiter and its moons cast their respective shadows straight back, nearly behind them from our perspective. Watch how this changes, however, as Jupiter heads towards quadrature at 90 degrees elongation east of the Sun on August 6th, 2018 and we see Jupiter and its moons cast their shadows to the side.

Danish astronomer Ole Rømer noted a discrepancy in the timings of shadow transits near opposition versus quadrature and correctly realized that light from the events was actually taking time to transit from Jupiter to his telescope on Earth, and made the first crude measurement of the speed of light in 1676.

Crank up the magnification, and the Great Red Spot will pop into view if it’s turned Earthward. Though this centuries-long storm has been shrinking in recent years, it also seems to be condensing and reddening once again, versus the pale salmon color its exhibited as of late. How old is the Great Red Spot? Will it disappear this century, disappointing legions of school kids who diligently crayon in a ruby red eye on Jove?

One thing is for sure; the face of Jove does change over time. Another interesting example is the disappearing act that Jove’s Southern Equatorial Belt (SEB) makes every decade or so… this last occurred during 2010 season, and we may soon be due again. It would be an amazing scientific opportunity if this were to occur before NASA’s Juno spacecraft completes its mission this summer. Our question: why does the SEB disappear, while the NEB seems to be a permanent fixture on Jove?

All mysteries presented by the largest planet in our solar system, this opposition season 2018.

-Track the positions of Jupiter’s moons and the Great Red Spot using the SETI PDS Rings node, S&T’s app and Project Pluto.

Asteroids Smack Jupiter More Often Than Astronomers Thought

Jupiter Impact
Pow: The July 1994 impact of Comet Shoemaker-Levy 9 on Jupiter, captured by the Hubble Space Telescope. Credit: R. Evans/J. Trauger/H. Hammel/HST Comet Science Team/NASA.
Jupiter Impact
Pow: The July 1994 impact of Comet Shoemaker-Levy 9 on Jupiter, captured by the Hubble Space Telescope. Credit: R. Evans/J. Trauger/H. Hammel/HST Comet Science Team/NASA.

Are you keeping a eye on Jupiter? The King of the Planets, Jove presents a swirling upper atmosphere full of action, a worthy object of telescopic study as it heads towards another fine opposition on May 9th, 2018.

Now, an interesting international study out of the School of Engineering in Bilbao, Spain, the Astronomical Society of France, the Meath Astronomical Group in Dublin Ireland, the Astronomical Society of Australia, and the Esteve Duran Observatory in Spain gives us a fascinating and encouraging possibly, and another reason to keep a sharp eye on old Jove: Jupiter may just get smacked with asteroids on a more regular basis than previously thought.

The study is especially interesting, as it primarily focused in on flashes chronicled by amateur imagers and observers in recent years. In particular, researchers focused on impact events witnessed on March 17th 2016 and May 26th, 2017, along with the comparison of exogenous (of cosmic origin) dust measured in the upper atmosphere. This allowed researchers to come up with an interesting estimate: Jupiter most likely gets hit by an asteroid 5-20 meters in diameter (for comparison, the Chelyabinsk bolide was an estimated 20 meters across) 10 to 65 times every year, though researchers extrapolate that a dedicated search might only nab an impact flash or scar once every 0.4 to 2.4 years or so.

Compare this impact rate with the Earth, which gets hit by a Chelyabinsk-sized 20-meter impactor about once every half century or so. Incidentally, we know this impact rate on Earth better than ever before, largely due to U.S. Department of Defense classified assets in space continually watching for nuclear tests and missile launches, which also pick up an occasional meteor “photobomb.”

Small asteroid impacts over the span of the Earth over a 20 year period. NASA/Planetary Science.

One reason we may never have witnessed a meteor impact on Jupiter is, astronomers (both professional and amateur) never thought to look for them. The big wake-up call was the impact of Comet Shoemaker-Levy 9 in July 1994, an event witnessed by the newly refurbished Hubble Space Telescope as the resulting impact scars were easily visible in backyard telescopes for weeks afterward. Back in the day, speculation was rampant in the days leading up to the impact: would the collision be visible at all? Or would gigantic Jupiter simply gobble up the tiny comet fragments with nary a belch?

Australian amateur astronomer Anthony Wesley also caught an interesting impact (scar?) in 2009, and every few years or so, we get word of an elusive flash reported on the Jovian cloudtops, sometimes corroborated by a secondary independent observation or a resulting impact scar, and sometimes not.

An impact scar (top center on the disk) on Jupiter, captured on July 19th, 2009. Image credit: Anthony Wesley.

