For many of us, it’s easier to comprehend complex processes when they are expressed visually. That was the impetus for artist Gary Schroeder in creating this wonderful hand-sketched infographic for NASA’s Exploration Flight Test 1 (EFT-1) for the Orion spacecraft.
“Being very interested in the follow-on program to the Shuttle, I wanted to pay close attention to exactly what was going to happen during the Orion launch from liftoff to splashdown,” Schroeder told Universe Today. “Drawing on my experience in sketchnoting (the practice of taking notes using both words and drawings), I thought an infographic-style sketchnote of EFT-1 would be fun to make. I made one study sketch in the morning based on some quick internet research, let it percolate in my head during the day, and came home after work to render a final version.”
Schroeder created the original artwork in pencil, then scanned it and colorized it in Photoshop.
He uploaded it to Flickr just yesterday and it already has nearly 14,000 views. “It’s been exciting for me to see so much interest in this drawing,” he said.
This just proves that sometimes a little bit of ‘throwback’ goes great with technology!
Wind gusts, an issue with valves on the Delta IV Heavy rocket, and an errant cruise ship all contributed to scrub the scheduled maiden test fight of NASA’s Orion spacecraft.
The launch team has tentatively rescheduled a new liftoff time of 7:05 a.m. EST on Friday, December 5 as the opening of a 2-hour, 39 minute window. Launch coverage will begin at 6 a.m. EST tomorrow on NASA TV. However, forecasts call for just 40% chance of acceptable weather conditions on Friday.
The test flight was scheduled from Launch Complex 37 at Cape Canaveral Air Force Station for a four-and-a-half-hour test flight of an uncrewed Orion spacecraft to Earth orbit. The countdown was halted twice when wind gusts exceeded limits. The countdown was also delayed when a boat entered restricted waters off the coast near the Launchpad.
Then, during a third launch attempt an issue with propellant valves on the Delta 4 Heavy’s first stage could not be resolved before the launch window closed.
The planned two-orbit Exploration Flight Test 1 (EFT-1) flight around Earth will lift the Orion spacecraft and it’s attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years. It will test several key systems on Orion, including electronics, the heat shield and parachutes.
Universe Today’s Ken Kremer is on hand in Florida and will provide continuing coverage of the test flight. You can also follow NASA’s Orion Blog for updates.
If it’s good enough for a Boeing 787, it’s gotta be good enough for space, right? NASA’s Orion spacecraft — poised for its first uncrewed flight on Thursday (Dec. 4) — will eventually include a “glass cockpit” that will make it easier for astronauts to step across the Solar System, based on the passenger jet avionics.
Why go for glass over switches? The huge benefit is weight (which means less fuel expended to heft the spacecraft), according to the NASA video above.
“One big benefit is the weight savings because you don’t need to have a physical switch,” said astronaut Lee Morin, who was involved in the design, in the video. “With a physical switch, not only is there the weight of the switch, but you also have the weight of the wire to the switch, and you have to have the weight of the circuity that takes that wire and feeds it into the vehicle computers.”
This means that the new spacecraft will sport only 60 physical switches for the astronauts to control (the video did not specify what they would do), which could also be simpler in terms of usability.
The cockpit, however, is not quite ready for prime-time. Although Exploration Test Flight-1 (ETF-1) will have most of the Orion systems included in the crew portion, the glass cockpit will not be among them, according to the flight’s press kit. “The only crew module systems that will not fly on this vehicle are the environmental control and life support system; and the crew support systems such as displays, seats and crew-operable hatches,” it reads.
But there will be more testing ahead. Orion is slated to run its next flight in about 2017 or 2018, which could include a more complete spacecraft at that time. Meanwhile, people are already starting to gather for the test flight, which will see the deepest space exploration by a crew capsule since the Apollo era. Orion will roar into space and return for a high-speed re-entry to make sure that heat shield works when NASA sticks people inside.
