An Earth-like Planet Only 16 Light Years Away?

An artistic representation of Gliese 832 c against a stellar nebula background. A new paper says Gliese 832 might be home to another planet similar to this, but in the habitable zone. Credit: Planetary Habitability Laboratory at the University of Puerto Rico, Arecibo, NASA/Hubble, Stellarium.
An artistic representation of Gliese 832 c against a stellar nebula background. A new paper says Gliese 832 might be home to another planet similar to this, but in the habitable zone. Credit: Planetary Habitability Laboratory at the University of Puerto Rico, Arecibo, NASA/Hubble, Stellarium.

Earth may have a new neighbour, in the form of an Earth-like planet in a solar system only 16 light years away. The planet orbits a star named Gliese 832, and that solar system already hosts two other known exoplanets: Gliese 832B and Gliese 832C. The findings were reported in a new paper by Suman Satyal at the University of Texas, and colleagues J. Gri?th, and Z. E. Musielak.

Gliese 832B is a gas giant similar to Jupiter, at 0.64 the mass of Jupiter, and it orbits its star at 3.5 AU. G832B probably plays a role similar to Jupiter in our Solar System, by setting gravitational equilibrium. Gliese 832C is a Super-Earth about 5 times as massive as Earth, and it orbits the star at a very close 0.16 AU. G832C is a rocky planet on the inner edge of the habitable zone, but is likely too close to its star for habitability. Gliese 832, the star at the center of it all, is a red dwarf about half the size of our Sun, in both mass and radius.

The newly discovered planet is still hypothetical at this point, and the researchers put its mass at between 1 and 15 Earth masses, and its orbit at between 0.25 to 2.0 AU from Gliese 582, its host star.

The two previously discovered planets in Gliese 832 were discovered using the radial velocity technique. Radial velocity detects planets by looking for wobbles in the host star, as it responds to the gravitational tug exerted on it by planets in orbit. These wobbles are observable through the Doppler effect, as the light of the affected star is red-shifted and blue-shifted as it moves.

The team behind this study re-analyzed the data from the Gliese 832 system, based on the idea that the vast distance between the two already-detected planets would be home to another planet. According to other solar systems studied by Kepler, it would be highly unusual for such a gap to exist.

As they say in their paper, the main thrust of the study is to explore the gravitational effect that the large outer planet has on the smaller inner planet, and also on the hypothetical Super-Earth that may inhabit the system. The team conducted numerical simulations and created models constrained by what’s known about the Gliese 832 system to conclude that an Earth-like planet may orbit Gliese 832.

This can all sound like some hocus-pocus in a way, as my non-science-minded friends like to point out. Just punch in some numbers until it shows an Earth-like planet, then publish and get attention. But it’s not. This kind of modelling and simulation is very rigorous.

Putting in all the data that’s known about the Gliese 832 system, including radial velocity data, orbital inclinations, and gravitational relationships between the planets and the star, and between the planets themselves, yields bands of probability where previously undetected planets might exist. This result tells planet hunters where to start looking for planets.

In the case of this paper, the result indicates that “there is a slim window of about 0.03 AU where an Earth-like planet could be stable as well as remain in the HZ.” The authors are quick to point out that the existence of this planet is not proven, only possible.

The other planets were found using the radial velocity method, which is pretty reliable. But radial velocity only provides clues to the existence of planets, it doesn’t prove that they’re there. Yet. The authors acknowledge that a larger number of radial velocity observations are needed to confirm the existence of this new planet. Barring that, either the transit method employed by the Kepler spacecraft, or direct observation with powerful telescopes, may also provide positive proof.

So far, the Kepler spacecraft has confirmed the existence of 1,041 planets. But Kepler can’t look everywhere for planets. Studies like these are crucial in giving Kepler starting points in its search for exoplanets. If an exoplanet can be confirmed in the Gliese 832 system, then it also confirms the accuracy of the simulation that the team behind this paper performed.

If confirmed, G832 C would join a growing list of exoplanets. It wasn’t long ago that we knew almost nothing about other solar systems. We only had knowledge of our own. And even though it was always unlikely that our Solar System would for some reason be special, we had no certain knowledge of the population of exoplanets in other solar systems.

Studies like this one point to our growing understanding of the dynamics of other solar systems, and the population of exoplanets in the Milky Way, and most likely throughout the cosmos.

