Astronomy Without A Telescope – Gravity Probe B

Gravity Probe B - testing the null hypothesis that the spin axis of a gyroscope should stay aligned with a distant reference point when it's in a free fall orbit. But Einstein says no.

[/caption]

There’s a line out of an early episode of The Big Bang Theory series, where Gravity Probe B is described as having seen ‘glimpses’ of Einstein’s predicted frame-dragging effect. In reality, it is not entirely clear that the experiment was able to definitively distinguish a frame-dragging effect from a background noise created by some exceedingly minor aberrations in its detection system.

Whether or not this counts as a glimpse – frame-dragging (the alleged last untested prediction of general relativity) and Gravity Probe B have become linked in the public consciousness. So here’s a quick primer on what Gravity Probe B may or may not have glimpsed.

The Gravity Probe B satellite was launched in 2004 and set into a 650 kilometer altitude polar orbit around the Earth with four spherical gyroscopes spinning within it. The experimental design proposed that in the absence of space-time curvature or frame-dragging, these gyroscopes moving in a free fall orbit should spin with their axis of rotation unerringly aligned with a distant reference point (in this case, the star IM Pegasi).

To avoid any electromagnetic interference from the Earth’s magnetic field, the gyroscopes were housed within a lead-lined thermos flask – the shell of which was filled with liquid helium. This shielded the instruments from external magnetic interference and the cold enabled superconductance within the detectors designed to monitor the gyroscopes’ spin.

Slowly leaking helium from the flask was also used as a propellant. To ensure the gyroscopes remained in free fall in the event that the satellite encountered any atmospheric drag – the satellite could make minute trajectory adjustments, essentially flying itself around the gyroscopes to ensure they never came in to contact with the sides of their containers.

Now, although the gyroscopes were in free fall – it was a free fall going around and around a space-time warping planet. A gyroscope moving at a constant velocity in fairly empty space is also in a ‘weightless’ free fall – and such a gyroscope could be expected to spin indefinitely about its axis, without that axis ever shifting. Similarly, under Newton’s interpretation of gravity – being a force acting at a distance between massive objects – there is no reason why the spin axis of a gyroscope in a free fall orbit should shift either.

But for a gyroscope moving in Einstein’s interpretation of a steeply curved space-time surrounding a planet, its spin axis should ‘lean over’ into the slope of space-time. So over one full orbit of the Earth, the spin axis will end up pointing in a slightly different direction than the direction it started from – see the animation at the end of this clip. This is called the geodetic effect – and Gravity Probe B did effectively demonstrate this effect’s existence to within only a 0.5% likelihood that the data was showing a null effect.

But, not only is Earth a massive space-time curving object, it also rotates. This rotation should, theoretically, create a drag on the space-time that the Earth is embedded within. So, this frame-dragging should tug something that’s in orbit forward in the direction of the Earth’s rotation.

Where the geodetic effect shifts a polar-orbiting gyroscope’s spin axis in a latitudinal direction – frame-dragging (also known as the Lense-Thirring effect), should shift it in a longitudinal direction.

The expected outcome. Orbiting through warped space-time shifts the spin axis of an gyroscope. But the anticipated frame-dragging shift has proved difficult to detect.

And here is where Gravity Probe B didn’t quite deliver. The geodetic effect was found to shift the gyroscopes spin axis by 6,606 milliarcseconds per year, while the frame-dragging effect was expected to shift it by 41 milliarcseconds per year. This much smaller effect has been difficult to distinguish from a background noise arising from minute imperfections existing within the gyroscopes themselves. Two key problems were apparently a changing polhode path and larger than expected manifestation of a Newtonian gyro torque – or let’s just say that despite best efforts, the gyroscopes still wobbled a bit.