It’s a dangerous universe out there, for a budding young space-faring species.
Killer comets, planet sterilizing gamma ray bursts, and death rocks from above are all potential hazards that an adolescent civilization has to watch out for.
This week offers two close shaves, as newly discovered Near Earth Asteroids (NEAs) 2014 WC201 and 2014 WX202 pass by the Earth-Moon system.
The passage of 2014 WC201 is coming right up tonight, as the 27-metre space rock passes about 570,000 kilometres from the Earth. That’s 1.4 times farther than the distance from the Earth to the Moon.
And the good news is, the Virtual Telescope Project will be bringing the passage of 2014 WC201 live tonight starting at 23:00 Universal Time/6:00 PM EST.
Shining at an absolute magnitude of +26, 2014 WC201 will be visible as a +13 apparent magnitude “star” at closest approach at 4:51 UT (December 2nd)/11:51 PM EST (December 1st) moving through the constellation Ursa Major. This puts it within range of a large backyard telescope, though the 80% illuminated waxing gibbous Moon will definitely be a mitigating factor for observation.
The JPL Horizons ephemerides generator is an excellent place to start for crafting accurate coordinates for the asteroid for your location.
At an estimated 27 metres/81 feet in size, 2014 WC201 will no doubt draw “house-sized” or “building-sized” comparisons in the press. Larger than an F-15 jet fighter, asteroids such as WC201 cry out for some fresh new descriptive comparisons. Perhaps, as we near a “Star Wars year” in 2015, we could refer to 2014 WC201 as X-wing sized?
Another Apollo NEO also makes a close pass by the Earth this week, as 6-metre 2014 WX202 passes 400,000 kilometres (about the same average distance as the Earth to the Moon) from us at 19:56 UT/2:56 PM EST on December 7th. Though closer than WC201, WX202 is much smaller and won’t be a good target for backyard scopes. Gianluca Masi over at the Virtual Telescope Project also notes that WX202 will also be a difficult target due to the nearly Full Moon later this week.
The last Full Moon of 2014 occurs on December 6th at 6:26 AM EST/11:26 Universal Time.
2014 WX202 has also generated some interest in the minor planet community due to its low velocity approach relative to the Earth. This, coupled with its Earth-like orbit, is suggestive of something that may have escaped the Earth-Moon system. Could WX202 be returning space junk or lunar ejecta? It’s happened before, as old Apollo hardware and boosters from China’s Chang’e missions have been initially identified as Near Earth Asteroids.
The Earth also occasionally hosts a temporary “quasi-moon,” as last occurred in 2006 with the capture of RH120. 2014 WX202 makes a series of more distant passes in the 2030s, and perhaps it will make the short list of near Earth asteroids for humans to explore in the coming decades.
And speaking of which, humanity is making two steps in this direction this week, with two high profile space launches.
First up is the launch of JAXA’s Hayabusa 2 from the Tanegashima Space Center on December 3rd at 4:22 UT/11:22 PM EST. The follow up to the Hayabusa asteroid sample return mission, Hayabusa 2 will rendezvous with asteroid 1999 JU3 in 2018 and return samples to Earth in late 2020. The vidcast for the launch of Hayabusa 2 goes live at 3:00 UT/10:00 PM EST on Tuesday, December 2nd.
And the next mission paving the way towards first boot prints on an asteroid is the launch of a Delta 4 Heavy rocket with EFT-1 from Cape Canaveral this Thursday morning on December 4th near sunrise at 7:05 AM EST/12:05 UT. EFT-1 is uncrewed, and will test key technologies including reentry on its two orbit flight. Expect to see crewed missions of Orion to begin around 2020, with a mission to an Earth crossing asteroid sometime in the decade after that.
And there are some decent prospects to catch sight of EFT-1 on its first pass prior to its orbit raising burn over the Atlantic. Assuming EFT-1 lifts off at the beginning of its launch window, western Australia may see a good dusk pass 55 minutes after liftoff, and the southwestern U.S. may see a visible pass at dawn about 95 minutes after EFT-1 leaves the pad.
