Evidence Continues To Mount For Ninth Planet

Artist's concept of the hypothetical "Planet Nine." Could it have moons? Credit: NASA/JPL-Caltech/Robert Hurt

Ever since its existence was first proposed, the evidence for Planet 9 continues to mount. But of course, said evidence has been entirely indirect, consisting mostly of studies that show how the orbits of Trans-Neptunian Objects (TNOs) are consistent with a large object crossing their path. However, evidence is also emerging that comes from the center of the Solar System itself.

This latest line of evidence comes from Caltech, where researchers Elizabeth Bailey, Konstantin Batygin, and Michael E. Brown (the latter of whom were the ones who first proposed Planet 9’s existence) have published a new study linking solar obliquity to the existence of Planet 9. Essentially, they claim that the axial tilt of the Sun (6°) could be due to the gravitational influence a large planet with an extreme orbit.

To recap, the issue of Planet was first raised in 2014 by astronomers Scott Sheppard and Chadwick Trujillo. Noting the similarities in the orbits of distant Trans-Neptunian Objects (TNOs), they postulated that a massive object was likely influencing them. This was followed in 2016 by Konstantin Batygin and Michael E. Brown of Caltech suggesting that an undiscovered planet was the culprit.

The orbits of several KBOs provide indications about the possible existence of Planet 9. Credit: Caltech/R. Hurt (IPAC)
The orbits of several KBOs provide indications about the possible existence of Planet 9. Credit: Caltech/R. Hurt (IPAC)

Calling this body Planet 9, they speculated that it had a mass 10 times greater than that of Earth, and took 20,000 years to complete a single orbit of our Sun. They also speculated that its orbit was tilted relative to the other planets of our Solar System, and extremely eccentric. And little by little, examinations of other Solar bodies have shown that Planet 9 is likely out there.

For the sake of their study – “Solar Obliquity Induced by Planet Nine“, which was recently published in the Astrophysical Journal – the research team (led by Bailey) looked to the obliquity of the Sun. As they state in their paper, the six-degree axial tilt of the Sun can only be explained in one of two ways – either as a result of an asymmetry that was present during the formation of Solar System, or because of an external source of gravity.

To test this hypothesis, Bailey, Batygin and Brown used an analytic model to test how interactions between Planet 9 and the rest of the Solar System would effect their orbits over the course of the last 4.5 billion years. As Elizabeth Bailey, a graduate student at Caltech’s Division of Geological and Planetary Sciences and the lead author on the paper, told Universe Today via email:

“We simulated the solar system’s motion. Planet 9 forces the solar system to slowly wobble. If Planet 9 is out there, we are in the process of wobbling right now, as we speak! But it happens very slowly, a few degrees tilt per billion years. Meanwhile the sun is not wobbling much,  so it looks like the sun is tilted. A range of Planet 9 parameters cause exactly the configuration of the sun that we see today.

Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign
Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign

In the end, they concluded that the Sun’s obliquity could only be explained by the influence of giant planet with an extreme orbit, one that is consistent with the characteristics attributed to Planet 9. In other words, the existence of Planet 9 offers an explanation for the Sun’s peculiar behavior, something which has remained a mystery until now.

“Planet Nine was first hypothesized because the orbits of objects in the outer reaches of the solar system are confined in physical space,” said Bailey. “Those orbits would be all over the place unless something is currently stopping them. The only explanation so far is Planet Nine. For over 150 years, people have wondered why the sun is tilted. Personally I’d say that Planet 9 offers the first satisfying explanation. If it exists, it tilted the sun.”

In addition, the subject of Planet 9 was also raised at the joint 48th meeting of the American Astronomical Society’s Division for Planetary Sciences and 11th European Planetary Science Congress, which took place from Oct 16th to 21st in Pasadena, California. During the course of the meeting, researchers from Arizona University shared the results of their own study, which was published back in August.

The Arizona research team was led by Renu Malhotra, a Regents’ Professor of Planetary Sciences in the University of Arizona’s Lunar and Planetary Lab. For the sake of their study, titled “Corralling a Distant Planet with Extreme Resonant Kuiper Belt Objects“, they examined the orbital patterns of four extreme Kuiper Belt Objects (KBOs), which have the longest orbital periods of any known objects.

Artist's impression of the the possible Planet 9 at the edge of the Solar System. Credit: Robin Dienel/Carnegie Science
Artist’s impression of the the possible Planet 9 at the edge of the Solar System. Credit: Robin Dienel/Carnegie Science

According to their calculations, the presence of a massive planet – one that would complete an orbit around the Sun every 17,117 years, and at an average distance (semimajor axis) of 665 AU – would explain the orbital pattern of these four objects. These results were consistent with the estimates concerning the orbital period of Planet 9, its orbital path, and it mass.

“We analyzed the data of these most distant Kuiper Belt objects,” Malhotra said, “and noticed something peculiar, suggesting they were in some kind of resonances with an unseen planet… Our paper provides more specific estimates for the mass and orbit that this planet would have, and, more importantly, constraints on its current position within its orbit.”