There is ongoing work to laboriously extract the expected data of interest from the noisy data record, via a number of assumptions which might yet be subject to further debate. A 2009 report boldly claimed that the frame-dragging effect is now plainly visible in the processed data – although the likelihood that the data represents a null effect is elsewhere reported at 15%. So maybe glimpsed is a better description for now.

Incidentally, Gravity Probe A was launched back in 1976 – and in a two hour orbit effectively confirmed Einstein’s redshift prediction to within 1.4 parts in 10,000. Or let’s just say that it showed that a clock at 10,000 km altitude was found to run significantly faster than a clock on the ground.

Further reading: The Gravity Probe B experiment in a nutshell.

Hunt for Dark Matter Closes in at the LHC

The Large Hadron Collider’s Compact Muon Solenoid (CMS) detector. Credit: CMS Collaboration/CERN

[/caption]

From an Imperial College London press release:

Physicists say they are closer than ever to finding the source of the Universe’s mysterious dark matter, following a better than expected year of research at the Compact Muon Solenoid (CMS) particle detector, part of the Large Hadron Collider (LHC) at CERN in Geneva.

The scientists have now carried out the first full run of experiments that smash protons together at almost the speed of light. When these sub-atomic particles collide at the heart of the CMS detector, the resultant energies and densities are similar to those that were present in the first instants of the Universe, immediately after the Big Bang some 13.7 billion years ago. The unique conditions created by these collisions can lead to the production of new particles that would have existed in those early instants and have since disappeared.

The researchers say they are well on their way to being able to either confirm or rule out one of the primary theories that could solve many of the outstanding questions of particle physics, known as Supersymmetry (SUSY). Many hope it could be a valid extension for the Standard Model of particle physics, which describes the interactions of known subatomic particles with astonishing precision but fails to incorporate general relativity, dark matter and dark energy.

In particle physics, supersymmetry is a symmetry that relates elementary particles of one spin to other particles that differ by half a unit of spin and are known assuperpartners. In a theory with unbroken supersymmetry, for every type of boson there exists a corresponding type of fermion with the same mass and internal quantum numbers, and vice-versa.

Dark matter is an invisible substance that we cannot detect directly but whose presence is inferred from the rotation of galaxies. Physicists believe that it makes up about a quarter of the mass of the Universe whilst the ordinary and visible matter only makes up about 5% of the mass of the Universe. Its composition is a mystery, leading to intriguing possibilities of hitherto undiscovered physics.

Professor Geoff Hall from the Department of Physics at Imperial College London, who works on the CMS experiment, said, “We have made an important step forward in the hunt for dark matter, although no discovery has yet been made. These results have come faster than we expected because the LHC and CMS ran better last year than we dared hope and we are now very optimistic about the prospects of pinning down Supersymmetry in the next few years.”

The energy released in proton-proton collisions in CMS manifests itself as particles that fly away in all directions. Most collisions produce known particles but, on rare occasions, new ones may be produced, including those predicted by SUSY – known as supersymmetric particles, or ‘sparticles’. The lightest sparticle is a natural candidate for dark matter as it is stable and CMS would only ‘see’ these objects through an absence of their signal in the detector, leading to an imbalance of energy and momentum.

In order to search for sparticles, CMS looks for collisions that produce two or more high-energy ‘jets’ (bunches of particles traveling in approximately the same direction) and significant missing energy.

Dr. Oliver Buchmueller, also from the Department of Physics at Imperial College London, but who is based at CERN, said, “We need a good understanding of the ordinary collisions so that we can recognise the unusual ones when they happen. Such collisions are rare but can be produced by known physics. We examined some 3 trillion proton-proton collisions and found 13 ‘SUSY-like’ ones, around the number that we expected. Although no evidence for sparticles was found, this measurement narrows down the area for the search for dark matter significantly.”

The physicists are now looking forward to the 2011 run of the LHC and CMS, which is expected to bring in data that could confirm Supersymmetry as an explanation for dark matter.