We’ll be tracking these prospects as the mission evolves on launch day via Twitter, and NASA TV will carry the launch live starting at 4:30 AM EST/9:30 UT.
The Orion capsule will come in hot on reentry at a blistering 32,000 kilometres per hour over four hours after liftoff in a reentry reminiscent of the early Apollo era.
Of course, if an asteroid the size of WC201 was on a collision course with the Earth it could spell a very bad day, at least in local terms. For comparison, the 2013 Chelyabinsk meteor was estimated to be 18 metres in size, and the 1908 Tunguska impactor was estimated to be 60 metres across. And about 50,000 years ago, a 50 metre in diameter space rock came blazing in over the ponderosa pine trees near what would one day be the city of Flagstaff, Arizona to create the 1,200 metre diameter Barringer Meteor Crater you can visit today.
All the more reason to study hazardous space rocks and the technology needed to reach one in the event that we one day need to move one out of the way!
Video Caption: Animation details NASA’s Orion Exploration Flight Test-1 (EFT-1) mission launching on Dec. 4. 2014. Credit: NASA
It’s not Science Fiction! It’s Not Star Trek!
No. It’s a really, really big NASA Mission! It’s Orion!
In fact, it’s the biggest and most important development in US Human Spaceflight since the end of the Space Shuttle Program in 2011.
Orion is launching soon on its first flight, the pathfinding Exploration Flight Test-1 (EFT-1) mission and sets NASA on the path to send humans to Mars in the 2030s.
Watch this cool NASA animation beautifully detailing every key step of Orion’s First Launch!
Orion is designed to take humans farther than they’ve ever gone before. Even farther into deep space than NASA’s Apollo moon landing which ended more than four decades ago!
We are T-MINUS 4 Days and Counting to the inaugural blastoff of Orion as of today, Sunday, November 30, 2014.
To learn even more about the 8 major events and goals happening during Orion’s EFT-1 mission be sure to check out my recent story with NASA’s fabulous new set of infographics – here.
Every aspect of the final processing steps now in progress by engineers and technicians from NASA, rocket provider United Launch Alliance, and Orion prime contractor Lockheed Martin is proceeding smoothly and marching towards launch.
Orion will lift off on a United Launch Alliance Delta IV Heavy rocket on its inaugural test flight to space on the uncrewed Exploration Flight Test-1 (EFT-1) mission at 7:05 a.m. EST on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
The two-orbit, four and a half hour Orion EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
EFT-1 will test the rocket, second stage, jettison mechanisms as well as avionics, attitude control, computers and electronic systems inside the Orion spacecraft.
Then the spacecraft will carry out a high speed re-entry through the atmosphere at speeds approaching 20,000 mph and scorching temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.
Orion is NASA’s next generation human rated vehicle that will carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.
NASA TV will provide several hours of live coverage
Watch for Ken’s ongoing Orion coverage and he’ll be onsite at KSC in the days leading up to the historic launch on Dec. 4.
Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.
At T MINUS 1 Week on this Thanksgiving Holiday, all launch processing events remain on track for the first blast off of NASA’s new Orion crew vehicle on Dec. 4, 2014 which marks the first step on the long road towards sending Humans to Mars in the 2030s.
Orion will lift off on a United Launch Alliance Delta IV Heavy rocket on its inaugural test flight to space on the uncrewed Exploration Flight Test-1 (EFT-1) mission at 7:05 a.m. EST on December 4, 2014 from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
Technicians and engineers installed Orion’s batteries and have been conducting a thorough checkout of all the electrical and battery connections between the crew module, service module and Delta IV Heavy second stage while working inside the mobile service tower at pad 37.
There is some margin time available in the schedule in case additional testing and checkouts are required.
