Buried Treasure: Astronomers Find Exoplanets Hidden in Old Hubble Data

The left image shows the star HR 8799 as seen by Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in 1998. The center image shows recent processing of the NICMOS data with newer, sophisticated software. The processing removes most of the scattered starlight to reveal three planets orbiting HR 8799. Based on the reanalysis of NICMOS data and ground-based observations, the illustration on the right shows the positions of the star and the orbits of its four known planets. (Credit: NASA; ESA; STScI, R. Soummer)

[/caption]

Over the past 21 years, the Hubble Space Telescope has gathered boatloads of data, with the Hubble archive center filling about 18 DVDs for every week of the telescope’s life. Now, with improved data mining techniques, an intense re-analysis of HST images from 1998 has revealed some hidden treasures: previously undetected extrasolar planets.

Scientists say this discovery helps prove a new method for planet hunting by using archived Hubble data. Also, discovering the additional exoplanets in the Hubble data helps them compare earlier orbital motion data to more recent observations.

How did astronomers detect the previously unseen exoplanets, and can the methods used be applied to other HST data sets?

This isn’t the first time hidden exoplanets have been revealed in HST data – In 2009 David Lafreniere of the University of Montreal recovered hidden exoplanet data in Hubble images of HR 8799. The HST images Lafreniere studied were taken in 1998 with the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The outermost planet orbiting HR 8799 was identified and demonstrated the power of a new data-processing technique which could tease out faint planets from the glow of their central star.

Four giant planets are now known to orbit HR 8799, the first three of which were discovered in 2007/2008 in near-infrared images taken with instruments at the W.M. Keck Observatory and the Gemini North telescope by Christian Marois of the National Research Council in Canada. In 2010 Marois and his team uncovered a fourth, innermost, planet. What makes the HR 8799 system so unique is that it is the only multi-exoplanet star system that has been directly imaged.

The new analysis by Remi Soummer of the Space Telescope Science Institute has found all three of the outer planets. Unfortunately, the fourth, innermost planet is close to HR 8799 and cannot be imaged due obscuration by the the NICMOS coronagraph that blocks the central star’s light.

When astronomers study exoplanets by directly imaging them, they study images taken several years apart – not unlike methods used to find Pluto and other dwarf planets in our solar system like Eris. Understanding the orbits in a multi-planet system is critical since massive planets can affect the orbits of their neighboring planets in the system. “From the Hubble images we can determine the shape of their orbits, which brings insight into the system stability, planet masses and eccentricities, and also the inclination of the system,” says Soummer.

Making the study difficult is the extremely long orbits of the three outer planets, which are approximately 100, 200, and 400 years, respectively. The long orbital periods require considerable time to produce enough motion for astronomers to study. In this case however, the added time span from the Hubble data helps considerably. “The archive got us 10 years of science right now,” Soummer says. “Without this data we would have had to wait another decade. It’s 10 years of science for free.”

Given its 400 year orbital period, in the past ten years, the outermost planet has barely changed position. “But if we go to the next inner planet we see a little bit of an orbit, and the third inner planet we actually see a lot of motion,” Soummer added.

When the original HST data was analyzed, the methods used to detect exoplanets such as those orbiting HR 8799 were not available. Techniques to subtract the light from a host star still left residual light that drowned out the faint exoplanets. Soummer and his team improved on the previous methods and used over four hundred images from over 10 years of NICMOS observations.

The improvements on the previous technique included increasing contrast and minimizing residual starlight. Soummer and his team also successfully removed the diffraction spikes, a phenomenon that amateur and professional telescope imaging systems suffer from. With the improved techniques, Soummer and his team were able to see two of HR 8799’s faint inner planets, which are about 1/100,000th the brightness of the host star in infra-red.

Soummer has made plans to next analyze 400 more stars in the NICMOS archive with the same technique, which demonstrates the power of the Hubble Space Telescope data archive. How many more exoplanets are uncovered is anyone’s guess.

Finding these new exoplanets proves that even after the HST is no longer functioning, Hubble’s data will live on, and scientists will rely on Hubble’s revelations for years as they continue in their quest to understand the cosmos.

Source: Hubble Space Telescope Mission Updates

World Space Week ( Oct 4th – 10th ) — Join the Fun!

World Space Week - October 4th - 10th, 2011. Image Credit: World Space Week Association

[/caption]

What is World Space Week?

