Red Hot News… Possible Nova in Sagittarius!

According to AAVSO Special Notice #164 just sent, there is a possible nova candidate in Sagittarius. It was discovered by Koichi Nishiyama, Kurume, Fukuoka-ken, Japan, and Fujio Kabashima, Miyaki-cho, Saga-ken, Japan, at unfiltered magnitude 7.7 on two 60-second frames taken Aug. 6.494 and 6.495 UT. They confirmed the discovery on five frames taken around Aug. 6.494.

Brian Marsden announces in CBET No. 1899 the independent discovery of a possible nova (Nova Sagittarii 2009 No. 3) by Koichi Nishiyama, Kurume, Fukuoka-ken, Japan, and Fujio Kabashima, Miyaki-cho, Saga-ken, Japan, at unfiltered magnitude 7.7 on two 60-second frames taken Aug. 6.494 and 6.495 UT. They confirmed the discovery on five frames taken around Aug. 6.494. No motion was seen during 80 minutes and nothing was visible at this location down to 12.7 on survey frames taken July 22.531 and 29.584 UT. Nothing was seen on the DSS (POSS2/UKSTU red), or in ASAS, AAVSO VSX, SIMBAD, 2MASS and USNO-B1.0 catalogues, although the USNO-B1.0 shows a faint star (I = 12.45) nearby (at end figures 07.509s, 33.13″). Coordinates (from Nishiyama and Kabashima) are: RA = 18h 07m 07.67s, Dec = -33d 46m 33.9s (2000.0)

Finder Chart 3 Degree FOV
Finder Chart 3 Degree FOV

According to Elizabeth Waagen of AAVSO, Grzegorz Pojmanski, Dorota Szczygiel, and Bogumil Pilecki, Warsaw University Astronomical Observatory, observed by ASAS3 at V = 7.78 on Aug. 6.182 UT at the approximate position RA = 18h 07m 08s, Dec = -33d 46.6m. Nothing was visible on Aug. 4.152 UT. Leonid Elenin, Moscow, also confirmed (via vsnet-alert 11371) the presence of the object using a remote astrograph in Pingelly, Australia, providing position end figures 07.67s, 34.9s, +/-0.14″. This object has been assigned the name VSX J180707.6-334633 with the AUID 000-BJP-536. Please report observations to the AAVSO International Database using the name Nova Sgr 2009 No. 3 or VSX J180707.6-334633. The ASAS light curve and images can be accessed here. A sequence has not yet been established for this object, but additional finder charts may be plotted by entering the coordinates into VSP.

Good luck!

Chasing An Occultation

Jupiter Occults Star - Leonard Ellul-Mercer

[/caption]

You’ve all heard me talk about watching the Moon occult a bright star. That’s when we get a great example of stellar parallax from our Earthly viewpoint! But did you know that there are several other heavenly bodies that can cause an occultation that’s easy to view through an amateur telescope if you just know when and where to look? Then let’s take this opportunity to check it out…

On the night of August 3/4, 2009 Leonard Ellul-Mercer of Malta caught this while watching Jupiter!

Jupiter Occults 45 Capricorni Animation by Leonard Ellul-Mercer - Click to Animate
Jupiter Occults 45 Capricorni Animation by Leonard Ellul-Mercer - Click To Animate

What you’re seeing is a time lapse animation of the mighty Jove occulting HIP 107302, a 6th magnitude star you might know better as 45 Capricorni. How many of us may have glanced at something like that while making a cursory observation of the planet and taken it for a galiean moon? OK… It’s sixth magnitude. Not alot of you, but maybe you might not have watched long enough to know it would occult. (Besides, there’s a whole lot of cool things in that image. Watch the GRS float by, followed by the mushroom impact cloud and the whirl of the moons!)

So how do you go about getting predictions? There’s a wonderful set of worldwide resources that you can find through the International Occultation Timing Association (IOTA). This page will take you to their main frame where you can branch into several areas – including how to time occultations and submit your information. To find information on occultations by planets and asteroids for other areas of the world, be sure to visit the IOTA European section, too!

While you might watch an occultation just for fun, if you do decide to contribute your timing information you’re doing real science. By studying exactly the point in time when a star disappears and reappears, astronomers are able to take more accurate measurements of a planet or asteroid’s size and shape – and better calculate their distances at any given time. It’s a way to engage in new types of complimentary research that doesn’t require multi-million dollar equipment and gives back useful pertinent scientific data. After all, you might possibly discover a new moon of Jupiter – or one too small to be seen by your telescope – in just this way! Even a momentary dimming of a star might mean there’s something more there than meets the eye.

Enjoy your voyage of discovery! There are four major lunar events coming up during the month of August, including another Jupiter/star event for Europe. Get out there and have fun!