The CMS experiment is one of two general purpose experiments designed to collect data from the LHC, along with ATLAS (A Toroidal LHC ApparatuS). Imperial’s High Energy Physics Group has played a major role in the design and construction of CMS and now many of the members are working on the mission to find new particles, including the elusive Higgs boson particle (if it exists), and solve some of the mysteries of nature, such as where mass comes from, why there is no anti-matter in our Universe and whether there are more than three spatial dimensions.

Astronomy Without A Telescope – Time Freeze

Is it ever possible to find yourself in a situation where you see the hands of a clock freeze? Nnnnnnnnnn….

[/caption]

There is a story told about traveling at the speed of light in which you are asked to imagine that you begin by standing in front of a big clock – like Big Ben. You realize that your current perception of time is being informed by light reflected off the face of the clock – which is telling you it’s 12:00. So if you then shoot away at the same speed as that light – all you will continue to see is that clock fixed at 12:00, since you are moving at the same speed that this information is moving. And so you discover that at the speed of light, time essentially stands still.

While there are a number of things wrong with this story – as it happens, one correct thing is that if you were able to travel at the speed of light you would experience no passage of time – although there are several reasons why this is probably an impossible situation to find yourself in.

But nonetheless, if you were able to travel at light speed and not experience the passage of time – then you would have no time available to reassess your situation – indeed there would be no time available for your neurons to fire. So, you might well leave Earth with the image of the clock fixed on your retina, but since your brain has stopped working, this has nothing to do with the information carried in the light beam you are moving along with. Your retina is never refreshed with a new image as long as you stay at the speed of light.

Some insight into special relativity is gained by considering the context of someone who stayed back on Earth. If your light speed trip was aimed at a mirror at Alpha Centauri (4.3 light years away) – then from their perspective, it takes you 8.6 years to go there and bounce back. This is true even though you leave and return with an image of 12:00 stuck on your retina and rightly announce that (from your perspective) no time has passed since your departure.

But moving at light speed and experiencing no passage of time is probably an impossible scenario for we mass-challenged beings. Relativity has it that you possess a proper mass, a proper length and a proper time – which persist regardless of your velocity. If you could survive the G forces to get up to such speeds, then you could happily coast at 99.95% of the speed of light and check your pulse against your watch to find your heart still beating at 72 beats per minute – just like it did back on Earth.

It’s only when you check back with Earth that you see that something remarkable is happening. Moving at 99.5% of the speed of light gives you a time dilation factor of around 10. So while someone back on Earth will still measure your trip duration at about 8.6 years – for you it will only be around 10 months. And with a remarkably good telescope you might look back to Earth and see a distorted Big Ben, red-shifted and running slow on the way there and then blue-shifted and running very fast on the way back.

At speeds of less than 10% of the speed of light (0.1c or 30,000 km/sec) time dilation is miniscule, but from 99% speed of light up it increases asymptotically towards infinite.

One of the reasons that probably makes the experience of light speed/time freeze unobtainable is that time dilation keeps increasing the faster you move. For example, at a speed of 99.99995% of the speed of light you get a time dilation factor of about 1,000. So even if you have a spacecraft with an infinite power source capable of seemingly infinite velocities – you will keep arriving at your destination before your speedometer makes it all the way from 99.99999(etc)% of the speed of light to c = 1.0.

This is perhaps how we will populate the universe – using difficult-to-imagine investments of energy, coupled with the principle of time dilation to cross vast distances. The trick is not to get homesick, because after covering such distances you can never go back – unless it is to meet your very, very, very great grandchildren.

(I have cheated a bit by ignoring any periods of acceleration and deceleration within the journeys described here).

Further reading: Relativity calculator.

Fermi Telescope Catches Thunderstorms Hurling Antimatter into Space

From a NASA press release:

Scientists using NASA’s Fermi Gamma-ray Space Telescope have detected beams of antimatter produced above thunderstorms on Earth, a phenomenon never seen before.