Founded in 1981, World Space Week Association is one of the world’s oldest space education organizations. As a partner of the United Nations in the global coordination of World Space Week, WSWA recruits and supports a worldwide network of coordinators and participants. WSWA is a non-government, nonprofit, international organization, based in the United States.

World Space Week is an international celebration of science and technology, and how each benefits the human condition. In 1999 The United Nations General Assembly declared that World Space Week will be held each year from October 4-10, commemorating two notable space-related events:

The annual kick-off date of October 4th corresponds with the October 4th 1957 launch of the first human-made Earth satellite, Sputnik 1.

The end date of October 10th corresponds with the October 10th 1967 signing of the Treaty on Principles Governing the Activites of States in the Exploration and Peaceful Uses of Outer Space, including the Moon and Other Celestial Bodies.

Here’s some information from their F.A.Q on how you can participate in World Space Week, either by volunteering or by attending an event.

Where and how is World Space Week celebrated?

World Space Week is open to everyone – government agencies, industry, non-profit organizations, teachers, or even individuals can organize events to celebrate space. WSW is coordinated by the United Nations with the support of WSWA and local coordinators in many countries.

What are the benefits of World Space Week?

WSW educates people around the world about the benefits they receive from space and encourages greater use of space for sustainable economic development. WSW also demonstrates public support for space programs and excites children about learning and their future.
Some of the other benefits include promoting institutions around the world that are involved in space and fostering a sense of international cooperation in space outreach and education.

How can schools participate?

This event is ideal for teachers to promote student interest in science and math. To encourage participation, World Space Week Association gives various educational awards each year.

Sign at NASA's Johnson Space Center announcing World Space Week. Photo Credit: NASA/WSWA

What can I do for World Space Week?

If you’d like to become involved with WSW you can:

  • Volunteer for World Space Week Association
  • Organize an event directly
  • Help expand and coordinate World Space Week
  • Encourage teachers and students to do space-related activities
  • Become a Volunteer
  • Hold an Event During World Space Week
  • If you hold an event, be sure to add your event to the World Space Week calendar and tell the media and your regional WSW coordinator about your planned event. You can also order World Space Week posters and display them in your community.

    If you’d like to find a World Space Week event in your area, visit:http://www.worldspaceweek.org/calendar_2011.php

    You can learn more about World Space Week at: http://www.worldspaceweek.org

    Source: World Space Week Association

    The Draconid Meteor Shower – A Storm is Coming!

    Geminid Meteor - George Varros (courtesy NASA)

    [/caption]

    The Draconids are coming! Will this meteor shower produce a storm of observable meteors, or just a minor squall? The Draconid Meteor Show should begin on October 8, 2011 starting at dusk (roughly 19:00 BST) and continue through the evening. Peak activity of this normally minor and quiet shower is estimated to be at 21:00 BST (20:00 UT). There seems to be a wide range of predictions for this year’s shower, but some astronomers believe there could be up to 1,000 meteors per hour, making this a meteor storm!

    The Draconids or Giacobinids as they are also known, radiate from a point in the constellation of Draco the Dragon in the Northern hemisphere. In the past, notably in 1933 and 1946, the Draconids turned into a meteor storm with meteor rates of more than one every second!

    So, will this year bring us a storm? Astronomers believe so as the predicted path of the Earth through the debris streams of comet 21P/Giacobini-Ziner is favorable for a major storm, similar to what has been seen in previous years. Some reports say NASA is even considering the potential risk of damage to the International Space Station and other satellites due to meteroid impacts.

    Some astronomers, on the other hand, are saying this shower could be a dud, with only 5 or so meteors per hour.

    Credit: Alex Tudorica

    Observers in the UK and Northern Europe are ideally placed to see the peak of the Draconids. Unfortunately the peak occurs in the day time for North America. There will also be a bright Moon which may drown out many but the brightest meteors, but if predictions are correct, you will still see many. You may see Draconid meteors on the 7th an the 9th also, so it is worth going out and checking the skies.

    The Constellation Draco in the northern sky in the northern hemisphere.

    Draco is a circumpolar constellation visible all night from northern latitudes.

    There is no skill or even astronomical knowledge needed to enjoy meteor showers. All you need is to be comfortable, away from bright lights and your eyes. Sit back on a recliner or garden chair and fill your gaze with sky as meteors can appear anywhere as they radiate from the constellation of Draco. For more info on how to enjoy meteor showers visit meteorwatch.org

    So what will you see? Draconid meteors are usually slow and bright streaks of light, but if you look away, you can still miss them so keep your gaze on the sky.