Of course, there are factors which will lower said ideal versus the actual observed impact rate. There’s always a month or so a year, for example, when Jupiter is near solar conjunction on the far side of the Sun, and out of range for observation. Also, we only see half of the Jovian disk from our Earthly perspective at any given time, and we’re about to lose our only set of eyes in orbit around Jupiter – NASA’s Juno spacecraft – later this summer, unless there’s a last minute mission extension.

On the plus side, however, Jupiter is a fast rotator, spinning on its axis once every 9.9 hours. This also means that near opposition, you can also track Jupiter through one full rotation in a single evening.

Finding Jupiter: looking eastward tonight at around 11PM local. Credit Stellarium.

Then there’s the planet’s location in the sky: Currently, Jupiter’s crossing the southern constellation of Libra, and opposition for Jove moves about one astronomical constellation eastward along the ecliptic a year. Jupiter will bottom out along the ecliptic in late 2019, and won’t pop back up north of the celestial equator until May 2022. And while it’s not impossible for northern observers to keep tabs on Jupiter when it’s down south, we certainly get more gaps in coverage around this time.

Hale-Bopp’s close inbound passage near Jupiter in 1996. Credit: NASA/JPL-Horizons.

Should we hail Jove as a protective ‘cosmic goal-tender,’ or fear it as the bringer of death and destruction? There are theories that Jupiter may be both: for example, Jupiter altered the inbound path of Comet Hale-Bopp in 1997, shortening its orbital period from 4,200 to 2,533 years. The 2000 book Rare Earth even included the hypothesis of Jupiter as a cosmic debris sweeper as one of the factors for why life evolved on Earth… if this is true, it’s an imperfect one, as Earth does indeed still get hit as well.

All reasons to keep an eye on Jupiter in the 2018 opposition season.

-See something strange? The ALPO Jupiter observers section wants to know!

See The Finest Sights Before You Die With “Wonders of the Night Sky”

Credit: Bob King
Framed by stars reflected by water, a kayaker leans back to take in the grandeur of the night sky. The photo appears in my new book in the chapter titled “Stars on Water.” Credit: Bob King

After months parked in front of a computer, I’m thrilled to announce the publication of my new book. The full title is — get ready for this — Wonders of the Night Sky You Must See Before You Die: The Guide to Extraordinary Curiosities of Our Universe. In a nutshell, it’s a bucket list of cosmic things I think everyone should see sometime in their life. 

I couldn’t live without the sky. The concerns of Earth absorb so much of our lives that the sky provides an essential relief valve. It’s a cosmos-sized wilderness that invites both deep exploration and reflection. Galileo would kill to come back for one more clear night if he could.

Cover of Wonders of the Night Sky. 57 different sights are featured.

To me, the stars are irresistible, but my sense is that many people don’t look up as much as they’d like. We forget. Get busy. Bad weather intervenes. So I thought hard about the essential “must-sees” for any watcher of the skies. Some are obvious, like a total solar eclipse or Saturn through a telescope, but others are just as interesting — if sometimes off the beaten path.

For instance, we always hear about asteroids in the news. What does a real one look like from your own backyard? I give directions and a map for seeing the brightest of them, Vesta. And if you’ve ever looked up at the Big Dipper and wondered how to find the rest of the Great Bear, I’ll get you there. I love red stars, so you’re going to find out where the reddest one resides and how to see it yourself. There’s also a lunar Top 10 for small telescope users and chapters on the awesome Cygnus Star Cloud and how to see a supernova.

You can see most of the sky wonders described in the book from the northern hemisphere, but I included several essential southern sights like the Southern Cross.

The 57 different sights are a mix of naked-eye objects plus ones you’ll need an ordinary pair of binoculars or small telescope to see. At the end of each chapter, I provide directions on how and when to find each wonder. Because we live in an online world with so many wonderful tools available for skywatchers, I make extensive use of mobile phone apps that allow anyone to stay in touch with nearly every aspect of the night sky.

For the things that need a telescope, the resources section has suggestions and websites where you can purchase a nice but inexpensive instrument. Of course, you may not want to buy a telescope. That’s OK. I’m certain you’ll still enjoy reading about each of these amazing sights to learn more about what’s been up there all your life.

Northern spectacles like the Perseus Double Cluster can’t be missed.

While most of the nighttime sights are visible from your home or a suitable dark sky site, you’ll have to travel to see others. Who doesn’t like to get out of the house once in a while? If you travel north or south, new places mean new stars and constellations. I included chapters on choice southern treats like Alpha Centauri, the Southern Cross and the Magellanic Clouds, the closest and brightest galaxies to our own Milky Way.