Weekend SkyWatcher’s Forecast: August 7-9, 2009

Greetings, fellow SkyWatchers! Have you been watching Jupiter and the Moon make a pass at each other in the early morning sky? What an incredible sight. With the slightly later rise of Selene during the weekend hours, we can take advantage of the earlier evening to do some deep sky studies. However, if you’re just in the mood to kick back in a lawn chair and do a little stargazing, you’ll probably spot some early Perseid meteors gracing the night. I’ll give you a full report on the watching the Perseid Meteor shower just a little bit closer to the date so you won’t forget! For now… Why not join me in the back yard? We’ve got a little history, a little mystery and a telescope waiting for you…

bowdoinFriday, August 7, 2009 – Today marks the 1726 birth of James Bowdoin, astronomer and friend of Benjamin Franklin. Although Bowdoin suffered many years from consumption, which was finally the cause of his death, he was always vigorous in public affairs. He was one of the founders, and first president, of the American academy of arts and sciences, and left it his valuable library. He also aided in founding the Massachusetts humane society, and in 1779 was made a fellow of Harvard College. He was given the degree of LL.D. by the University of Edinburgh, and was a fellow of the royal societies of London and Edinburgh. Several of his papers appear in the memoirs of the society, among which is one whose object is to prove that the sky is a real concave body enclosing our system, and that the Milky Way is an opening in this, through which the light of other systems reaches us.

What do you think he would have thought if he could be with us tonight as we return to our studies with the globular M14, one of the clusters nearer to the galactic center? Located about 16 degrees (less than a handspan) south of Alpha Ophiuchi (RA 17 37 36 Dec +03 14 45), this 9th magnitude, Class VIII cluster can be spotted with larger binoculars, but only fully appreciated with the telescope.

m14

When studied spectroscopically, globular clusters are found to be much lower in heavy element abundance than stars such as own Sun. These earlier generation stars (Population II) began their formation during the birth of our galaxy, making globular clusters the oldest formations we can study. In comparison, the disk stars have evolved many times, going through cycles of starbirth and supernova, which in turn enriched the heavy element concentration in star-forming clouds. Of course, as you may have guessed, M14 breaks the rules. M14 contains an unusually high number of variable stars—in excess of 70—with many of them known to be the W Virginis type. In 1938, a nova appeared in M14, but it was undiscovered until 1964, when Amelia Wehlau of the University of Ontario was surveying the photographic plates taken by Helen Sawyer Hogg. The nova was revealed on eight of these plates taken on consecutive nights and showed itself as a 16th magnitude star—andwas believed to be at one time almost five times brighter than the cluster members. Unlike 80 years earlier with T Scorpii in M80, actual photographic evidence of the event existed. In 1991, the eyes of the Hubble were turned its way, but neither the suspect star nor traces of a nebulous remnant were discovered. Then, 6 years later, a carbon star was discovered in M14. To a small telescope, M14 will offer little to no resolution and will appear almost like an elliptical galaxy, lacking in any central condensation. Larger scopes will show hints of resolution, with a gradual fading toward the cluster’s slightly oblate edges. A true beauty!

genesisSaturday, August 8, 2009 – On this date in 2001, the Genesis Solar Particle Sample Return mission was launched on its way toward the Sun. On September 8, 2004, it returned with its sample of solar wind particles. Unfortunately, a parachute failed to deploy, causing the sample capsule to plunge unchecked into the Utah soil. Although some of the specimens were contaminated, many did survive the mishap. So what is ‘‘star stuff?’’ Mostly highly charged particles generated from a star’s upper atmosphere flowing out in a state of matter known as plasma.

Before moonrise, let’s study one of the grandest of all solar winds as we seek out an area about three finger-widths above the Sagittarius teapot’s spout as we have a look at the magnificent M8 (RA 18 03 37 Dec +24 23 12). Visible to the unaided eye as a hazy spot in the Milky Way, fantastic in binoculars, and an area truly worth study in any size scope, this 5,200-light-year-diameter area of emission, reflection, and dark nebulae has a rich history. Its involved star cluster—NGC 6530—was discovered by Flamsteed around 1680 and the nebula by Le Gentil in 1747. Cataloged by Lacaille as III.14 about 12 years before Messier listed it as number 8, its brightest region was recorded by John Herschel, and dark nebulae were discovered within it by Barnard.

m8

Tremendous areas of starbirth are found in this region, while young, hot stars excite the gas in a region known as the ‘‘Hourglass’’ around the stars Herschel 36 and 9 Sagittarii. Look closely around cluster NGC 6530 for Barnard Dark Nebulae B 89 and B 296 at the nebula’s southern edge. . .and try again on a darker night. No matter how long you choose to swim in the ‘‘Lagoon,’’ you will surely find more and more things to delight both the mind and the eye!

luna_launchSunday, August 9, 2009 – On this date in 1976, the Luna 24 mission was launched on a return mission of its own, not to retrieve solar winds’ samples but lunar soil! Remember this mission as we take a look at its landing site in the weeks ahead. Tonight we’ll return to the nebula hunt as we head about a finger-width north and just slightly west of M8 for the ‘‘Trifid’’ (RA 18 02 23 Dec +23 01 48).

M20 was discovered by Messier on June 5, 1764, and much to his credit, he described it as a cluster of stars encased in nebulosity. This is truly a wonderful observation, since the Trifid could not have been easy to spot, given his equipment. Some 20 years later William Herschel (although he usually avoided repeating Messier objects) found M20 of enough interest to assign separate designations to parts of this nebula—IV.41, V.10, V.11, V.12.

trifid

The word ‘‘Trifid’’ was used to describe its beauty by John Herschel. Although M20 is a very tough call in binoculars, it is not impossible with good conditions to see the light of an area that left its home nearly a millennium ago. Even smaller scopes will pick up this faint, round, hazy patch of both emission and reflection, but you will need aversion to see the dark nebula that divides it. This was cataloged by Barnard as B 85. Larger telescopes will find the Trifid as one of the very few objects that actually appears much in the eyepiece as it does in photographs—with each lobe containing beautiful details, rifts, and folds best seen at lower powers. Look for its cruciform star cluster and its fueling multiple system while you enjoy this triple treat tonight!