Mysterious Pull On Cassini Probe May Help Find Planet Nine

Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign
Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign

Finding a ninth planet in our Solar System this late in the game would be fascinating. It would also be somewhat of a surprise, considering our observational capabilities. But new evidence, in the form of small perturbations in the orbit of the Cassini probe, points to the existence of an as-yet undetected planet in our solar system.

Back in January, Konstantin Batygin and Mike Brown, two planetary scientists from the California Institute of Technology, presented evidence supporting the existence of a ninth planet. Their paper showed that some Kuiper Belt Objects (KBOs) display unexpected behaviour. It appears that 6 KBOs are affected by their relationship to a large object, but the KBOs in question are too distant from the known gas giants for them to be responsible. They think that a large, distant planet, in the distant reaches of our Solar System, could be responsible for the unexpected orbital clustering of these KBOs.

The calculated orbit of Planet Nine. Credit: Nature/K. Batygin and M. E. Brown Astronom. J. 151, 22 (2016
The calculated orbit of Planet Nine. Credit: Nature/K. Batygin and M. E. Brown Astronom. J. 151, 22 (2016)

Now, the Ninth Planet idea is gaining steam, and another team of researchers have presented evidence that small perturbations in the orbit of the Cassini spacecraft are caused by the new planet. Agnès Fienga at the Côte d’Azur Observatory in France, and her colleagues, have been working on a detailed model of the Solar System for over a decade. They plugged the hypothetical orbit and size of Planet Nine into their model, to see if it fit.

Planet Nine is calculated to be about 4 times as large as Earth, and 10 times as massive. It’s orbit takes between 10,000 and 20,000 years. A planet that large can only be hiding in so many places, and those places are a long way from Earth. Fienga found a potential home for Planet Nine, some 600 astronomical units (AU) from here. That much mass at that location could account for the perturbations in Cassini’s orbit.

There’s more good news when it comes to Planet Nine. By happy accident, it’s predicted location in the sky is towards the constellation Cetus, in the southern hemisphere. This means that it is in the view of the Dark Energy Survey, a southern hemisphere project that is studying the acceleration of the universe. The Dark Energy Survey is not designed to search for planetary objects, but it has successfully found at least one icy object.

There are other ways that the existence of Planet Nine could be confirmed. If it’s as large as thought, then it will radiate enough internal heat to be detected by instruments designed to study the Cosmic Microwave Background (CMB). There is also an enormous amount of data from multiple experiments and observations done over the years that might contain an inadvertent clue. But looking through it is an enormous task.

As for Brown and Batygin, who initially proposed the existence of Planet Nine based on the behaviour of KBOs, they are already proposing a more specific hunt for the elusive planet. They have asked for a substantial amount of observing time at the Subaru Telescope on Mauna Kea in Hawaii, in order to examine closely the location that Fienga’s solar system model predicts Planet Nine to be at.

For a more detailed look at Batygin’s and Brown’s work analyzing KBOs, read Matt Williams’ article here.

Kuiper Belt Objects Point The Way To Planet 9

Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign
Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign

On January 20th, 2016, researchers Konstantin Batygin and Michael E. Brown of Caltech announced that they had found evidence that hinted at the existence of a massive planet at the edge of the Solar System. Based on mathematical modeling and computer simulations, they predicted that this planet would be a super-Earth, two to four times Earth’s size and 10 times as massive. They also estimated that, given its distance and highly elliptical orbit, it would take 10,000 – 20,000 years to orbit the Sun.

Since that time, many researchers have responded with their own studies about the possible existence of this mysterious “Planet 9”. One of the latest comes from the University of Arizona, where a research team from the Lunar and Planetary Laboratory have indicated that the extreme eccentricity of distant Kuiper Belt Objects (KBOs) might indicate that they crossed paths with a massive planet in the past.

For some time now, it has been understood that there are a few known KBOs who’s dynamics are different than those of other belt objects. Whereas most are significantly controlled by the gravity of the gas giants planets in their current orbits (particularly Neptune), certain members of the scattered disk population of the Kuiper Belt have unusually closely-spaced orbits.