Scientists think the antimatter particles were formed in a terrestrial gamma-ray flash (TGF), a brief burst produced inside thunderstorms and shown to be associated with lightning. It is estimated that about 500 TGFs occur daily worldwide, but most go undetected.

“These signals are the first direct evidence that thunderstorms make antimatter particle beams,” said Michael Briggs, a member of Fermi’s Gamma-ray Burst Monitor (GBM) team at the University of Alabama in Huntsville (UAH). He presented the findings Monday, during a news briefing at the American Astronomical Society meeting in Seattle.
Continue reading “Fermi Telescope Catches Thunderstorms Hurling Antimatter into Space”

Astronomy Without A Telescope – Apparent Superluminal Motion

No immediate plausibility issues with this picture, since the speedometer says 0.8c. Getting it past 1.0c is where it gets tricky.

[/caption]

The recent list of Universe Today’s Top 10 Stories of 2010 included the story Faster than Light Pulsars Discovered – which on further reading made it clear that the phenomenon being studied wasn’t exactly moving faster than light.

Anyhow, this prompted me to look up different ways in which apparent superluminal motion might be generated, partly to reassure myself that the bottom hadn’t fallen out of relativity physics and partly to see if these things could be adequately explained in plain English. Here goes…

1) Cause and effect illusions
The faster than light pulsar story is essentially about hypothetical light booms – which are a bit like a sonic booms, where it’s not the sonic boom, but the sound source, that exceeds the speed of sound – so that individual sound pulses merge to form a single shock wave moving at the speed of sound.

Now, whether anything like this really happens with light from pulsars remains a point of debate, but one of the model’s proponents has demonstrated the effect in a laboratory – see this Scientific American blog post.

What you do is to arrange a line of light bulbs which are independently triggered. It’s easy enough to make them fire off in sequence – first 1, then 2, then 3 etc – and you can keep reducing the time delay between each one firing until you have a situation where bulb 2 fires off after bulb 1 in less time than light would need to travel the distance between bulbs 1 and 2. It’s just a trick really – there is no causal connection between the bulbs firing – but it looks as though a sequence of actions (first 1, then 2, then 3 etc) moved faster than light across the row of bulbs. This illusion is an example of apparent superluminal motion.

There are a range of possible scenarios as to why a superluminal Mexican wave of synchrotron radiation might emanate from different point sources around a rapidly rotating neutron star within an intense magnetic field. As long as the emanations from these point sources are not causally connected, this outcome does not violate relativity physics.

2) Making light faster than light
You can produce an apparent superluminal motion of light itself by manipulating its wavelength. If we consider a photon as a wave packet, that wave packet can be stretched linearly so that the leading edge of the wave arrives at its destination faster, since it is pushed ahead of the remainder of the wave – meaning that it travels faster than light.

However, the physical nature of ‘the leading edge of a wave packet’ is not clear. The whole wave packet is equivalent to one photon – and the leading edge of the stretched out wave packet cannot carry any significant information. Indeed, by being stretched out and attenuated, it may become indistinguishable from background noise.

Also this trick requires the light to be moving through a refractive medium, not a vacuum. If you are keen on the technical details, you can make phase velocity or group velocity faster than c (the speed of light in a vacuum) – but not signal velocity. In any case, since information (or the photon as a complete unit) is not moving faster than light, relativity physics is not violated.

3) Getting a kick out of gain media
You can mimic more dramatic superluminal motion through a gain medium where the leading edge of a light pulse stimulates the emission of a new pulse at the far end of the gain medium – as though a light pulse hits one end of a Newton’s Cradle and new pulse is projected out from the other end. If you want to see a laboratory set-up, try here. Although light appears to jump the gap superluminally, in fact it’s a new light pulse emerging at the other end – and still just moving at standard light speed.

Light faster than light. Left: Stretching the waveform of light can make the leading edge of the wave seem to move faster than light. Right: Gain media can act like a Newton's Cradle, making light seem to jump the gap superluminally.