For now, keep an eye on the sky for the coming of the annual Perseid Meteor Shower! You’ll see a great increase in activity beginning now – despite the moonlight. The peak will be mid-week, but I’ll be back with an update on who, when, where, why and how very soon… Until then? Wishing you clear skies!

This week’s awesome images are (in order of appearance): James Bowdoin (historical image), (credit—NOAO/AURA/NSF), Genesis Spacecraft (credit—NASA), M8: the Lagoon Nebula (credit—NOAO/AURA/NSF), Luna 24 launch (press release photo) and M20: the Trifid nebula (credit—Palomar Observatory, courtesy of Caltech). We thank you so much!

Orbiting Toolbag Will Enter Atmosphere Aug. 3

ISS Toolbag. Credit: NASA TV

[/caption]
The most famous toolbag in the world (and space) will soon be no more. The ISS Toolbag will enter Earth’s atmosphere and completely burn up. Current estimates say the toolbag should become a fireball on August 3 around 1316 Universal Time. It should be visible over the Pacific Ocean west of Mexico (12.7° N, 257.1° E). Astronaut Heidemarie Stefanyshyn-Piper dropped the backpack-sized kit on Nov. 18, 2008, while she was working outside the International Space Station. Since then the toolbag has circled Earth over 4,000 times, and has even been visible from the ground. Keep track of the toolbag at Heaven’s Above or on SpaceWeather.com’s Satellite Tracker.

Top Five Celestial Objects Anyone Can See With a Small Telescope

The Orion Nebula is a small but dense stellar nursery credit: NASA, ESA, M. Robberto (STScI/ESA) and The Hubble Space Telescope Orion Treasury Project Team

Popular Mechanics has a great series of articles today on amateur astronomy, including Affordable Ways to Become an Amateur Astronomer, and How to Computerize Your Telescope. But my favorite is the Top Five Galactic Bodies Anyone Can See With a Cheap Telescope. Number one on the list is the Orion Nebula, above. Granted, with small telescopes, it won’t look like this Hubble Space Telescope image, but The Great Nebula is even visible with the naked eye in the northern hemisphere, and looks pretty impressive in small telescope, too. To find it, those in the northern hemisphere will have to wait until cooler weather approaches. But look for Orion’s belt, three bright stars in a row. Hanging south from the belt is Orion’s sword, composed of three bright dots; the center dot is the great nebula.


Andromeda_Galaxy Credit: Hubble

Number two is the Andromeda Galaxy. A.K.A M31, this beautiful galaxy is another naked eye object that shows up well in small telescopes. To find it, locate the North Star, then the constellation Cassiopeia, which looks like a giant “W” and is directly across the Big Dipper, with the North Star in between the two. Look at the right “V” shape within the larger “W” of Cassiopeia; 15 degrees down from the tip of the ‘V’ is M31. Popular Mechanics recommends using the lowest power on the telescope to get as much as the galaxy into the field of view as possible.
Hercules
Hercules

Number three is the Hercules Globular Cluster. It is relatively close, only about 25,000 light-years away and it pretty big –about 150 light-years wide, making it an easy target. Hercules is best viewed from the northern hemisphere in the summer months during a new moon. Locate Hercules by looking for the trademark trapezoidal keystone within the constellation. M13 is the brightest spot on the western side of the shape, about 20 degrees due west of the constellation Lyra.
Crab Nebula.  Credit:  NASA/ESA
Crab Nebula. Credit: NASA/ESA

Number four on the list is the Crab Nebula. This is the left-overs from a supernova that occurred in the year 1054. Back then it was bright enough to see in the daytime, and now it makes for a great sight at night, but a telescope is required. M1 is located on the southern horn of Taurus, the bull shaped constellation southeast of Orion. The object is best seen using a 200x zoom from the northern hemisphere around midnight.

Whirlpool Galaxy. Image credit: Hubble

Number five is the Whirlpool Galaxy. A.K.A. M51, this is one of the largest galaxies visible without using professional telescope. Millions of years ago two galaxies collided to create this colorful and dramatic object. To find it, look about 3.5 degrees southeast of the last star in the Big Dipper’s handle.

Source: Popular Mechanics

Weekend SkyWatcher’s Forecast: July 31 – August 2, 2009

Heads up for our friends in Southeast Europe, Northeast Africa, South America! In a matter of hours Antares is going to be occulted by the Moon! See the IOTA pages for times and locations and get out and watch! This weekend is a great time to do some lunar explorations and catch up on some double star work, too. Have you been watching for the impact site on Jupiter? Even if you don’t have a telescope, I’ve got another video in here to share with you that’s gonna’ blow your mind. Are you ready to do some observing? Then I’ll see you in the back yard…

Friday, July 31, 2009 – Heads up for our friends in Southeast Europe, Northeast Africa, South America! You don’t have long until Antares is going to be occulted by the Moon! See the IOTA pages for times and locations and get out and watch! For many of us the bright red “Rival of Mars” will simply be a close and appealing visitor tonight, so take this opportunity to view an occultation for yourself thanks to a little video magic from Joe Brimacombe!