The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta), including Sedna (dark magenta), all mysteriously line up in a single direction. Also, when viewed in three dimensions, they tilt nearly identically away from the plane of the solar system. Another population of Kuiper belt objects (cyan) are forced into orbits that are perpendicular to the plane of the solar system and clustered in orientation. Batygin and Brown show that a planet with 10 times the mass of the earth in a distant eccentric orbit (orange) anti-aligned with the magenta orbits and perpendicular to the cyan orbits is required to maintain this configuration. Credit: Caltech/R. Hurt (IPAC)
The orbits of Neptune (magenta), Sedna (dark magenta), a series of Kuiper belt objects (cyan), and the hypothetical Planet 9 (orange). Credit: Caltech/R. Hurt (IPAC)

When Batygin and Brown first announced their findings back in January, they indicated that these objects instead appeared to be highly clustered with respect to their perihelion positions and orbital planes. What’s more, their calculation showed that the odds of this being a chance occurrence were extremely low (they calculated a probability of 0.007%).

Instead, they theorized that it was a distant eccentric planet that was responsible for maintaining the orbits of these KBOs. In order to do this, the planet in question would have to be over ten times as massive as Earth, and have an orbit that lay roughly on the same plane (but with a perihelion oriented 180° away from those of the KBOs).

Such a planet not only offered an explanation for the presence of high-perihelion Sedna-like objects – i.e. planetoids that have extremely eccentric orbits around the Sun. It would also help to explain where distant and highly inclined objects in the outer Solar System come from, since their origins have been unclear up until this point.

In a paper titled “Coralling a distant planet with extreme resonant Kuiper belt objects“, the University of Arizona research team – which included Professor Renu Malhotra, Dr. Kathryn Volk, and Xianyu Wang – looked at things from another angle. If in fact Planet 9 were crossing paths with certain high-eccentricity KBOs, they reasoned, it was a good bet that its orbit was in resonance with these objects.

Pluto and its cohorts in the icy-asteroid-rich Kuiper Belt beyond the orbit of Neptune. Credit: NASA
Pluto and its cohorts in the icy-asteroid-rich Kuiper Belt beyond the orbit of Neptune. Credit: NASA

To break it down, small bodies are ejected  from the Solar System all the time due to encounters with larger objects that perturb their orbits. In order to avoid being ejected, smaller bodies need to be protected by orbital resonances. While the smaller and larger objects may pass within each others’ orbital path, they are never close enough that they would able to exert a significant influence on each other.

This is how Pluto has remained a part of the Solar System, despite having an eccentric orbit that periodically cross Neptune’s path. Though Neptune and Pluto cross each others orbit, they are never close enough to each other that Neptune’s influence would force Pluto out of our Solar System. Using this same reasoning, they hypothesized that the KBOs examined by Batygin and Brown might be in an orbital resonance with the Planet 9.

As Dr.  Malhotra, Volk and Wang told Universe Today via email:

“The extreme Kuiper belt objects we investigate in our paper are distinct from the others because they all have very distant, very elliptical orbits, but their closest approach to the Sun isn’t really close enough for them to meaningfully interact with Neptune. So we have these six observed objects whose orbits are currently fairly unaffected by the known planets in our Solar System. But if there’s another, as yet unobserved planet located a few hundred AU from the Sun, these six objects would be affected by that planet.”

After examining the orbital periods of these six KBOs – Sedna, 2010 GB174, 2004 VN112, 2012 VP113, and 2013 GP136 – they concluded that a hypothetical planet with an orbital period of about 17,117 years (or a semimajor axis of about 665 AU), would have the necessary period ratios with these four objects. This would fall within the parameters estimated by Batygin and Brown for the planet’s orbital period (10,000 – 20,000 years).

Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign
Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign

Their analysis also offered suggestions as to what kind of resonance the planet has with the KBOs in question. Whereas Sedna’s orbital period would have a 3:2 resonance with the planet, 2010 GB174 would be in a 5:2 resonance, 2994 VN112 in a 3:1, 2004 VP113 in 4:1, and 2013 GP136 in 9:1. These sort of resonances are simply not likely without the presence of a larger planet.

“For a resonance to be dynamically meaningful in the outer Solar System, you need one of the objects to have enough mass to have a reasonably strong gravitational effect on the other,” said the research team. “The extreme Kuiper belt objects aren’t really massive enough to be in resonances with each other, but the fact that their orbital periods fall along simple ratios might mean that they each are in resonance with a massive, unseen object.”