    There are no guarantees of a meteor storm or even a good meteor shower as these phenomena can be very unpredictable, but the only way to find out is to go outside and look up.

    If predictions are correct, you could be in for a spectacular treat and something truly memorable, so don’t miss it. Even if it is cloudy, you can listen to the meteor shower or you can watch as they enter Earths atmosphere

    For more information on the Draconids, see the International Meteor Organization’s post on this year’s shower.

    Good Luck!

    Fireball Meteor
    Credit: Pierre Martin of Arnprior, Ontario, Canada.

    What’s That Very Bright Star – Is it the Planet Jupiter?

    Jupiter Credit: John Talbot

    [/caption]

    Have you seen a very bright star rising in the East every night the past few months? If you’re a night owl, you may have noticed it moves across they sky from the East into the West, shining brightly throughout the night. However this object is not a star! It’s the planet Jupiter and it is the brightest object in the night sky at the moment, apart from the Moon.

    At the end of October Jupiter will be at opposition. This means the mighty planet (the largest in our solar system) will be directly opposite the sun as seen from Earth and it will also be at its closest point to Earth in the two planets’ orbits around the Sun. This makes Jupiter or any other object at opposition appear brighter and larger. The opposition of Jupiter occurs on October 29, 2011.

    But Jupiter has been gracing our night sky for several months, and will continue to shine brightly as it moves in and out of opposition. But enjoy the view now, as this will be the closest opposition until 2022!

    Visually, even with the naked eye, Jupiter is stunning! A burning yellowish-white star-like object, many times brighter than any other stars.

    But through a pair of ordinary binoculars or a small telescope, Jupiter comes to life. Not only is it possible to see the disc of the Planet, you can also see the four Galilean moons.

    The Galilean moons, Callisto, Ganymede, Europa and Io were discovered by Galileo over 400 years ago and are amazing worlds in their own right.

    Callisto is the outermost moon with a very ancient and heavily cratered surface. It is the second largest of the four moons, but does not interact tidally with an “orbital resonance” unlike the other three moons.

    Callisto. Image credit: NASA/JPL

    Ganymede is the largest of the four moons and is also the largest moon in the Solar system, being larger than the Planet Mercury. The bizarre surface is a mix of two types of terrain – highly cratered dark regions and younger, but still ancient regions with a large array of grooves and ridges. Ganymede is the only moon in the solar system to have its own magnetosphere.

    Ganymede
    Ganymede Credit: NASA

    Europa is the second closest moon and is also the smallest. It has one of the smoothest and newest surfaces in the solar system, being covered purely with ice. Europa is likely a water world and it is believed that below its icy surface, lies a deep moon-wide ocean surrounding a warm mantle. It is one of the most likely places to harbour life in the solar system.

    Europa from Galileo
    Europa from Galileo

    Io is the innermost of the four Galilean moons of Jupiter and third largest. It is the most geologically active body in the solar system with over 400 active volcanoes and an ever changing and hostile surface of sulphur and silicates.

    Io Credit: NASA

    When you look up tonight and stare at Jupiter, or you are looking at it through binoculars or a telescope, just think – Jupiter and the four Galilean moons are a very interesting place, almost a mini solar system with our larger solar system!

    Occasionally you will see Jupiter’s “Great Red Spot” or the shadow of one of the moons on Jupiter’s surface. The Jupiter system is always changing.

    If you want to find out what the positions are for the moons, use planetarium software such as Stellarium and then have a look yourself.

    Good luck!

    How Common are Terrestrial, Habitable Planets Around Sun-Like Stars?

    Artst concept of the Kepler telescope in orbit. Credit: NASA

    [/caption]

    Once again news from the Kepler mission is making the rounds, this time with a research paper outlining a theory that Earth-like planets may be more common around class F, G and K stars than originally expected.

    In the standard stellar classification scheme, these type of stars are similar or somewhat similar to our own Sun (which is a Class G star); Class F stars are hotter and brighter and Class K stars are cooler and dimmer. Given this range of stars, the habitable zones vary with different stars. Some habitable planets could orbit their host star at twice the distance Earth orbits our Sun or in the case of a dim star, less than Mercury’s orbit.

    How does this recent research show that small, rocky, worlds may be more common that originally thought?