Now let’s take an entirely different view of the Moon as we do some ‘‘mountain climbing.’’ Tonight the most outstanding feature on the Moon will be the emerging Copernicus, but since we’ve delved into the deepest areas of the lunar surface, why not climb to some of its peaks?

tenerrife

Using Copernicus as our guide, to the north and northwest of this ancient crater lies the Carpathian Mountains, ringing the southern edge of Mare Imbrium. As you can see, they begin well east of the terminator, but look into the shadow! Extending some 40 kilometers beyond the line of daylight, you will continue to see bright peaks, some of which reach over 2,000 meters in height! When the area is fully revealed tomorrow, you will see the Carpathian Mountains eventually disappearing into the lava flow that once formed them. Continuing onward to Plato, which sits on the northern shore of Imbrium, we will look for the singular peak of Pico. It is between Plato and Mons Pico that you will find the scattered peaks of the Teneriffe Mountains. These may be the remnants of much taller summits of a once stronger range, but only about 1,890 meters still survives above the surface. Time to power up! To the west of the Teneriffes, and very near the terminator, you will see a narrow series of hills cutting through the region west-southwest of Plato. This is known as the Straight Range—Montes Recti—and some of its peaks reach up to 2,072 meters. Although this doesn’t sound particularly impressive, that’s over twice as tall as the Vosages Mountains in Central Europe, and on the average very comparable to the Appalachian Mountains in the eastern United States.

Saturday, August 1, 2009 – Let’s continue our lunar mountain climbing expedition and look at the ‘‘big picture’’ on the Moon’s surface. Tonight all of Mare Imbrium is bathed in sunlight, and we can truly see its shape. Let’s identify the mountain ranges again. Starting at Plato and moving east to south to west you will find the Alps, the Caucasus, and the Apennines (where Apollo 15 landed at the western end of Palus Putredinus), respectively. Next come the Carpathian Mountains just north of Copernicus.

gibbous

Look at their form closely. Doesn’t it appear that once upon a time an enormous impact created the entire area? The Imbrium impact. . . Compare it to the younger Sinus Iridium. Ringed by the Juras Mountains, it may have also been formed by a much later and very similar impact.

And you thought they were just mountains. . .

delta_ophTonight let’s honor the 1891 birth on this date of Helen Sawyer Hogg, who cataloged distances to variable stars in globular clusters. Although it’s too bright to globular hunt tonight, we can start with our eyes on Delta Ophiuchi (RA 16 14 20 Dec +03 41 39), another undiscovered gem. Known as Yed Prior (the ‘‘Hand’’), look for its optical double Epsilon to the southeast, handily named Yed Posterior. Now have a look at this area in binoculars or a telescope, using absolutely minimum power. Delta Ophiuchi is 170 light-years from us, while Epsilon is 108. But look at the magnificent field they share. Stars of every spectral type are together in an area of sky that could easily be covered by a small coin held at arm’s length. Enjoy this fantastic field, from the hot blue youngsters to the old red giants!

Sunday, August 2, 2009 – Today we celebrate the official adoption of Greenwich Mean Time (GMT) in 1880. Tonight take time to head north of Sinus Iridum, across Mare Frigoris and northeast of the punctuation of Harpalus, and revisit the grand crater J. Herschel.

jherschel

Although it looks small because it is seen on the curve, this wonderful old walled plain named for John Herschel contains some very tiny details. Its southeastern rim forms the edge of Mare Frigoris, and the small (24 kilometers) crater Horrebow dots its southwestern edge. The crater walls are so eroded with time that not much remains of the original structure. Look for many very small impact craters dotting J. Herschel’s uneven basin and exterior edges. Why return to a previous study? If you can spot the small central crater C, you are resolving a feature only 12 kilometers wide from some 385,000 kilometers away!

36ophWhile we’re out, let’s have a look at another astounding system called 36 Ophiuchi, located about a thumb-width southeast of Theta (RA 17 15 20 Dec +26 36 10). Situated in space less than 20 light-years from Earth, even small telescopes can split this pair of 5th magnitude K-type giants—stars very similar to our own Sun. Larger telescopes can pick up the C component as well. Be sure to mark your lists with both of your observations tonight, because J. Herschel is a Lunar Club Challenge, and 36 Ophiuchi is on many doubles’ challenge lists.

If you haven’t taken the “time” to hunt down the impact site on Jupiter, then you’d better! Even if it isn’t visible while you’re out observing, you can always enjoy all the great features Jupiter has to offer. Who knows? You might catch a shadow transit… Or just enjoy the waltz of the Galiean moons as they shuttle around the scarred giant. Remember to use as much magnification as possible when looking for the impact site! While videos like Joe Brimacombe’s (seen here) make it very clear, viewing through a small telescope isn’t quite that crisp and easy. The details become much more pronounced in photographs than what can be seen visually, so extra magnification doesn’t harm… It actually helps to dim Jupiter and will pick up the contrast for you. But, take a look at what a Takahashi Mewlon can do!

Absolutely Tak sharp… For now? Wishing you clear and steady skies!