But what is perhaps most exciting is that their findings could help to narrow the range of Planet 9’s possible location. Since each orbital resonance provides a geometric relationship between the bodies involved, the resonant configurations of these KBOs can help point astronomers to the right spot in our Solar System to find it.

But of course, Malhotra and her colleagues freely admit that several unknowns remain, and further observation and study is necessary before Planet 9 can be confirmed:

“There are a lot of uncertainties here. The orbits of these extreme Kuiper belt objects are not very well known because they move very slowly on the sky and we’ve only observed very small portions of their orbital motion. So their orbital periods might differ from the current estimates, which could make some of them not resonant with the hypothetical planet. It could also just be chance that the orbital periods of the objects are related; we haven’t observed very many of these types of objects, so we have a limited set of data to work with.”

Based on a careful study of Saturn's orbit and using mathematical models, French scientists were able to whittle down the search region for Planet Nine to "possible" and "probable" zones. Source: CNRS, Cote d'Azur and Paris observatories. Credit:
Estimates of Planet Nine’s “possible” and “probable” zones. by French scientists based on a careful study of Saturn’s orbit and using mathematical models. Source: CNRS, Cote d’Azur and Paris observatories. Credit: Bob King

Ultimately, astronomers and the rest of us will simply have to wait on further observations and calculations. But in the meantime, I think we can all agree that the possibility of a 9th Planet is certainly an intriguing one! For those who grew up thinking that the Solar System had nine planets, these past few years (where Pluto was demoted and that number fell to eight) have been hard to swallow.

But with the possible confirmation of this Super-Earth at the outer edge of the Solar System, that number could be pushed back up to nine soon enough!

Further Reading: arXiv.org

India’s MOM Publishes Amazing Mars Images

An artist's illustration of the MOM orbiter at Mars. Image:By Nesnad - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=29435816
An artist's illustration of the MOM orbiter at Mars. Image: By Nesnad - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=29435816

Science—like literature and the arts—helps nations cooperate together, even when they’re in conflict politically. The USA and Russia are in conflict over the Ukraine and Syria, yet both nations still cooperate when it comes to the International Space Station. With that in mind, it’s great to see other nations—in this case India—taking on a greater role in space exploration and sharing their scientific results.

India’s Mars Orbiter Mission (MOM) probe has been in orbit around Mars since September 2014, after being launched in November 2013. Though the Indian Space Research Organization (ISRO) has released plenty of pictures of the surface of Mars, they haven’t released any scientific data. Until now.

A beautiful full-disc image of Mars captured by MOM. Image: ISRO/MOM.
A beautiful full-disc image of Mars captured by MOM. Image: ISRO/MOM.

In September 2015, MOM’s orbit was adjusted to bring it to within 260 km of Mars’ surface, significantly closer to the surface than the usual 400 km altitude.  This manoeuver allowed one of MOM’s six instruments, the Mars Exospheric Neutral Composition Analyzer (MENCA), to measure the atmospheric composition at different altitudes. The sensor measured carbon dioxide, oxygen, nitrogen and carbon monoxide to see how they were distributed at different altitudes.

MOM’s activity at Mars is important for a couple of reasons.  Its results confirm the results of other probes that have studied Mars’ atmosphere. And confirmation is an important part of science. But there’s another reason why MOM is important, and this centres around the search for evidence of life on the Red Planet.

Methane is considered a marker for the presence of life. It’s not an absolute indicator that life is or was present, but it’s a good hint. One of MOM’s sensors is the Methane Sensor for Mars (MSM.) Methane has been detected in Mars’ atmosphere before, but these could have been spikes, and not a strong indicator of living processes. If MSM provides stronger data indicating a consistent methane presence, that would be very interesting.

Releasing these results is also vindication for ISRO. In 2008, ISRO released data from their lunar mission, Chandrayaan-1, showing the presence of water on the Moon. Those results, which were gathered with an instrument called Chandra’s Altitudinal Composition Explorer (CHACE) were rejected by several scientific publications, on the grounds that the results were contaminated. Only when they were confirmed by another of Chandrayaan-1’s instruments—the Moon Mineralogy Mapper (M3)—were the results accepted.