    Dr. Wesley Traub, Chief Scientist with NASA’s Exoplanet Exploration Program outlines his theory in a recent paper submitted to the Astrophysical Journal.

    A possible habitable world? Credit: NASA/JPL

    Based on Traub’s calculations in his paper, he formulates that roughly one-third of class F, G, and K stars should have at least one terrestrial, habitable-zone planet. Traub bases his assertions on data from the first 136 days of Kepler’s mission.

    Initially starting with 1,235 exoplanet candidates, Traub narrowed the list down to 159 exoplanets orbiting F class stars, 475 orbiting G class stars, and 325 orbiting K class stars – giving a total of 959 exoplanets in his model. For the purposes of Traub’s model, he defines terrestrial planets as those with a radius of between half and twice that of Earth. The mass ranges specified in the model work out to between one-tenth Earth’s mass and ten times Earth’s mass – basically objects ranging from Mars-sized to the theoretical super-Earth class.

    The paper specifies three different ranges for the habitable zone: A “wide” habitable zone (HZ) from 0.72 to 2.00 AU, a more restrictive HZ from 0.80 to 1.80 AU, and a narrow/conservative HZ of 0.95 to 1.67 AU.

    After working through the necessary math of his model, and coming up with a “power law” that gives a habitable zone to a star depending on its class and then working out how many planets ought to be at those distances, Traub estimated the frequency of terrestrial, habitable-zone planets around Sun-like (Classes F, G and K) stars at (34 ± 14)%.

    He added that mid-size terrestrial planets are just as likely to be found around faint stars and bright ones, even though fewer small planets show up around faint stars. But that is likely because of the limits of our currently technology, where small planets are more difficult for Kepler to see, and it’s easier for Kepler to see planets that orbit closer to their stars.

    Traub discussed how the quoted uncertainty is the formal error in projecting the numbers of short-period planets, and that the true uncertainty will remain unknown until Kepler observations of orbital periods in the 1,000-day range become available.

    Check out our previous coverage of exoplanet detections using the Kepler data at: http://www.universetoday.com/89120/big-find-citizen-scientists-discover-two-extrasolar-planets/

    If you’d like to read Traub’s paper and follow the math involved in his analysis, you can do so at: http://arxiv.org/PS_cache/arxiv/pdf/1109/1109.4682v1.pdf

    Learn more about the Kepler mission at: http://kepler.nasa.gov/

    Source: arXiv:1109.4682v1 [astro-ph.EP]

    An Easy Guide To Observing the Aurora

    Dundee Aurora Credit: Ben-e-boy

    [/caption]

    With the recent solar activity and the high possibility of more coming up, here is an easy guide to observing the aurora. An aurora is a natural light display high in the Earth’s atmosphere, caused by energetic particles from the Sun, colliding with the Earth’s magnetic field.

    These light displays are called the Aurora Borealis in the Northern hemisphere and Aurora Australis in the Southern hemisphere, but are commonly known as the Northern and Southern lights.

    Viewing aurorae is incredibly simple, but the conditions need to be right for a display to appear.

    Normally you can only see aurorae near the poles, such as in Canada, Iceland, and Norway or southern Australia and Antarctica, but when the Sun is highly active, more solar material is thrown in Earth’s direction, creating powerful geomagnetic storms. These storms can bring auroral displays further south to areas such as Southern UK and North to mid latitudes of the USA.

    The intensity scale is known as the Planetary KP index and basically the higher the KP number the further south Aurorae can be seen, KP 8 or higher can be good for observers further south. To find out what current levels are check spaceweather.com or the Geophysical Institute at the University of Alaska Fairbanks

    Credit spacewether.com

    If aurora activity is predicted to be high and there is a possibility of seeing it at your location, try and find an area away from light pollution or bright lights and let your eyes adjust to the dark. This may require you to travel into the countryside to escape bright city light pollution.

    The best time to spot aurora is around local midnight, but this can change depending on viewing conditions and the current intensity of the magnetic storm.

    Once you are comfortable and your eyes have adjusted to the dark, face north (or south in the Southern Hemisphere).

    You do not need binoculars, a telescope, or any other optical aid other than glasses if you wear them.

    Look low and close to the horizon and look for the faint green/ reddish glow of aurora. It may be quite difficult to see at first, but if it is a powerful display it can be very easy to spot.

    I live in the South of the UK and have seen the waving bands and curtain like structures quite easily in powerful geomagnetic storms.

