LHC Scientists Find Three Exotic Particles — and Start Hunting for More

Pentaquark structure
The new pentaquark, illustrated here as a pair of standard hadrons loosely bound in a molecule-like structure, is made up of a charm quark and a charm antiquark and an up, a down and a strange quark (CERN Illustration)

Physicists say they’ve found evidence in data from Europe’s Large Hadron Collider for three never-before-seen combinations of quarks, just as the world’s largest particle-smasher is beginning a new round of high-energy experiments.

The three exotic types of particles — which include two four-quark combinations, known as tetraquarks, plus a five-quark unit called a pentaquark — are totally consistent with the Standard Model, the decades-old theory that describes the structure of atoms.

In contrast, scientists hope that the LHC’s current run will turn up evidence of physics that goes beyond the Standard Model to explain the nature of mysterious phenomena such as dark matter. Such evidence could point to new arrays of subatomic particles, or even extra dimensions in our universe.

Continue reading “LHC Scientists Find Three Exotic Particles — and Start Hunting for More”

The Dream of Faster-than-Light (FTL) Travel: Dr. Harold “Sonny” White and Limitless Space

Ever since astronomers found that Earth and the Solar System are not unique in the cosmos, humanity has dreamed of the day when we might explore nearby stars and settle extrasolar planets. Unfortunately, the laws of physics impose strict limitations on how fast things can travel in our Universe, otherwise known as Einstein’s General Theory of Relativity. Per this theory, the speed of light is constant and absolute, and objects approaching it will experience an increase in their inertial mass (thereby requiring more mass to accelerate further).

While no object can ever reach or exceed the speed of light, there may be a loophole that allows for Faster-Than-Light (FTL) travel. It’s known as the Alcubierre Warp Metric, which describes a warp field that contracts spacetime in front of a spacecraft and expands it behind. This would allow the spacecraft to effectively travel faster than the speed of light while not violating Relativity or causality. For more than a decade, Dr. Harold “Sonny” White has been investigating this theory in the hopes of bringing it closer to reality.

Previously, Dr. White pursued the development of an Alcubierre Warp Drive with his colleagues at the Advanced Propulsion Physics Research Laboratory (NASA Eagleworks) at NASA’s Johnson Space Center. In 2020, he began working with engineers and scientists at the Limitless Space Institute, a non-profit organization dedicated to education, outreach, research grants, and the development of advanced propulsion methods – which they hope will culminate in the creation of the first warp drive!

Continue reading “The Dream of Faster-than-Light (FTL) Travel: Dr. Harold “Sonny” White and Limitless Space”

Why Believing in the Multiverse Isn’t Madness

"Doctor Strange in the Multiverse of Madness"
Doctor Strange is portrayed by Benedict Cumberbatch in "Doctor Strange in the Multiverse of Madness." (Marvel Entertainment)

What is the multiverse? The idea that the universe we inhabit is just one of many parallel universes gets a superhero shout-out in “Doctor Strange in the Multiverse of Madness,” the latest movie based on Marvel comic-book characters.

And in the opinion of Brian Greene, a theoretical physicist at Columbia University, giving some screen time to the multiverse isn’t such a bad thing — even if the plot has some horror-movie twists.

“I think it’s really good if some of these ideas are brought out in a variety of different ways,” Greene says in the latest episode of the Fiction Science podcast, which focuses on the realm where science and technology intersect with fiction and popular culture.

Continue reading “Why Believing in the Multiverse Isn’t Madness”

Large Hadron Collider Restarts, Shooting Protons at Record Energy Levels

LHC tunnel
A ring of magnets runs through the Large Hadron Collider's 17-mile-round (27-kilometer-round) tunnel. (CERN Photo / Samuel Joseph Herzog)

Europe’s Large Hadron Collider has started up its proton beams again at unprecedented energy levels after going through a three-year shutdown for maintenance and upgrades.

It only took a couple of days of tweaking for the pilot streams of protons to reach a record energy level of 6.8 tera electronvolts, or TeV. That exceeds the previous record of 6.5 TeV, which was set by the LHC in 2015 at the start of the particle collider’s second run.

The new level comes “very close to the design energy of the LHC, which is 7 TeV,” Jörg Wenninger, head of the LHC beam operation section and LHC machine coordinator at CERN, said today in a video announcing the milestone.

When the collider at the French-Swiss border resumes honest-to-goodness science operations, probably within a few months, the international LHC team plans to address mysteries that could send theories of physics in new directions.

Continue reading “Large Hadron Collider Restarts, Shooting Protons at Record Energy Levels”

Weird! Measurement of W Boson Doesn’t Match Standard Model of Physics

CDF at Fermilab
The Collider Detector at Fermilab recorded high-energy particle collisions from 1985 to 2011. (Fermilab Photo)

A decade ago, physicists wondered whether the discovery of the Higgs boson at Europe’s Large Hadron Collider would point to a new frontier beyond the Standard Model of subatomic particles. So far, that’s not been the case — but a new measurement of a different kind of boson at a different particle collider might do the trick.