Looks like Planet 9’s days of hiding in the outer Solar System may be numbered!

Further Reading: arXiv, Caltech, Europlanet

Planet 9 Search Turning Up Wealth Of New Objects

Artist's impression of the the possible Planet 9 at the edge of the Solar System. Credit: Robin Dienel/Carnegie Science

In 2014, Scott Sheppard of the Carnegie Institution for Science and Chadwick Trujillo of Northern Arizona University proposed an interesting idea. Noting the similarities in the orbits of distant Trans-Neptunian Objects (TNOs), they postulated that a massive object was likely influencing them. This was followed in 2016 by Konstantin Batygin and Michael E. Brown of Caltech suggesting that an undiscovered planet was the culprit.

Since that time, the hunt has been on for the infamous “Planet 9” in our Solar System. And while no direct evidence has been produced, astronomers believe they are getting closer to discerning its location. In a paper that was recently accepted by The Astronomical Journal, Sheppard and Trujillo present their latest discoveries, which they claim are further constraining the location of Planet 9.

For the sake of their study, Sheppard and Trujillo relied on information obtained by the Dark Energy Camera on the Victor Blanco 4-meter telescope in Chile and the Japanese Hyper Suprime-Camera on the 8-meter Subaru Telescope in Hawaii. With the help of David Tholen from the University of Hawaii, they have been conducting the largest deep-sky survey for objects beyond Neptune and the Kuiper Belt.

An illustration of the orbits of the new and previously known extremely distant Solar System objects. The clustering of most of their orbits indicates that they are likely be influenced by something massive and very distant, the proposed Planet X. Credit: Robin Dienel/Carnegie Science
An illustration of the orbits of the new and previously known extremely distant Solar System objects – showing the clustering in orbits that indicates that possible presence of Planet X. Credit: Robin Dienel/Carnegie Science

This survey is intended to find more objects that show the same clustering in their orbits, thus offering greater evidence that a massive planet exists in the outer Solar System. As Sheppard explained in a recent Carnegie press release:

“Objects found far beyond Neptune hold the key to unlocking our Solar System’s origins and evolution. Though we believe there are thousands of these small objects, we haven’t found very many of them yet, because they are so far away. The smaller objects can lead us to the much bigger planet we think exists out there. The more we discover, the better we will be able to understand what is going on in the outer Solar System.”

Their most recent discovery was a small collection of more extreme objects who’s peculiar orbits differ from the extreme and inner Oort cloud objects, in terms of both their eccentricities and semi-major axes. As with discoveries made using other instruments, these appear to indicate the presence of something massive effecting their orbits.

All of these objects have been submitted to the International Astronomical Union’s (IAU) Minor Planet Center for designation. They include 2014 SR349, an extreme TNO that has similar orbital characteristics as the previously-discovered extreme bodies that led Sheppard and Trujillo to infer the existence of a massive object in the region.

Another is 2014 FE72, an object who’s orbit is so extreme that it reaches about 3000 AUs from the Sun in a massively-elongated ellipse – something which can only be explained by the influence of a strong gravitational force beyond our Solar System. And in addition to being the first object observed at such a large distance, it is also the first distant Oort Cloud object found to orbit entirely beyond Neptune.

Artist's impression of Planet Nine as an ice giant eclipsing the central Milky Way, with a star-like Sun in the distance. Neptune's orbit is shown as a small ellipse around the Sun. The sky view and appearance are based on the conjectures of its co-proposer, Mike Brown.
Artist’s impression of Planet Nine as an ice giant eclipsing the central Milky Way, with a star-like Sun in the distance. Credit: ESO/Tomruen/nagualdesign

And then there’s  2013 FT28, which is similar but also different from the other extreme objects. For instance, 2013 FT28 shows similar clustering in terms of its semi-major axis, eccentricity, inclination, and argument of perihelion angle, but is different when it comes to its longitude of perihelion. This would seem to indicates that this particular clustering trend is less strong among the extreme TNOs.

Beyond the work of Sheppard and Trujillo, nearly 10 percent of the sky has now been explored by astronomers. Relying on the most advanced telescopes, they have revealed that there are several never-before-seen objects that orbit the Sun at extreme distances.

And as more distant objects with unexplained orbital parameters emerge, their interactions seem to fit with the idea of a massive distant planet that could pay a key role in the mechanics of the outer Solar System. However, as Sheppard has indicated, there really isn’t enough evidence yet to draw any conclusions.

“Right now we are dealing with very low-number statistics, so we don’t really understand what is happening in the outer Solar System,” he said. “Greater numbers of extreme trans-Neptunian objects must be found to fully determine the structure of our outer Solar System.”

Alas, we don’t yet know if Planet 9 is out there, and it will probably be many more years before confirmation can be made. But by looking to the visible objects that present a possible sign of its path, we are slowly getting closer to it. With all the news in exoplanet hunting of late, it is interesting to see that we can still go hunting in our own backyard!

Further Reading: The Astrophysical Journal Letters