One of the questions underpinning both philosophy and science is “why are we here”? Ask an astrophysicist, and they might answer with an imbalance between matter and antimatter at the beginning of the universe. While that is a (relatively) simple explanation, it then begs the question – why was there an imbalance in the first place? Scientists have been seeking ways to test various theories regarding that imbalance but have come up empty-handed so far. Now, a team of theoretical physicists think they might have found a way to test some of those theories using gravitational waves.
Continue reading “Gravitational Waves Could Explain why There’s More Matter Than Antimatter in the Universe”Even the Quiet Supermassive Black Holes are Blasting out Neutrinos and Gamma Rays
Is there anywhere in the Universe where we can escape from radiation? Certainly not here on Earth. And not in space itself, which is filled with diffuse radiation in the form of gamma rays and neutrinos. Scientists have struggled to explain where all those gamma rays and neutrinos come from. A trio of researchers is proposing a source for all that radiation in a new paper: resting black holes.
Continue reading “Even the Quiet Supermassive Black Holes are Blasting out Neutrinos and Gamma Rays”Matter From Light. Physicists Create Matter and Antimatter by Colliding Just Photons.
In 1905 Albert Einstein wrote four groundbreaking papers on quantum theory and relativity. It became known as Einstein’s annus mirabilis or wonderous year. One was on brownian motion, one earned him the Nobel prize in 1921, and one outlined the foundations of special relativity. But it’s Einstein’s last 1905 paper that is the most unexpected.
Continue reading “Matter From Light. Physicists Create Matter and Antimatter by Colliding Just Photons.”Don’t Be Surprised if EmDrive Experiments Never Work
Every few years the “EmDrive”, a proposed method of generating rocket thrust without any exhaust, hits the news. Each time, everyone asks: could this be it? Could this be the technological leap to revolutionize spaceflight?
Don’t hold your breath.
Continue reading “Don’t Be Surprised if EmDrive Experiments Never Work”Sending a Spacecraft to Another Star Will Require a Million Lasers Working Together
In 2016, Russian-American billionaire Yuri Milner founded Breakthrough Initiatives, a non-profit organization dedicated to investigating some of the most enduring mysteries of the Universe. Chief among their scientific efforts is Breakthrough Starshot, a proof-of-concept prototype that combines a lightsail, a nanocraft, and directed energy (aka. laser) propulsion to create a spacecraft capable of reaching the nearest star (Alpha Centauri) in our lifetimes.
Naturally, this presents all sorts of technical and engineering challenges, not the least of which is the amount of power needed to accelerate the spacecraft to relativistic speeds (a fraction of the speed of light). Luckily, scientists from the Australian National University (ANU) recently came up with a design for a directed-energy array made up of millions of individual lasers positioned across the Earth’s surface.
Continue reading “Sending a Spacecraft to Another Star Will Require a Million Lasers Working Together”Fermilab’s Muon g-2 Experiment Finally Gives Particle Physicists a Hint of What Lies Beyond the Standard Model
Since the long-awaited detection of the Higgs Boson in 2012, particle physicists have been probing deeper into the subatomic realm in the hope of investigating beyond the Standard Model of Particle Physics. In so doing, they hope to confirm the existence of previously unknown particles and the existence of exotic physics, as well as learning more about how the Universe began.
At the Fermi National Accelerator Laboratory (aka. Fermilab), researchers have been conducting the Muon g-2 experiment, which recently announced the results of their first run. Thanks to the unprecedented precision of their instruments, the Fermilab team found that muons in their experiment did not behave in a way that is consistent with the Standard Model, resolving a discrepancy that has existed for decades.
Continue reading “Fermilab’s Muon g-2 Experiment Finally Gives Particle Physicists a Hint of What Lies Beyond the Standard Model”There Could be Magnetic Monopoles Trapped in the Earth's Magnetosphere
Electricity and magnetism have a lot in common. They are connected by the unified theory of electromagnetism, and are in many ways two sides of the same coin. Both can exert forces on charges and magnetic fields. A changing electric field creates a magnetic field and vice versa. Elementary particles can possess electric and magnetic properties. But there is one fundamental difference.
Continue reading “There Could be Magnetic Monopoles Trapped in the Earth's Magnetosphere”Wormholes Could Allow Travel Across the Universe, as Long as Your Spacecraft is Microscopic
In my last post, I talked about the idea of warp drive and whether it might one day be possible. Today I’ll talk about another faster-than-light trick: wormholes.
Continue reading “Wormholes Could Allow Travel Across the Universe, as Long as Your Spacecraft is Microscopic”Alcubierre Gives us an Update on his Ideas About Warp Drives
If you want a galaxy-spanning science fiction epic, you’re going to need faster than light travel. The alternative is taking decades or centuries to reach an alien star system, which isn’t nearly as much fun. So, you start with some wild scientific idea, add a bit of technobabble, and poof! Quam Celerrime ad Astra. Everything from wormholes to hyperspace has been used in sci-fi, but perhaps the best known FTL trope is warp drive.
Continue reading “Alcubierre Gives us an Update on his Ideas About Warp Drives”A new Approach Could Tease out the Connection Between Gravity and Quantum Mechanics
In physics, there are two main ways to model the universe. The first is the classical way. Classical models such as Newton’s laws of motion and Einstein’s theory of relativity assume that the properties of an object such as its position and motion are absolute. There are practical limits to how accurately we can measure an object’s path through space and time, but that’s on us. Nature knows their motion with infinite precision. Quantum models such as atomic physics assume that objects are governed by interactions. These interactions are probabilistic and indefinite. Even if we constrain an interaction to limited outcomes, we can never know the motion of an object with infinite precision, because nature doesn’t allow it.
Continue reading “A new Approach Could Tease out the Connection Between Gravity and Quantum Mechanics”