    If you have a camera that takes long exposures, use a tripod and try to image the aurora and send us your results.

    Most of all, enjoy the show! Good luck!

    Aurora caught over Karlstad, Sweden on September 27, 2011. Credit: Socrates2013 on Flickr

    Aurora September 26, 2011 From Acadia National Park Credit: hale_bopp37
    Aurora Behind the Clouds Credit: Corinne Mills

    Must See Video: Falling NASA UARS Satellite Observed While Still in Orbit

    Several views of the UARS satellite in orbit, as seen from the ground with a 14" telescope. Credit: Thierry Legault Emmanual Rietsch

    The huge Upper Atmosphere Research Satellite (UARS) will be plummeting to Earth in an uncontrolled re-entry this week, but here’s an incredible video from astrophotographer extraordinaire Thierry Legault who shot footage of UARS with his 14-inch telescope. Legault was in Northern France (Dunkerque) last week to attempt to capture views of the satellite, and had success on September 15, 2011 between 04:42:14 and 04:44:02 UTC, just 8-9 days before its atmospheric reentry, when it was at an altitude of only 250 km. The tumbling, uncontrolled nature of the satellite is obvious in this video, and various components are visible, such as the body itself and the solar arrays.

    NASA has now refined its prediction for when this bus-sized satellite will fall to Earth. The 20-year-old defunct satellite now has a predicted re-entry Time of about 20:36 UTC on September 23, 2011, plus or minus 20 hours, according the the UARS Reentry Twitter feed. So, heads up!

    [/caption]

    This is a day earlier than previously anticipated. Pieces of the 6.5-ton satellite are expected to survive the fiery plunge and hit our planet, but NASA does not know exactly where. There was word today that increased activity from the Sun has hastened the decay of the satellite’s orbit.

    Legault said his images show the satellite at a 316 km distance to the observer. The angular speed at culmination: 1.36°/s. The speed of the sequence is accelerated two times with regard to real time (20 fps vs 10 fps). The satellite is tumbling, perhaps because of a collision with satellite debris a few years ago.

    Here is the equipment Legault used: Celestron EdgeHD 14” Schmidt-Cassegrain telescope (at a focal length of 8500mm) on automatic tracking system, as described on this page. Camera: Lumenera Skynyx L2-2.

    Thanks to Legault for sharing his video and images with Universe Today! See more info at Legault’s website.

    Map of the UARS orbital path. Credit: @UARS_Reentry Twitter feed.

    NASA says there are about 26 components that are big enough to survive and make it down to Earth, the largest weighing more than 150 kg (330 pounds.)

    What are you chances of getting hit by debris? Nick Johnson, chief scientist with NASA’s Orbital Debris Program, said that numerically, it comes out to a chance of 1 in 3,200 that any one person anywhere in the world might be struck by a piece of debris. That might sound high, but if you factor in that there are 7 billion people on Earth and that a large part of Earth is covered by water, the liklihood is actually very small. The chance that any one person on Earth getting hit by debris has been estimated at about 1 in 21 trillion.

    We’ll provide more updates on the UARS story. For those who would like to catch a last glimpse of UARS streaking across the night sky for yourself should check Heaven’s Above or SpaceWeather’s Satellite Tracker for flyby times in your area.

    For more information about this satellite’s uncontrolled re-entry, see our earlier article detailing UARS.

    HARPS Hauls in Over Fifty New Exoplanets

    Artist’s impression of a Super-Earth planet orbiting a Sun-like star. Credit: ESO/M. Kornmesser

    [/caption]

    Yesterday astronomers with the High Accuracy Radial velocity Planet Searcher or HARPS, announced a record-breaking discovery of more than fifty new exoplanets. This is the largest batch of confirmed extra solar planets ever announced at once. Another reason the discovery is noteworthy is that sixteen of the planets that were detected fall under the “super-Earth” classification, meaning the planets are thought to be rocky worlds less than ten times Earth’s mass.

    The HARPS team, led by Michel Mayor from the University of Geneva, used the 3.6-metre telescope at ESO’s La Silla Observatory in Chile and claim their spectrograph instrument on the telescope is the most successful planet-finder to date. The team’s data suggests that about 40% of stars similar to our Sun have at least one planet less massive than Saturn.

    The announcement of the big planetary haul was made at the Extreme Solar Systems II exoplanet conference taking place this week in Wyoming in the US.