4) The relativistic jet illusion
If an active galaxy, like M87, is pushing out a jet of superheated plasma moving at close to the speed of light – and the jet is roughly aligned with your line of sight from Earth – you can be fooled into thinking its contents are moving faster than light.

If that jet is 5,000 light years long, it should take at least 5,000 years for anything in it to cross that distance of 5,000 light years. A photon emitted by a particle of jet material at point A near the start of the jet really will take 5,000 years to reach you. But meanwhile, the particle of jet material continues moving towards you nearly as fast as that photon. So when the particle emits another photon at point B, a point near the tip of the jet – that second photon will reach your eye in much less than 5,000 years after the first photon, from point A. This will give you the impression that the particle crossed 5,000 light years from points A to B in much less than 5,000 years. But it is just an optical illusion – relativity physics remains unsullied.

5) Unknowable superluminal motion
It is entirely possible that objects beyond the horizon of the observable universe are moving away from our position faster than the speed of light – as a consequence of the universe’s cumulative expansion, which makes distant galaxies appear to move away faster than close galaxies. But since light from hypothetical objects beyond the observable horizon will never reach Earth, their existence is unknowable by direct observation from Earth – and does not represent a violation of relativity physics.

And lastly, not so much unknowable as theoretical is the notion of early cosmic inflation, which also involves an expansion of space-time rather than movement within space-time – so no violation there either.

Other stuff…
I’m not sure that the above is an exhaustive list and I have deliberately left out other theoretical proposals such as quantum entanglement and the Alcubierre warp drive. Either of these, if real, would arguably violate relativity physics – so perhaps need to be considered with a higher level of skepticism.

Astronomy Without A Telescope – Secular Evolution

M51 - the Whirlpool Galaxy. Credit: NASA

[/caption]

A traditional galaxy evolution model has it that you start with spiral galaxies – which might grow in size through digesting smaller dwarf galaxies – but otherwise retain their spiral form relatively undisturbed. It is only when these galaxies collide with another of similar size that you first get an irregular ‘train-wreck’ form, which eventually settles into a featureless elliptical form – full of stars following random orbital paths rather than moving in the same narrow orbital plane that we see in the flattened galactic disk of a spiral galaxy.

The concept of secular galaxy evolution challenges this notion – where ‘secular’ means separate or isolated. Theories of secular evolution propose that galaxies naturally evolve along the Hubble sequence (from spiral to elliptical), without merging or collisions necessarily driving changes in their form.

While it’s clear that galaxies do collide – and then generate many irregular galaxy forms we can observe – it is conceivable that the shape of an isolated spiral galaxy could evolve towards a more amorphously-shaped elliptical galaxy if they possess a mechanism to transfer angular momentum outwards.

The flattened disk shape of standard spiral galaxy results from spin – presumably acquired during its initial formation. Spin will naturally cause an aggregated mass to adopt a disk shape – much as pizza dough spun in the air will form a disk. Conservation of angular momentum requires that the disk shape will be sustained indefinitely unless the galaxy can somehow lose its spin. This might happen through a collision – or otherwise by transferring mass, and hence angular momentum, outwards. This is analogous to spinning skaters who fling their arms outwards to slow their spin.

Density waves may be significant here. The spiral arms commonly visible in galactic disks are not static structures, but rather density waves which cause a temporary bunching together of orbiting stars. These density waves may be the result of orbital resonances generated amongst the individual stars of the disk.

Left: Density waves may emerge from gravitational resonances generated by the alignment of stars

It has been suggested that a density wave represents a collisionless shock which has a damping effect on the spin of the disk. However, since the disk is only braking upon itself, angular momentum still has to be conserved within this isolated system.

A galactic disk has a corotation radius – a point where stars rotate at the same orbital velocity as the density wave (i.e. a perceived spiral arm) rotate. Within this radius, stars move faster than the density wave – while outside the radius, stars move slower than the density wave.