That’s the upshot of fresh findings from the Collider Detector at Fermilab, or CDF, one of the main experiments that made use of the Tevatron particle collider at the U.S. Department of Energy’s Fermilab in Illinois. It’s not yet time to throw out the physics textbooks, but scientists around the world are scratching their heads over the CDF team’s newly reported value for the mass of the W boson.

Continue reading “Weird! Measurement of W Boson Doesn’t Match Standard Model of Physics”

Archeologists are Planning to Scan the Great Pyramid of Giza With Cosmic Rays With Such Detail, They Should see Every Hidden Chamber Inside

The Great Pyramid of Giza (Khufu) in 2005. Image Credit: By Nina - Own work, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=282496

The Great Pyramid of Giza might be the most iconic structure humans ever built. Ancient civilizations constructed archaeological icons that are a testament to their greatness and persistence. But in some respects, the Great Pyramid stands alone. Of the Seven Wonders of the Ancient World, only the Great Pyramid stands relatively intact.

A team of scientists will use advances in High Energy Physics (HIP) to scan the Great Pyramid of Khufu at Giza with cosmic-ray muons. They want to see deeper into the Great Pyramid than ever before and map its internal structure. The effort is called the Explore the Great Pyramid (EGP) mission.

Continue reading “Archeologists are Planning to Scan the Great Pyramid of Giza With Cosmic Rays With Such Detail, They Should see Every Hidden Chamber Inside”

Atomic Clocks Separated by Just a few Centimetres Measure Different Rates of Time. Just as Einstein Predicted

The connection between relativity and quantum mechanics has been a black box for the world of physics for decades.  That partially stems from the difficulty in collecting data on systems that interface between the two of them.  Relativity is the realm of the supermassive, while quantum mechanics can best be described as the realm of the minuscule.  But, there is, in fact, one particular realm where they overlap.  One of the results of relativity is that gravity can affect the flow of time.  Commonly known as “time dilation,” this effect has now been studied by researchers at the National Institute of Standards and Technology (NIST) in the US using an extraordinarily accurate atomic clock.

Continue reading “Atomic Clocks Separated by Just a few Centimetres Measure Different Rates of Time. Just as Einstein Predicted”

What is Einstein’s Theory of Relativity?

Einstein Lecturing
Albert Einstein during a lecture in Vienna in 1921. Credit: National Library of Austria/F Schmutzer/Public Domain

In the history of science and physics, several scholars, theories, and equations have become household names. In terms of scientists, notable examples include Pythagoras, Aristotle, Galileo, Newton, Planck, and Hawking. In terms of theories, there’s Archimede’s “Eureka,” Newton’s Apple (Universal Gravitation), and Schrodinger’s Cat (quantum mechanics). But the most famous and renowned is arguably Albert Einstein, Relativity, and the famous equation, E=mc2. In fact, Relativity may be the best-known scientific concept that few people truly understand.

For example, Einstein’s Theory of Relativity comes in two parts: the Special Theory of Relativity (SR and the General Theory of Relativity (GR). And the term “Relativity” itself goes back to Galileo Galilee and his explanation for why motion and velocity are relative to the observer. As you can probably tell, explaining how Einstein’s groundbreaking theory works require a deep dive into the history of physics, some advanced concepts, and how it all came together for one of the greatest minds of all time!

Continue reading “What is Einstein’s Theory of Relativity?”

Gravitational Waves Could Explain why There’s More Matter Than Antimatter in the Universe

One of the questions underpinning both philosophy and science is “why are we here”?  Ask an astrophysicist, and they might answer with an imbalance between matter and antimatter at the beginning of the universe.  While that is a (relatively) simple explanation, it then begs the question – why was there an imbalance in the first place?  Scientists have been seeking ways to test various theories regarding that imbalance but have come up empty-handed so far. Now, a team of theoretical physicists think they might have found a way to test some of those theories using gravitational waves.

Continue reading “Gravitational Waves Could Explain why There’s More Matter Than Antimatter in the Universe”

Even the Quiet Supermassive Black Holes are Blasting out Neutrinos and Gamma Rays

blazar

Is there anywhere in the Universe where we can escape from radiation? Certainly not here on Earth. And not in space itself, which is filled with diffuse radiation in the form of gamma rays and neutrinos. Scientists have struggled to explain where all those gamma rays and neutrinos come from. A trio of researchers is proposing a source for all that radiation in a new paper: resting black holes.

Continue reading “Even the Quiet Supermassive Black Holes are Blasting out Neutrinos and Gamma Rays”