This week’s awesome images are (in order of appearance): Februrary 18, 2009 Antares Occultation Movie (credit – Joe Brimacombe), Montes Teneriffe and Montes Recti (credit—Wes Higgins), Gibbous Moon (credit—Greg Konkel), Delta Ophiuchi (credit—Palomar Observatory, courtesy of Caltech), Crater J. Herschel (credit—Alan Chu), 36 Ophiuchi (credit—Palomar Observatory, courtesy of Caltech) and Jupiter Impact Movie by Joe Brimacombe. We thank you so much!!

Observe the Jupiter Impact Site!

July 28, 2009 Jupiter Impact Site by John Chumack

[/caption]

Have you stayed up late and observed the Jupiter impact site? Then don’t be goofing around. Not since July 16-22, 1994 when comet Shoemaker-Levy crashed into Jupiter’s southern hemisphere have amateur astronomers had the opportunity to witness history firsthand! What makes me think that you can do it? Because I have…

Not only have cameras been clicking around the world, but they’ve been rolling, too.. Let’s take a look at one from John Chumack!

These images were done from his backyard Observatory in Dayton, Ohio USA, using A DMK 21F04 Fire-wire Camera and 2x Barlow, Optec Filter Wheel, attached to a Meade 10″ SCT scope. Captured images starting about 2:00 am and ran until 4:30 am E.ST. on 07-28-09. Basically 2.5 hours of rotation compressed to about 10 seconds. Way to go, John!!

If you think you have to be a professional, then think again. Even with less than perfect sky conditions, the impact site is very noticeable in a telescope as small as 4.5″ on a swimmy horizon and just gets better and easier to see as it reaches meridian and Jupiter reaches better sky position. DO NOT wait on the perfect night and the perfect time – because it just might not happen.

Another reason for my observations was to see just how close my predictions were… and without using a computer program? Hey… The old girl still has got it. Get thee out there on these Universal dates and times! July 29, 4:14, 14:20 and 23:59; July 30, 10:01 and 19:56; July 31, 5:52 and 15:48. For August 1, 01:43, 11:39, 21:34; August 2, 7:32 and 17:25; August 3, 3:23, 13:17 and 23:12; August 4, 9:08 and 19:03; August 5, 4:59 and 14:54; August 6, 0:50, 10:46 and 20:41; August 7, 6:37 and 16:32; August 8, 2:28, 12:24 and 22:18; August 9, 8:15 and 18:20; August 10, 4:06, 14:01, 23:57; August 11, 9:53 and 19:48; August 12, 5:42 and 15:39; August 13, 01:35, 11:31 and 21:26; August 14, 7:22 and 17:17; August 15, 3:13, 13:08, 23:04. I might be off by a few minutes, but I’m not that far off.

Take your time and do not just glance at Jupiter and think it’s not there at the predicted time – because it is. The charcoal gray oval is big enough and dark enough to stand out against the wash of the southern hemisphere, but sometimes you have to wait on a moment of clarity to see it. Try using a variety of color filters, but instead of installing them in the eyepiece, use the “blink” method. Hold the filter by the cell and simply set it on the eyepiece while you look through it, then take it off and look again. Once you see the mushroom cloud, you can’t “un-see” it.

History is waiting on you… Carpe noctem, baby!

Many, many thanks to John Chumack of Galactic Images for sharing this wonderful capture of what I was looking at last night and allowing me to adjust his original image to highlight the impact region!

Viewing the Jupiter Impact With Your Telescope

Are you ready to stay up a little late and see if you can catch the new dark spot on Jupiter from what could have either been an asteroid or comet impact? It happened somewhere between July 17th and 19th and the scar is still fresh and visible. However, there is just a little bit you need to know to make your viewing the Jupiter impact through your telescope a success.

By July 21, Joe Brimacombe was on this phenomena and recording it. Says Joe: “Got very lucky: CBET 1882 just announced a transient new black spot on Jupiter’s south polar region that it a probable comet impact. By chance I’d been imaging Jupiter between gaps in the clouds and seem to have captured it just before it rotated out of view. Seeing conditions were above average for Cairns.”

And he did a video for us:

Of course, Jupiter and its surface features are one of the easiest targets for backyard telescopes – so seeing something that large – and dark against a light background – should be easy. Right? Wrong. Viewing through our own Earth’s atmosphere plays a huge role on how we see the atmosphere of Jupiter. Low horizon conditions, unsteady or turbulent air, thin clouds, humidity, temperature… all of these are key factors in planetary observing. Observing skills come only with experience, but given the time and effort – you CAN do it!

1january03Before we go out to look for the impact, let’s stop and talk about Jupiter. There’s a reason so many amateurs love to this fast-rotating disk full of dynamic colored features… Because it’s so easy to see changes! Much like our own skin, the chemical composition of Jupiter’s atmosphere “tans” in the sunlight and the continual motion of its banded weather patterns keep an array of festoons, loops, ovals and barges on display at all times. How difficult is it to spot something? Then know this photo frame of a shadow transit is a 100% realistic view taken by me with a very small telescope with my camcorder. No tweaks, no filters… And it was much clearer to the eye than the camera. However, we need to remember that Jupiter rotates completely in about 10 hours, so a feature you see on its meridian at 11:00 pm won’t be there at 3:00 am. Like the “Great Red Spot”, the whole atmosphere is constantly on the move and there’s no guarantee that something that looks great one night will return again on another.