One of my favorite parts of the book is the epilogue, where I share a lesson my dog taught me about the present moment and cosmic time. I like to joke that if nothing else, the ending’s worth the price of the book.

The author with his 10-inch Dobsonian reflector. Credit: Linda Hanson

The staff at Page Street Publishing did a wonderful job with the layout and design, so “Wonders” is beautiful to look at. Everyone who’s flipped through it likes the feel, and several people have even commented on how good it smells!  And for those who understandably complained that the typeface in my first book, Night Sky with the Naked Eye, made it difficult to read, I’ve got good news for you. The new book’s type is bigger and easy on the eyes.

“Wonders” is 224 pages long, printed in full color and the same size as my previous book. Unlike the few but longer chapters of the first book, the new one has many shorter chapters, and you can dip in anywhere. I think you’ll love it.

The publication date is April 24, but you can pre-order it right now at Amazon, BN and Indiebound. I want to thank Fraser Cain here at Universe Today for letting me tell you a little about my book, and I look forward to the opportunity to share my night-sky favorites with all of you.

New Saturn Storm Emerging?

Saturn Storm
The tell-tale white notch of a new storm system emerging on Saturn on April 1st. Image credit and copyright: Damian Peach.
Saturn Storm
The tell-tale white notch of a new storm system emerging on Saturn on April 1st. Image credit and copyright: Damian Peach.

Are you following the planets this season? The planetary action is about to heat up, as Jupiter, Saturn and Mars all head towards fine oppositions over the next few months.

Spying the Storms of Saturn

Astrophotographer Damian Peach raised the alarm on Twitter this past week of a possible bright storm emerging of the planet Saturn. The spot was noticeable even with the naked eye and in the raw video Peach captured, a sure sign that the storm was a biggie.

Though outbursts of clusters of white spots on the surface of Saturn aren’t uncommon, it’s rare to see one emerge at such a high latitude. The storm had faded considerably the next observing session Peach performed on April 5th, though observers should remain vigilant.

Saturn Storm 2
A storm subsiding? The followup view a few days later on April 5th. Image credit and copyright: Damian Peach.

It’s sad to think: Cassini and our eyes in the outer solar system are no more… and the situation will probably remain this way for some years to come. Juno also wraps up its mission at Jupiter (pending extension) this year, and New Horizons visits its final destination Ultima Thule (neé 2014 MU69) on New Year’s Day 2019, though it’ll likely continue to chronicle its journey through the outer realms of the solar system, much like the Voyager 1, 2 and Pioneer 10, 11 missions, also bound to orbit the galaxy, mute testaments to human civilization. But even though proposals for Europa Clipper, a nuclear-powered quad-copter for Saturn’s moon Titan, and a Uranus and/or Neptune Orbiter are all on the drawing board, the “gap decade” of outer solar system exploration will indeed come to pass and soon.

saturn storm
Catching a storm on Saturn, Cassini style. Credit: NASA/JPL-Caltech/SSI

But dedicated amateur astronomers continue to monitor the outer solar system for changes. This month sees Saturn rising around 1:30 AM local and transiting highest to the south for northern hemisphere observers at 6:00 AM local, just before sunrise. Saturn crosses the constellation Sagittarius in 2018, bottoming out at its most southerly point this year for its 29 year path around the Sun. Saturn currently shines at +0.4 magnitude, extending 40” across (including rings) as it heads towards a fine opposition on June 27th. After opposition, Saturn formally crosses into the dusk sky. The amazing rings are an automatic draw, but last week’s storm admonishes us not to forget to check out the saffron-colored disk of Saturn itself as well. For example, I’ve always wondered: why didn’t we see the hexagon before? It’s right there festooning the northern hemisphere cap, plain as day in modern amateur images… to be sure, we’re in a modern renaissance of planetary astrophotography today, what with image stacking and processing, but surely eagle-eyed observers of yore could’ve easily picked this feature out.

And the view is changing as well, as Saturn’s rings reached a maximum tilt in respect to our line of sight of 27 degrees in 2017, and now head back towards edge-on again in 2025. And be sure to check out Saturn’s retinue of moons, half a dozen of which are easily visible in a telescope at even low power.

Finally, here’s another elemental mystery poised by Saturn related to the current storm, one that Cassini sought to solve in its final days: how fast does Saturn rotate, exactly? The usual rough guesstimate quoted is usually around 10.5 hours, but we’ve yet to pin down this fundamental value with any degree of precession.

One thing’s definitely for sure: we need to go back. In the meantime, we can enjoy the early morning views of the most glorious of the planets in our Solar System.