Orion’s launch window opens at 7:05 a.m. EST on Dec. 4 at the beginning of a launch window that extends 2 hours, 39 minutes.
One week ago, top NASA and Lockheed Martin managers gave the “GO” to continue with launch preparations after the vehicle passed the Flight Readiness Review (FRR) on Thursday, Nov. 20.
This past week the doors of the Mobile Servicing Tower (MST) at pad 37 were opened to reveal the Orion spacecraft stack atop the Delta IV Heavy that will carry the spacecraft into orbit.
The Delta IV Heavy is the world’s most powerful rocket.
The MST will be rolled back from the rocket stack on Wednesday evening, Dec. 3 starting 8 hours, 15 minutes before launch to allow the rocket to be fueled and continue into the final stage of launch operations and the countdown to liftoff on Thursday morning Dec. 4.
I’ll be at the pad during MST rollback reporting live for Universe Today.
The two-orbit, four and a half hour Orion EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
Orion is NASA’s next generation human rated vehicle that will carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars and other destinations in our Solar System.
Watch for Ken’s ongoing Orion coverage and he’ll be onsite at KSC in the days leading up to the historic launch on Dec. 4.
Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.
As the space community counts down the days to the long-awaited Dec. 4 uncrewed launch of the Orion spacecraft — that vehicle that is supposed to bring astronauts into the solar system in the next decade — NASA is already thinking ahead to the next space test in 2017 or 2018.
Riding atop the new Space Launch System rocket, if all goes to plan, will be a suite of CubeSats that will explore the Moon as Orion makes its journey out to our largest closest celestial neighbor. NASA announced details of the $5 million “Cube Quest” challenge yesterday (Nov. 24).
CubeSats are tiny satellites that are so small that they are often within the reach of universities and similar institutions that want to perform science in space without the associated cost of operating a huge mission. The concept has been so successful that some companies are basing their entire business model on it, such as Planet Labs — a company that is performing Earth observations with the small machines.
The competition will be divided into several parts, including a ground tournament to see if the CubeSats can fly on the SLS, a lunar derby to ensure they can communicate at a distance of 10 times the Earth-moon distance, and a deep-space derby to put the CubeSat in a “stable lunar orbit” and work well there.
“The Cube Quest Challenge seeks to develop and test subsystems necessary to perform deep space exploration using small spacecraft. Advancements in small spacecraft capabilities will provide benefits to future missions and also may enable entirely new mission scenarios, including future investigations of near-Earth asteroids,” NASA stated.
After a decade of hard work, numerous twists and turns, and ups and downs, NASA’s new Orion deep space crew vehicle is finally, and officially, marching towards its maiden blastoff in less than two week’s time.
The Orion spacecraft cleared one of the final hurdles to its first launch when top managers from NASA and Lockheed Martin successfully completed a key review of the vehicle’s systems ahead of the looming Dec. 4 flight test.
Orion passed the Flight Readiness Review (FRR) on Thursday, Nov. 20, and officials announced that the spacecraft is “GO” for proceeding on the road to launch – and one day on to Mars!
The FRR is a rigorous assessment of the spacecraft, its systems, mission operations, and support functions needed to successfully complete Orion’s first voyage to space.
Lockheed Martin is the prime contractor for Orion and recently completed its fabrication in the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center in September 2014.
Orion will lift off on a Delta IV Heavy rocket on its inaugural test flight to space on the uncrewed Exploration Flight Test-1 (EFT-1) mission at 7:05 a.m. EST on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
The United Launch Alliance Delta IV Heavy rocket is the world’s most powerful rocket and the only booster sufficiently powerful to launch the 50,000 pound Orion EFT-1 spacecraft to orbit.
The rocket was transported to pad 37 in late September. Then, on Nov. 12, this path finding Orion spacecraft was itself rolled out to the launch pad and hoisted and bolted atop the Delta IV Heavy.