    How did Mayor and his team discover so many planets, and how are they certain of their findings?

    The HARPS instrument uses a technique called “radial velocity”. Essentially, the instrument detects the slight movement of a star moving toward and away from observers on Earth. The changes in radial velocity shift the star’s light spectrum. When the star moves away from observers on Earth, the light is shifted to longer, redder wavelengths, called redshifting. When the star moves toward Earth, the opposite happens and the star’s light is blueshifted. Through various hardware and software upgrades over the years, HARPS is now so sensitive, it can detect radial velocities of about 1 meter per second and exoplanets less than twice the mass of Earth.

    The radial velocity method of exoplanet detection that HARPS uses is different from say, the Kepler mission which uses the “transit” method to detect exoplanet candidates. The transit method, comparatively speaking, still uses the light from a distant star, but instead of measuring redshift or blue shift, Kepler instead looks for a dimming of the star’s light as exoplanets pass in front of their host star.

    HARPS has been operating for the past eight years, using the radial velocity technique to discover over 150 new planets. HARPS has also detected a considerable portion of the known exoplanets less massive than Neptune (seventeen Earth masses). “The harvest of discoveries from HARPS has exceeded all expectations and includes an exceptionally rich population of super-Earths and Neptune-type planets hosted by stars very similar to our Sun. And even better — the new results show that the pace of discovery is accelerating,” said Mayor.

    Image of the star HD 85512 using red and blue filters. The diffraction spikes are due to the telescope itself and are not caused by the star . Image Credit: ESO/Davide De Martin and Digitized Sky Survey 2.
    One particular exoplanet Mayor and his team cited was HD85512b, estimated to be just over 3.5 times Earth’s mass. “The detection of HD 85512 b is far from the limit of HARPS and demonstrates the possibility of discovering other super-Earths in the habitable zones around stars similar to the Sun,” added Mayor. HD 85512b also happens to be situated on the edge of the “habitable zone” around its parent star – a zone where conditions could allow for water on the surface of a planet orbited in said zone.

    Based on these latest findings, as well as previous HARPS discoveries, the team plans to install an exact copy of the HARPS instrumentation on the Telescopio Nazionale Galileo in the Canary Islands. The duplicate HARPS will allow scientists to survey stars in the northern sky.

    “In the coming ten to twenty years we should have the first list of potentially habitable planets in the Sun’s neighborhood,” Mayor said. “Making such a list is essential before future experiments can search for possible spectroscopic signatures of life in the exoplanet atmospheres.”

    The total tally of confirmed planets orbiting other stars stands at about 600, depending on who you ask. The Jet Propulsion Laboratory’s PlanetQuest website, shows 564 exoplanets while the Extrasolar Planets Encyclopedia, a database kept by astrobiologist Jean Schneider of the Paris-Meudon Observatory, lists 645 alien worlds. The discrepancy comes because PlanetQuest doesn’t add to their total until an exoplanet has been completely confirmed.

    Source: ESO Press Release

    Ray Sanders is a Sci-Fi geek, astronomer and space/science blogger. Visit his website Dear Astronomer and follow on Twitter (@DearAstronomer) or Google+ for more space musings.

    PTF11kly: Messier 101 Supernova SN 2011fe Update

    PTF11kly: Messier 101 Supernova Credit: Joe Brimacombe

    [/caption]

    Are you curious about what’s happening with the supernova event in Messier 101? What’s its magnitude and how can you observe it? Then step out here into the back yard with me and let’s discuss some facts.

    First off, you’re not going to be able to see the Messier 101 supernova event with your unaided eye. The brightness of celestial objects are categorized by a number that denotes magnitude. A negative number, such as -4 is blazing – like Venus in all its glory. A small number, like 3 is about the average brightness of most of the stars you can see in the urban glow. Higher numbers, like 12, are so faint you’d need a large telescope to see them. And when it comes to just using your eyes, you’ll be lucky to spot a 6 when you’re well dark adapted and in a non-light polluted location.

    And right now the brightest the supernova has been so far was two days ago at magnitude 10.