Now, let’s think positively! The impact spot is located near Jupiter’s System II longitude 210°. Although it’s small, if you use a lot of magnification, you should be able to spot it near the pole. The next thing you need to know is when to look! And here are the times the Jupiter impact can be seen for the next 10 days: July 25, 10:54 and 20:49; July 26, 6:45 and 16:41; July 27, 2:36, 12:32 and 22:27; July 28, 8:23 and 18:18; July 29, 4:14, 14:20 and 23:59; July 30, 10:01 and 19:56; July 31, 5:52 and 15:48. For August 1, 01:43, 11:39, 21:34; August 2, 7:32 and 17:25; August 3, 3:23, 13:17 and 23:12; August 4, 9:08 and 19:03; August 5, 4:59 and 14:54; August 6, 0:50, 10:46 and 20:41; August 7, 6:37 and 16:32; August 8, 2:28, 12:24 and 22:18; August 9, 8:15 and 18:20; August 10, 4:06, 14:01, 23:57; August 11, 9:53 and 19:48; August 12, 5:42 and 15:39; August 13, 01:35, 11:31 and 21:26; Auugst 14, 7:22 and 17:17; August 15, 3:13, 13:08, 23:04. Remember, these are very approximate Universal times when it should be visible on the meridian and you should have at least 20-30 minutes of opportunity on either side of the listed time to catch it as it rotates in and out.

Will the impact spot last in the days ahead? Unfortunately, just like the Shoemaker-Levy impact, the atmosphere will shred the debris cloud quickly. It is difficult enough to catch a feature near Jupiter’s poles because of limb darkening – so don’t wait to make your observations. Wishing you clear and steady skies!

Many thanks to Joe Brimacombe of Southern Galactic for sharing his incredible images with us!

Weekend SkyWatcher’s Forecast: July 24-26, 2009

Greetings, fellow SkyWatchers! Has everyone enjoyed the Apollo revival? I certainly have – and now the Moon is gently returning to evening sky and offering us great opportunities over the coming evenings to do a little bit of study with binoculars and telescopes. Look for its slender crescent just after sunset! This weekend we’re going to try an open cluster you may never have seen that works well for small optics and a Herschel object with a real twist. Need more? Then we’ll check out a beautifully colored double star, too… But not the one you expect! Grab your telescopes and binoculars and I’ll see you in the back yard…

delandresFriday, July 24, 2009 – Today let’s start with the 1853 birth on this date of Henri-Alexandre Deslandres. Do you recognize his name from our lunar studies? He invented the spectroheliograph to photograph the Sun in monochromatic light! Deslandres also observed the spectra of planets and stars and measured their radial velocities. Did you see the very young crescent of the Moon during twilight? The Moon played an important role in history on this date. The Apollo 11 astronauts splashed down from their return from the Moon on this date in 1969! Only 15 years before, in 1954, the sound of a human voice had been reflected off the Moon’s surface and returned to Earth. James H. Trexler at the Naval Research Laboratory spoke into a microphone at the laboratory’s Maryland facility, and the sound was relayed back 2.5 seconds later. Although ‘‘Operation Moon Bounce’’ was only a repetition of vowel sounds, Trexler felt the project held promise as a communications and radar intercept device. It might be worth it to point out that many radars are very close to the theoretical possibility of contacting the Moon, and hence the practicality of building a system capable of intercepting these systems by reflections from the Moon is not beyond the realm of possibility.

IC4665

Tonight we start with a group of young stars beginning their stellar evolution and end with an old solitary elder preparing to move onto an even ‘‘higher realm.’’ Open cluster IC 4665 is easily detected with just about any optical aid about a finger-width north-northeast of Beta Ophiuchi (RA 17 46 18 Dec +05 43 00). Discovered by Philippe Loys de Cheseaux in the mid-1700s, this 1,400 light year distant cluster consists of about 30 mixed-magnitude stars all less than 40 million years of age. Despite its early discovery, IC 4665 did not achieve broad enough recognition for Dreyer to include it in the late nineteenth-century New General Catalog (NGC), and it was later added as a supplement to the NGC in the Index Catalog of 1908. Be sure to use low power to see all of this large group.

Saturday, July 25, 2009 – Today we celebrate a success of the U.S.S.R. space program with the achievement of cosmonaut Svetlana Savitskaya, the first woman to walk in space (in 1982 on this date) and only the second female to go into space, preceding Sally Ride. Today is also the date of the 1973 launch of Soviet Mars 5 probe. Although it didn’t complete its full mission, it did send back 60 photos of the Martian Southern Hemisphere!

vendelinus

Although poor position makes study difficult during the first few lunar days, be sure to look for the ancient impact Vendelinus. Spanning 150 kilometers in diameter and with walls reaching up to 4,400 meters in height, lava flow has long ago eradicated any interior features. Its old walls hold mute testimony to later impact events such as crater Holden on the south shore, larger Lame on the northeast edge, and sharp Lohse northwest. Mark your challenge list!

ngc6401Tonight’s challenge is Herschel I.44, also known as NGC 6104, a 9.5-magnitude globular cluster around two finger-widths northeast of Theta Ophiuchi and a little more than a degree due east of star 51 (RA 17 38 37 Dec –23 54 31). Discovered by William Herschel in 1784 and often classed as ‘‘uncertain,’’ this halo object has been pegged by today’s powerful as a Class VIII and given a rough distance from the galactic center of 8,800 light-years. Although neither William nor John could resolve this globular and listed it originally as a bright nebula, studies in 1977 revealed a nearby suspected planetary nebula named Peterson 1. Thirteen years later, further study revealed this wasn’t a nebula at all but evidence of a symbiotic star. Symbiotic stars are a true rarity—not a single star at all but a binary system. A red giant dumps mass toward a white dwarf in the form of an accretion disk. When this reaches critical mass, it then causes a thermonuclear explosion, resulting in a planetary nebula. Although no evidence exists that this object is located within metal-rich NGC 6401, just being able to see it in the same field makes this journey both unique and exciting!