Venus Returns to the Dusk Sky

The changing phases of Venus, from the 2013 apparition. Credit and copyright: Shahrin Ahmad (@Shahgazer)
Venus returns  – The changing phases of Venus, from the 2013 apparition. Credit and copyright: Shahrin Ahmad (@Shahgazer)

Where have all the planets gone? The end of February 2018 sees the three naked eye outer planets – Mars, Jupiter and Saturn — hiding in the dawn. It takes an extra effort to brave the chill of a February morning, for sure. The good news is, the two inner planets – Mercury and Venus – begin favorable dusk apparitions this week, putting on a fine sunset showing in March.

Venus in 2018: Venus begins the month of March as a -3.9 magnitude, 10” disk emerging from behind the Sun. Venus is already over 12 degrees east of the Sun this week, as it begins its long chase to catch up to the Earth. Venus always emerges from behind the Sun in the dusk, lapping the Earth about eight months later as it passes through inferior conjunction between the Sun and the Earth as it ventures into the dusk sky.

Follow that planet, as Venus reaches greatest elongation at 45.9 degrees east of the Sun on August 17th. Venus occupies the apex of a right triangle on this date, with the Earth at the end of one vertice, and the Sun at the end of the other.

Not all elongations of Mercury or Venus are equal, but depend on the seasonal angle of the ecliptic, and whether they occur near aphelion or perihelion. Credit: Dave Dickinson

Mercury joins the fray in early March, as the fleeting innermost world races up to meet Venus in the dusk. March 4th is a great date to check Mercury off of your life list, as the -1.2 magnitude planet passes just 66′ – just over a degree, or twice the span of a Full Moon – from Venus. Mercury reaches greatest elongation 18.4 degrees east of the Sun on March 15th.

And the Moon makes three on the evening of March 18th, as Mercury, Venus and the slim waxing crescent Moon form a line nine degrees long.

The Moon, Venus and Mercury – looking west at dusk on March 18th. Credit: Stellarium

It’s a bit of a cosmic irony: Venus, the closest planet to the Earth, is also eternally shrouded in clouds and appears featureless at the eyepiece. The most notable feature Venus exhibits are its phases, similar to the Moon’s. Things get interesting as Venus reaches half phase near greatest elongation. After that, the disk of Venus swells in size but thins down to a slender crescent. Venus’s orbit is tilted 3.4 degrees relative to the ecliptic, and on some years, you can follow it right through inferior conjunction from the dusk to the dawn sky. Unfortunately, this also means that Venus usually misses transiting the disk of the Sun, as it last did on June 5-6th, 2012, and won’t do again until just under a century from now on December 10-11th, 2117.

Small consolation prize: Mercury, a much more frequent solar transiter, will do so again next year on November 11-12th, 2019.

Amateur astronomers have, however, managed to tease out detail from the Venusian cloudtops using ultraviolet filters. And check out this amazing recent image of Venus courtesy of the Japanese Space Agency’s Akatsuki spacecraft:

Venus in the ultraviolet courtesy of JAXA’s Akatsuki spacecraft. Credit: JAXA/Akatsuki/ISAS/DARTS/Damia Bouic

It’s one of our favorite astro-challenges. Can you see Venus in the daytime? Once you’ve seen it, it’s surprisingly easily to spy… the main difficulty is to get your eyes to focus in on it without any other references against a blank sky. The crescent Moon makes a great visual aid in this quest; although the Moon’s reflectivity or albedo is actually much lower than Venus’s, it’s larger apparent size in the sky makes it stand out. Key upcoming dates to see Venus near the Moon around greatest elongation are April 17th, May 17th, June 16th, July 15th, and Aug 14th.

Apparitions of Venus also follow a predictable eight year cycle. This occurs because 13 orbits of Venus very nearly equals eight orbits of the Earth. For example, Venus will resume visiting the Pleiades star cluster during the dusk 2020 apparition, just like it did back before 2012.

Phenomena of Venus

When does Venus appear half illuminated to you? This stage is known as dichotomy, and its actual observed point can often be several days off from its theoretical arrival. Also keep an eye out for the Ashen Light of Venus, a faint illumination of the planet’s night side during crescent phase, similar to the familiar sight seen on the crescent Moon. Unlike the Moon, however, Venus has no nearby body to illuminate its nighttime side… What’s going on here? Is this just the psychological effect of the brain filling in what the eye sees when it looks at the dazzling curve of the crescent Venus, or is it something real? Long reported by observers, a 2014 study suggests that a nascent air-glow or aurora may persist on the broiling night side of Venus.

All thoughts to ponder, as you follow Venus emerging into the dusk sky this March.