This may account for the spiral shape of the density wave – as well as offering a mechanism for the outward transfer of angular momentum. Within the radius of corotation, stars are giving up angular momentum to the density wave as they push through it – and hence push the wave forward. Outside the radius of corotation, the density wave is dragging through a field of slower moving stars – giving up angular momentum to them as it does so.

The result is that the outer stars are flung further outwards to regions where they could adopt more random orbits – rather than being forced to conform to the mean orbital plane of the galaxy. In this way, a tightly-bound rapidly spinning spiral galaxy could gradually evolve towards a more amorphous elliptical shape.

Further reading: Zhang and Buta. Density-Wave Induced Morphological Transformation of Galaxies along the Hubble Sequence.

The Moon Helps Radio Astronomers Search for Neutrinos

Radio astronomers get an assist from the Moon. Credit: Ted Jaeger, University of Iowa, NRAO/AUI/NSF

[/caption]

From an NRAO press release:

Seeking to detect mysterious, ultra-high-energy neutrinos from distant regions of space, a team of astronomers used the Moon as part of an innovative telescope system for the search. Their work gave new insight on the possible origin of the elusive subatomic particles and points the way to opening a new view of the Universe in the future.

The team used special-purpose electronic equipment brought to the National Science Foundation’s Very Large Array (VLA) radio telescope, and took advantage of new, more-sensitive radio receivers installed as part of the Expanded VLA (EVLA) project. Prior to their observations, they tested their system by flying a small, specialized transmitter over the VLA in a helium balloon.

In 200 hours of observations, Ted Jaeger of the University of Iowa and the Naval Research Laboratory, and Robert Mutel and Kenneth Gayley of the University of Iowa did not detect any of the ultra-high-energy neutrinos they sought. This lack of detection placed a new limit on the amount of such particles arriving from space, and cast doubt on some theoretical models for how those neutrinos are produced.

Neutrinos are fast-moving subatomic particles with no electrical charge that readily pass unimpeded through ordinary matter. Though plentiful in the Universe, they are notoriously difficult to detect. Experiments to detect neutrinos from the Sun and supernova explosions have used large volumes of material such as water or chlorine to capture the rare interactions of the particles with ordinary matter.

The ultra-high-energy neutrinos the astronomers sought are postulated to be produced by the energetic, black-hole-powered cores of distant galaxies; massive stellar explosions; annihilation of dark matter; cosmic-ray particles interacting with photons of the Cosmic Microwave Background; tears in the fabric of space-time; and collisions of the ultra-high-energy neutrinos with lower-energy neutrinos left over from the Big Bang.

Radio telescopes can’t detect neutrinos, but the scientists pointed sets of VLA antennas around the edge of the Moon in hopes of seeing brief bursts of radio waves emitted when the neutrinos they sought passed through the Moon and interacted with lunar material. Such interactions, they calculated, should send the radio bursts toward Earth. This technique was first used in 1995 and has been used several times since then, with no detections recorded. The latest VLA observations have been the most sensitive yet done.

“Our observations have set a new upper limit — the lowest yet — for the amount of the type of neutrinos we sought,” Mutel said. “This limit eliminates some models that proposed bursts of these neutrinos coming from the halo of the Milky Way Galaxy,” he added. To test other models, the scientists said, will require observations with more sensitivity.

“Some of the techniques we developed for these observations can be adapted to the next generation of radio telescopes and assist in more-sensitive searches later,” Mutel said. “When we develop the ability to detect these particles, we will open a new window for observing the Universe and advancing our understanding of basic astrophysics,” he said.

The scientists reported their work in the December edition of the journal Astroparticle Physics.

Source: NRAO

Astronomy Without A Telescope – Blazar Jets

A 5000 light year long jet observable in optical light from the giant elliptical galaxy M87 - which is not technically a blazar, but only because it's jet isn't more closely aligned with Earth. Credit: ESA/Hubble.