Sunday, July 26, 2009 – On this date in 1969 in a vacuum-sealed room, the very first sample return of Moon rocks was studied.

Our own vacuum of space awaits as we view the area around Mare Crisium to have a look at this month’s lunar challenge—Macrobius.

macrobius

You’ll find it just northwest of the Crisium shore. Spanning 64 kilometers in diameter, this Class I impact crater drops to a depth of nearly 3,600 meters—about the same as many of our Earthly mines. Its central peak rises to 1,100 meters and may be visible as a small speck inside the crater’s interior. Be sure to mark your lunar challenge lists, and look for other features you may have missed before!

Omicron_OphSince the moonlight will now begin to interfere with our globular cluster studies, let’s waive these for a while as we take a look at some of the region’s most beautiful stars. Tonight your goal is to locate Omicron Ophiuchi, about a finger-width northeast of Theta (RA 17 18 00 Dec –24 17 02). At a distance of 360 light-years, the Omicron system is easily split by even small telescopes. The primary star is slightly dimmer than magnitude 5 and appears yellow to the eye. The secondary is near 7th magnitude and tends to be more orange in color. This wonderful star is on many doubles’ observing lists, so be sure to note it!

Jup_by_Sean_09-07-21_03-46Are you wanting to keep an eye out for those dark markings of the Jupiter impact, too? Well, they’re there! Just remember if you’re new to astronomy that features on Jupiter rotate as the planet turns and we’re turning, too. Seeing the new “spots” requires some calculations and these areas will rotate into meridian view about 2 hours and 6 minutes after the Great Red Spot makes an appearance. Also remember that our own atmospheric seeing conditions play a great role as well! If it just so happens the dark spots will be making their appearance will Jupiter is still very low on the horizon, chances are your luck with seeing them in a small telescope won’t be high. But, don’t let that discourage you from looking! It doesn’t take long for a planet to rise to good observing height and the spots will stay visible for several hours as they rotate in and out on either side of your computed appearance time. (And don’t forget galiean moon shadow transits can also cause dark markings… but these will be very round!)

Until next week? Enjoy your observations and keep reaching for the stars!

This week’s awesome images are (in order of appearance): Henri Deslandres (historical image), IC 4665 (credit—Palomar Observatory, courtesy of Caltech), Vendelinus (credit—Alan Chu), NGC 6401 (credit—Palomar Observatory, courtesy of Caltech), Macrobius on the edge of Crisium (credit—Greg Konkel) Omicron Ophiuchi (credit—Palomar Observatory, courtesy of Caltech) and Jupiter (credit-Sky & Telescope: Sean Walker). We thank you so much!

July 22, 2009 Total Solar Eclipse from China – Let’s Chase!

Eclipse from Chongqing Municipality (Xinhua/Liu Chan)

[/caption]

The total solar eclipse which just occurred on the 22nd of July 2009 was the longest maximum duration of the 21st century. Not since Saros 1991 have astronomers and eclipse chasers been treat to such an event! Totality lasted over six and a half minutes at maximum. duration. The event started in India along the western shore near Surat moved towards Butan and reached the southern tip of Nepal and the northern edge of Bangladesh.

U138P200T1D257531F1487DT20090722004103For other lucky astronomers like Vietnamese student Dang Anh Tuan at Hanoi National University of Education, the eclipse path also took the event over cities like Chengdu, Suining, Chonging, Wuhan, Xiaogan, Hangzhou, and Shanghai – and event which yielded five minutes of totality. Leaving Shanghai the shadow path raced across the ocean, to fall across islands such as Toshima and Akusaki south of Japan and eventually the Marshall islands. Where was the longest point? The maximum eclipse duration of 6 minutes and 43 seconds occurs far off the coast in the Pacific Ocean! Are you ready to become an eclipse chaser? Then follow me…

fish_eclipseI’ve always wanted to go on an eclipse chasing journey, but I’m afraid I’ll never quite be rich or well enough, unless it happens somewhere near me. But, my world is one that is both large and very small at the same time… And filled with wonderful friends from every corner. Bill Fish of Lubrizol Advanced Materials made my day by sending me some photos shared by their employees immediately after the eclipse had ended.

pic01599Seeing such incredible beauty, like this image of Bailey’s Beads taken in Chong Qing, and in just a few hours meeting great people like Jessica Bian, Kelly Zhou, Jun-Sheng Cao, Leo Chi, Mars Meng, Lucy Wang and Helen Tong felt so wonderful. Truly astronomy is a language we all speak! By roughly 9:00 in the morning, this is what they would have seen from their office windows or rooftops. Can you imagine what an exciting day it must have been?!