    Next up? Right now there’s a light pollution source we simply can’t escape… the Moon. Given absolutely pristine skies and a very, very large telescope you might be able to cut through the normal thin atmospheric haze and catch the supernova. Are you going to see Messier 101? Very doubtful. But here’s where your computerized telescope comes into play. You’ll need to enter the coordinates: RA: 14:03:05.81 , Dec: +54:16:25.4. If you are perfectly polar aligned, this will place the supernova directly in the center of the field of view. Using a light pollution filter will only darken the event as well, so you are best off to use a higher magnification eyepiece to darken the field, but I personally wouldn’t recommend anything stronger than a 10mm unless you’ve got a long focal ratio scope. Now go to the eyepiece and match up star patterns. You’re not going to see the galaxy, but you will see the field stars.

    Until the Moon leaves the sky, it’s improbable (but not impossible) that you’ll be able to see SN 2011fe with anything less than around a 12-16″ telescope. Even though your telescope may be rated as reaching a stellar magnitude 13, we simply can’t break the rules of physics. But don’t be discouraged. While it is theorized the supernova event has already reached peak brightness, we just really don’t know, do we? While it will fade in the upcoming days, so will the early evening moonlight. Darker skies mean the ability to catch the supernova with smaller instruments, so be ready when opportunity knocks!

    Addendum:

    “Skywatchers in the northern hemisphere are being treated to a rare, bright supernova in a nearby galaxy, and observers worldwide have the opportunity to contribute scientific data to our study of this object. This supernova, named SN 2011fe, exploded in the nearby spiral galaxy Messier 101 some time on August 24, 2011, and quickly became bright enough for backyard astronomers to observe with modest-sized telescopes. The supernova belongs to the class of objects called “Type Ia supernovae” that are caused by the explosion of a white dwarf in a binary star system. When these stars explode, they briefly give off as much energy as all of the other stars in the galaxy combined, making them visible from millions and billions of light-years away. SN 2011fe is special because it exploded in a galaxy that’s “only” 20 million light-years from Earth — very close compared to the size of the Universe. This gives astronomers a great opportunity to understand better what Type Ia supernovae are like and how they change over time. This is where backyard astronomers can help.

    The American Association of Variable Star Observers, an organization dedicated to collaborative science by amateur and professional astronomers, is one of many groups observing this supernova, and we’ve provided the community with tools to help them make observations and share them with the broader astronomical community. The AAVSO has published star charts and other materials that enable anyone with a modest sized telescope (6 inches/15 centimeters or larger) to measure the brightness of this supernova with their own eyes. We also give observers the ability to report their observations in a way that’s useful for researchers studying this supernova. Observing the supernova is not only fun, but anyone can help astronomers do real science. The AAVSO invites all members of the public, worldwide, to help us to record this special event and to help astronomers improve our understanding of this important phenomenon.”

    Learn more about how to observe this supernova and contribute observations to the AAVSO: http://www.aavso.org/sn-2011fe

    Backyard Science: How You Can Make a Difference

    Three people enjoy the summer sky over the Delaware river, NJ, USA in August 2006. Image Credit: Wikimedia

    [/caption]

    It’s a great time to be an amateur astronomer!  Nowadays, “backyard” astronomers armed with affordable CCD imagers, high-quality tracking mounts, inexpensive PC’s and the internet at their fingertips are making real contributions to Astronomy science.

    How are people in their backyards contributing to real science these days?

    Consider that in 1991, the Hubble Space Telescope launched with a main camera of less than 1 megapixel.  (HST’s array was 800×800 pixels – just over half a megapixel).   Currently, “off-the-shelf” imaging equipment available for a few hundred dollars or less easily provides 1 megapixel or more.  Even with a “modest” investment, amateurs can easily reach the ten megapixel mark. Basically, the more pixels you have in your imaging array, the better resolution your image will have and the more detail you’ll capture (sky conditions notwithstanding).

    With access to fairly high resolution cameras and equipment, many amateurs have taken breathtaking images of the night sky. Using similar equipment other hobbyists have imaged comets, supernovae, and sunspots. With easy access to super-precise tracking mounts and high-quality optics, it’s no wonder that amateur astronomers are making greater contributions to science these days.

    One spectacular example of amateur discoveries was covered by Universe Today earlier this year. Kathryn Aurora Gray, a ten year old girl from Canada, discovered a supernova with the assistance of her father and another amateur astronomer, David Lane. The discovery of Supernova 2010lt (located in galaxy UGC 3378 in the constellation of Camelopardalis) was Kathryn’s first, her father’s seventh and Lane’s fourth supernova discovery. You can read the announcement regarding Ms. Gray’s discovery courtesy of The Royal Astronomical Society of Canada at: http://www.rasc.ca/artman/uploads/sn2010lt-pressrelease.pdf

    Often times when a supernova is detected, scientists must act quickly to gather data before the supernova fades. In the image below, look for the blinking “dot. The image is a before and after image of the area surrounding Supernova 2010lt.