[/caption]

Polar jets are often found around objects with spinning accretion disks – anything from newly forming stars to ageing neutron stars. And some of the most powerful polar jets arise from accretion disks around black holes, be they of stellar or supermassive size. In the latter case, jets emerging from active galaxies such as quasars, with their jets roughly orientated towards Earth, are called blazars.

The physics underlying the production of polar jets at any scale is not completely understood. It is likely that twisting magnetic lines of force, generated within a spinning accretion disk, channel plasma from the compressed centre of the accretion disk into the narrow jets we observe. But exactly what energy transfer process gives the jet material the escape velocity required to be thrown clear is still subject to debate.

In the extreme cases of black hole accretion disks, jet material acquires escape velocities close to the speed of light – which is needed if the material is to escape from the vicinity of a black hole. Polar jets thrown out at such speeds are usually called relativistic jets.

Relativistic jets from blazars broadcast energetically across the electromagnetic spectrum – where ground based radio telescopes can pick up their low frequency radiation, while space-based telescopes, like Fermi or Chandra, can pick up high frequency radiation. As you can see from the lead image of this story, Hubble can pick up optical light from one of M87‘s jets – although ground-based optical observations of a ‘curious straight ray’ from M87 were recorded as early as 1918.

Polar jets are thought to be shaped (collimated) by twisting magnetic lines of force. The driving force that pushes the jets out may be magnetic and/or intense radiation pressure, but no-one is really sure at this stage. Credit: NASA.

A recent review of high resolution data obtained from Very Long Baseline Interferometry (VLBI) – involving integrating data inputs from geographically distant radio telescope dishes into a giant virtual telescope array – is providing a bit more insight (although only a bit) into the structure and dynamics of jets from active galaxies.

The radiation from such jets is largely non-thermal (i.e. not a direct result of the temperature of the jet material). Radio emission probably results from synchrotron effects – where electrons spun rapidly within a magnetic field emit radiation across the whole electromagnetic spectrum, but generally with a peak in radio wavelengths. The inverse Compton effect, where a photon collision with a rapidly moving particle imparts more energy and hence a higher frequency to that photon, may also contribute to the higher frequency radiation.

Anyhow, VLBI observations suggest that blazar jets form within a distance of between 10 or 100 times the radius of the supermassive black hole – and whatever forces work to accelerate them to relativistic velocities may only operate over the distance of 1000 times that radius. The jets may then beam out over light year distances, as a result of that initial momentum push.

Shock fronts can be found near the base of the jets, which may represent points at which magnetically driven flow (Poynting flux) fades to kinetic mass flow – although magnetohydrodynamic forces continue operating to keep the jet collimated (i.e. contained within a narrow beam) over light year distances.

Left: A Xray/radio/optical composite photo of Centaurus A - also not technically a blazar because its jets don't align with the Earth. Credit: X-ray: NASA/CXC/CfA/R.Kraft et al.; Submillimeter: MPIfR/ESO/APEX/A.Weiss et al.; Optical: ESO/WFI. Right: A composite image showing the radio glow from Centaurus A compared with that of the full Moon. The foreground antennas are CSIRO's Australia Telescope Compact Array, which gathered the data for this image.

That was about as much as I managed to glean from this interesting, though at times jargon-dense, paper.

Further reading: Lobanov, A. Physical properties of blazar jets from VLBI observations.

Hawking(ish) Radiation Observed

In 1974, Steven Hawking proposed a seemingly ridiculous hypothesis. Black holes, the gravitational monsters from which nothing escapes, evaporate. To justify this, he proposed that pairs of virtual particles in which one strayed too close to the event horizon, could be split, causing one particle to escape and become an actual particle that could escape. This carrying off of mass would take energy and mass away from the black hole and deplete it. Due to the difficulty of observing astronomical black holes, this emission has gone undetected. But recently, a team of Italian physicists, led by Francesco Belgiorno, claims to have observed Hawking radiation in the lab. Well, sort of. It depends on your definition.