U1775P346T8D117254F4336DT20090722102131Well, needless to say, once I saw something like that, all my worries and cares for the day seemed so small. Even though I couldn’t leave my desk, the marvelous opportunity for me to become an eclipse chaser had just opened up like a fortune cookie right before my eyes. It was time for me to learn Chinese… and check out this awesome video done by Hubei Jingmen!

But he wasn’t alone… And neither was I. Millions of folks all over China were witnessing the eclipse and with each video I felt more and more like I was there, too.

“In the Zhejiang Haining, huge amounts of people were out to observe the wonderful total solar eclipse. The observation person is sea of people. But two big marvelous sight’s secret directions are the Sun, the Earth and the Moon…. “three meet”.”

U1775P346T8D117275F4336DT20090722111501Now, let’s travel to Beijing where the sky was enveloped in mist. Despite the weather, some 200 astronomy watchers queued in front of the Beijing Astronomical Observatory at 6:30 a.m. Staff at the observatory said the eclipse had sparked interest in astronomy. Yang Jing, a high-school student from Urumqi said. “I didn’t expect such a big crowd to watch the eclipse!”

Our next video comes from Chengdu… You can imagine the city stopping for just a moment to look skyward. “As soon as the totality happened, the clouds closed in so we couldn’t see the corona. That’s a pity,” said Zhen Jun, a man whose work unit had given the day off for the spectacle.

U1775P346T8D117250F4336DT20090722101124Now we move on to Hangzhou… When thousands of people thronged outdoors for the longest total solar eclipse of the 21st century, animals at the zoo in east China’s Hangzhou City also reacted, quickly and confusedly. The shadow of the moon disoriented birds whose body clock and direction depend on the sun. Red-crowned cranes and flamingos that had been wandering or drinking water suddenly fell asleep during the brief blackout of eclipse. But when the sun rays came out again several minutes later, the birds emerged from their cages and started the life of another “day.”

U1775P346T8D117269F4336DT20090722104609Even though I don’t understand a word of Chinese, I understand every word of “human”. Listen to them… Listen to the people talk and the children! How I wish I were there, too! Said Kang Hui:“The celestial phenomenon was a marvelous sight”. Are you ready to move again and follow the shadow? Then, let’s take a trip to Shanxi Linfen…

Now, I’ll race you to Hong Kong! Hundreds of people thronged into the Hong Kong Space Museum Wednesday morning for the Partial Solar Eclipse Observation activity. The public watched the eclipse using telescopes equipped with a safe filtering system and projection under guidance provided by the Space Museum.

Gosh, some of that footage feels like you could just reach right out and wrap your hand around that Moon, doesn’t it? Now let’s head to the middle of Anhui Yi County…

U1775P346T8D117247F4336DT20090722100206This one where you can see the corona dazzling is simply extraordinary. Can you imagine what it would feel like to be able to see this in real life? Come on… Let’s continue our eclipse chasing trip to Shanghai! It was raining in Shanghai when the total eclipse occurred at 9:35 a.m. The city put extra police on streets, and more than 30 police vessels patrolled the coast. Only street lamps were left on, as the city turned off all landscape lighting to allow people to watch the solar eclipse.

U1775P346T8D117244F4336DT20090722095918In Shanghai, more than 4,000 people ended up in suburban Yuehu Park of Sheshan Observatory and Yangshan Deep Water Port, two prime spots in the city, to observe the eclipse. Shanghai Science Hall also organized a public viewing session in downtown Fuxing Park and seventeen observation stations were set up in the solar eclipse path from Yunnan province to Zhejiang province.

Now we travel to the Henan Luoyang and say hello to these great kids and their equally excited parents and grandparents as we catch a partial eclipse.

“Luoyang’s light rain was intermittent, in the morning about 10:45, the Sun opened out the cloud layer to reveal the face of what was to come. The residents might see the partial solar eclipse! This kind of picture has not been seen here for a very long time. The Henan Luoyang partial solar eclipse looks just like the raging fire phoenix raising slowly.”

Shall we continue to Taiwan? Then grab us a cup of coffee and I will meet you at the Taibei Municipal Astronomy Scientific Culture Hall.

Shall we travel to Shenyang? This was also a partial solar eclipse location, but witnesses said the Moon “seemed like it was curved”.

Now, come with us to Ningbo. This one is so beautiful I wept when I saw it…

“This morning we just watched the total solar eclipse, which happens every 500 years. When the whole sun is blacken by the Moon. Everyone is highly excited. It’s pity I forgot to bring the camera by my side and the moment is passed away soon. But I am still lucky to see the sight. 500 years……how significant!”

U1775P346T8D117273F4336DT20090722110358When I was a child, I was charmed by a story about Ping the Duck, who lived on the Yangtze River. The last of the hundreds of videos I have watched today that I’d like to share with you is part of the Yangtze River collection.

Enjoy this beautiful composite image taken by Yang Lei at a park in southwest China’s Chongqing Municipality. It has been my most wonderful pleasure over the day to spend time in the East…

U138P200T1D257701F14DT20090722185640

Chasing the Sun!

Solar eclipse occurring over Taipei of southeast China's Taiwan
Solar eclipse occurring over Taipei of southeast China's Taiwan

My many thanks to Bill Fish for getting me started, Jessica Bian for investigating and translating and the wonderful people at Sina for sharing!