    A before and after animation of Supernova 2010lt. Credit: Dave Lane

    Before Kathyrn Gray, astronomer David Levy made headlines with his discovery of comet Shoemaker-Levy 9. In 1994, comet Shoemaker-Levy 9 broke apart and collided with Jupiter’s atmosphere. Levy has gone on to discover over twenty comets and dozens of asteroids. Levy has also published several books and regularly contributes articles to various astronomy publications. If you’d like to learn more about David Levy, check out his internet radio show at http://www.letstalkstars.com/, or visit his site at http://www.jarnac.org/

    Hubble image of comet P/Shoemaker-Levy 9, taken on May 17, 1994. Image Credit: H.A. Weaver, T. E. Smith (Space Telescope Science Institute), and NASA
    The International Space Station and Space Shuttle Atlantis transiting the sun. Image Credit: Thierry Legault

    Rounding out news-worthy astronomers, astrophotographer Thierry Legault has produced many breathtaking images that have been featured here on Universe Today on numerous occasions. Over the past year, Thierry has taken many incredible photos of the International Space Station and numerous images of the last few shuttle flights. Thierry’s astrophotography isn’t limited to just the sun, or objects orbiting Earth. You can read more about the objects Thierry captures images of at: http://www.astrophoto.fr/ You can also read more about Thierry and the equipment he uses at: http://legault.perso.sfr.fr/info.html

    Performing science as an amateur isn’t limited to those with telescopes. There are many other research projects that ask for public assistance. Consider the Planet Hunters site at: http://www.planethunters.org/. What Planet Hunters aims to achieve is a more “hands-on” approach to interpreting the light curves from the publicly available data from the Kepler planet finding mission. Planet Hunters is part of the Zooniverse, which is a collection of citizen science projects. You can learn more about the complete collection of Zooniverse projects at: http://www.zooniverse.org

    Sample light curve data. Image Credit: Zooniverse/PlanetHunters.org

    Another citizen science effort recently announced is the Pro-Am White Dwarf Monitoring (PAWM) project. Led by Bruce Gary, the goal of the project is to explore the possibility of using amateur and professional observers to estimate the percentage of white dwarfs exhibiting transits by Earth-size planets in the habitable zone. The results from such a survey are thought to be useful in planning a comprehensive professional search for white dwarf transits. You can read more about the PAWM project at: http://www.brucegary.net/WDE/

    Transit simulation. Image Credit: Manuel Mendez/PAWM

    One very long standing citizen project is the American Association of Variable Star Observers (AAVSO). Founded in 1911, the AAVSO coordinates, evaluates, compiles, processes, publishes, and disseminates variable star observations to the astronomical community throughout the world. Currently celebrating their 100th year, the AAVSO not only provides raw data, but also publishes The Journal of the AAVSO, a peer-reviewed collection of scientific papers focused on variable stars. In addition to data and peer reviewed journals, the AAVSO is active in education and outreach, with many programs, including their mentor program designed to assist with disseminating information to educators and the public.

    If you’d like to learn more about the AAVSO, including membership information, visit their site at: http://www.aavso.org/

    Sample AAVSO light curve plot. Image Credit: AAVSO

    For over a decade, space enthusiasts across the internet have been taking part in SETI@Home. The official description of SETI@home is “a scientific experiment that uses Internet-connected computers in the Search for Extraterrestrial Intelligence (SETI)”. By downloading special client software from the SETI@Home website at http://setiathome.berkeley.edu/, volunteers from around the world can help analyze radio signals and assist with SETI’s efforts to find “candidate” radio signals. You can learn more about SETI@Home by visiting http://setiathome.berkeley.edu/sah_about.php

    The projects and efforts featured above are just a small sample of the many projects that non-scientists can participate in. There are many other projects involving radio astronomy, galaxy classification, exoplanets, and even projects involving our own solar system. Volunteers of all ages and educational backgrounds can easily find a project to help support.

    Ray Sanders is a Sci-Fi geek, astronomer and space/science blogger. Visit his website Dear Astronomer and follow on Twitter (@DearAstronomer) or Google+ for more space musings.