The experiment worked by sending powerful laser pulses through a block of ultra-pure glass. The intensity of the laser would change the optical properties of the glass increasing the refractive index to the point that light could not pass. In essence, this created an artificial event horizon. But instead of being a black hole which particles could pass but never return, this created a “white hole” in which particles could never pass in the first place. If a virtual pair were created near this barrier, one member could be trapped on one side while the other member could escape and be detected creating a situation analogous to that predicted by Hawking radiation.

Readers with some background in quantum physics may be scratching their heads at this point. The experiment uses a barrier to impede the photons, but quantum tunneling has demonstrated that there’s no such thing as a perfect barrier. Some photons should tunnel through. To avoid detecting these photons, the team simply moved the detector. While some photons will undoubtedly tunnel through, they would continue on the same path with which they were set. The detector was moved 90º to avoid detecting such photons.

The change in position also helped to minimize other sources of false detections such as scattering. At 90º, scattering only occurs for vertically polarized light and the experiment used horizontally polarized light. As a check to make sure none of the light became mispolarized, the team checked to ensure no photons of the emitted wavelength were observed. The team also had to guard against false detections from absorption and re-emission from the molecules in the glass (fluorescence). This was achieved through experimentation to gain an understanding of how much of this to expect so the effects could be subtracted out. Additionally, the group chose a wavelength in which fluorescence was minimized.

After all the removal of sources of error for which the team could account, they still reported a strong signal which they interpreted as coming from separated virtual particles and call a detection of Hawking radiation. Other scientists disagree in the definition. While they do not question the interpretation, others note that Hawking radiation, by definition, only occurs at gravitational event horizons. While this detection is interesting, it does not help to shed light on the more interesting effects that come with such gravitational event horizons such as quantum gravity or the paradox provided by the Trans-Planckian problem. In other words, while this may help to establish that virtual particles like this exist, it says nothing of whether or not they could truly escape from near a black hole, which is a requirement for “true” Hawking radiation.

Meanwhile, other teams continue to explore similar effects with other artificial barriers and event horizons to explore the effects of these virtual particles. Similar effects have been reported in other such systems including ones with water waves to form the barrier.

New Discovery at the Large Hadron Collider?

Image of a 7 TeV proton-proton collision in CMS producing more than 100 charged particles. Credit: CERN

[/caption]

Scientists at the Large Hadron Collider reported today they apparently have discovered a previously unobserved phenomenon in proton-proton collisions. One of the detectors shows that the colliding particles appear to be intimately linked in a way not seen before in proton collisions. The correlations were observed between particles produced in 7 TeV collisions. “The new feature has appeared in our analysis around the middle of July,” physicist Guido Tonelli told fellow CERN scientists at a seminar to present the findings from the collider’s CMS (Compact Muon Solenoid) detector.

The scientists said the effect is subtle and they have performed several detailed crosschecks and studies to ensure that it is real. It bears some similarity to effects seen in the collisions of nuclei at the RHIC facility located at the US Brookhaven National Laboratory, which have been interpreted as being possibly due to the creation of hot dense matter formed in the collisions.

CMS studies the collisions by measuring angular correlations between the particles as they fly away from the point of impact.

The scientists stressed that there are several potential explanations to be considered and the they presented their news to the physics community at CERN today in hopes of “fostering a broader discussion on the subject.”

“Now we need more data to analyze fully what’s going on, and to take our first steps into the vast landscape of new physics we hope the LHC will open up,” said Tonelli.

Proton running at the Large Hadron Collider is scheduled to continue until the end of October, during which time CMS will accumulate much more data to analyze. After that, and for the remainder of 2010, the LHC will collide lead nuclei.

Source: CERN