The critical December test flight will pave the way for the first human missions to deep space in more than four decades since NASA’s Apollo moon landing missions ended in 1972.
To learn more about the major events and goals happening during Orion’s EFT-1 mission be sure to check out NASA’s cool new set of infographics explaining the 8 key events in my story – here.
The two-orbit, four and a half hour Orion EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
EFT-1 will test the rocket, second stage, jettison mechanisms, as well as avionics, attitude control, computers, and electronic systems inside the Orion spacecraft.
Then the spacecraft will carry out a high speed re-entry through the atmosphere at speeds approaching 20,000 mph and scorching temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.
Orion is NASA’s next generation human rated vehicle that will carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.
Watch for Ken’s ongoing Orion coverage and he’ll be onsite at KSC in the days leading up to the historic launch on Dec. 4.
Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.
If you wanna get humans to Mars, there are so many technical hurdles in the way that it will take a lot of hard work. How to help people survive for months on a hostile surface, especially one that is bathed on radiation? And how will we keep those people safe on the long journey there and back?
NASA is greatly concerned about the radiation risk, and is asking the public for help in a new challenge as the agency measures radiation with the forthcoming uncrewed Orion test flight in December. There’s $12,000 up for grabs across at least a few awards, providing you get your ideas into the agency by Dec. 12.
“One of the major human health issues facing future space travelers venturing beyond low-Earth orbit is the hazardous effects of galactic cosmic rays (GCRs),” NASA wrote in a press release.
“Exposure to GCRs, immensely high-energy radiation that mainly originates outside the solar system, now limits mission duration to about 150 days while a mission to Mars would take approximately 500 days. These charged particles permeate the universe, and exposure to them is inevitable during space exploration.”
Here’s an interesting twist, too — more data will come through the Orion test flight as the next-generation spacecraft aims for a flight 3,600 miles (5,800 kilometers) above Earth’s surface. That’s so high that the vehicle will go inside a high-radiation environment called the Van Allen Belts, which only the Apollo astronauts passed through in the 1960s and 1970s en route to the Moon.
While a flight to Mars will also just graze this area briefly, scientists say the high-radiation environment will give them a sense of how Orion (and future spacecraft) perform in this kind of a zone. So the spacecraft will carry sensors on board to measure overall radiation levels as well as “hot spots” within the vehicle.
You can find out more information about the challenge, and participation details, at this link.
After moving out to the launch pad earlier this week, NASA’s first Orion spacecraft was hoisted atop the most powerful rocket in the world and awaits blastoff from Cape Canaveral, Florida, in early December on a critical test flight that will pave the way for human missions to deep space for the first time in more than four decades since NASA’s Apollo moon landing missions ended in 1972.
NASA’s cool new set of infographics above and below explain 8 key events on Orion’s Exploration Flight Test-1 (EFT-1) mission and its first trip to orbit and back.
Orion will lift off on a Delta IV Heavy rocket on its inaugural test flight to space on the uncrewed EFT-1 mission at 7:05 a.m. EST on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
The two-orbit, four and a half hour Orion EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
EFT-1 will test the rocket, second stage, jettison mechanisms, as well as avionics, attitude control, computers, and electronic systems inside the Orion spacecraft.
Then the spacecraft will carry out a high speed re-entry through the atmosphere at speeds approaching 20,000 mph and scorching temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.
Here’s what Orion’s ocean splashdown and recovery by Navy divers will look like:
Orion is NASA’s next generation human rated vehicle that will carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.
The United Launch Alliance Delta IV Heavy rocket is the world’s most powerful rocket. The triple barreled Delta IV Heavy booster is the only rocket sufficiently powerful to launch the 50,000 pound Orion EFT-1 spacecraft to orbit.
The first stage of the mammoth Delta IV Heavy generates some 2 million pounds of liftoff thrust.
Watch for Ken’s Orion coverage, and he’ll be at KSC for the historic launch on Dec. 4.
Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.