But MOM’s MENCA instrument is based on the CHACE instrument aboard Chandrayaan-1, so ISRO feels that MENCA’s success in the atmosphere at Mars vindicates CHACE’s results on the Moon. And rightly so.

You can read a blog post by Syed Maqbool Ahmed at the Planetary Society, where he talks about the success of MOM’s MENCA, and how it vindicates ISRO’s earlier results with CHACE that showed the presence of water on the Moon.

MOM is India’s first interplanetary mission, and is expected to last until its fuel runs out, which could take many years. India is the first Asian nation to make it to another planet, and the first of any nation to make it to Mars on their first attempt. Not bad for a mission that was initially considered to be only a technology demonstration mission.

 

Search Narrows For Planet Nine

Based on a careful study of Saturn's orbit and using mathematical models, French scientists were able to whittle down the search region for Planet Nine to "possible" and "probable" zones. Source: CNRS, Cote d'Azur and Paris observatories. Credit:
The imagined view from Planet Nine looking back toward the sun. Astronomers think the huge, distant planet is gaseous, similar to the other giant planets in our solar system.
An imagined view from Planet Nine looking back toward the Sun. Astronomers think the massive, distant planet is gaseous, similar to the other giant planets in our Solar System. Credit: Wikipedia

Last month, planetary scientists Mike Brown and  Konstantin Batygin of the California Institute of Technology found evidence of a giant planet tracing a bizarre, highly elongated orbit in the outer Solar System. Nicknamed Planet Nine, it’s estimated to be 10 times more massive than Earth with a diameter as large as 16,000 miles (25,750 km).  The putative planet orbits about 20 times farther from the Sun on average than Neptune or some 56 billion miles away; at that tremendous distance it would take between 10,000 and 20,000 years to complete one orbit around the Sun.

The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Also, when viewed in three dimensions, they tilt nearly identically away from the plane of the solar system. Batygin and Brown show that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech/R. Hurt (IPAC); [Diagram created using WorldWide Telescope.]
The six most distant known objects in the Solar System with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Also, when viewed in three dimensions, they tilt nearly identically away from the plane of the solar system. Batygin and Brown showed that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech/R. Hurt (IPAC); Diagram created using WorldWide Telescope
Planet Nine’s existence is inferred through mathematical modeling and computer simulations based on the clustering of six remote asteroids in the Kuiper Belt, a vast repository of icy asteroids and comets beyond Neptune. Brown and Batyginsay there’s only a 0.007% chance or about 1 in 15,000 that the clustering could be a coincidence.

All well and good. But with such an enormous orbit, astronomers face the daunting task of searching vast swaths of space for this needle in a haystack. Where to begin? A study done by a team of French scientists may help narrow the search. In a recent paper appearing in Astronomy and Astrophysics, astronomer Agnes Fienga and colleagues looked at what effect a large Kuiper Belt planet would have on the orbits of other planets in the Solar System, focusing their study on Saturn. Thanks to NASA’s Cassini orbiter, which has been orbiting Saturn since 2004, we can precisely calculate Saturn’s position along its orbit.

Based on a careful study of Saturn's orbit and using mathematical models, French scientists were able to whittle down the search region for Planet Nine to "possible" and "probable" zones. Source: CNRS, Cote d'Azur and Paris observatories . Created by the author
Based on a careful study of Saturn’s orbit and using mathematical models, French scientists were able to whittle down the search region for Planet Nine to “possible” and “probable” zones. Source: CNRS, Cote d’Azur and Paris observatories , created by the author

Based on the planet’s “residuals”, the difference between the calculated position of Saturn versus what was actually observed, the team was able to exclude two sections of its potential orbit and home in on “probable” swath and a much larger “possible” section of the orbit. The process may sound familiar, since it was the one used to discover another planet more than 150 years ago — Neptune. Back then, irregularities (residuals) in the motion of Uranus led astronomers in 1847 to predict a more distant 8th planet as the cause. On September 24, 1846, Johann Galle discovered Neptune only 1° from its position predicted by French mathematician Urbain LeVerrier.

While the current solution for Planet Nine doesn’t come anywhere near as close, it’s a step in the right direction.

First Super-Earth Atmosphere Detected

A new paper says that a Super-Earth may have formed in our Solar System and been swallowed by the Sun. Image Credit: ESA/Hubble, M. Kornmesser
A new paper says that a Super-Earth may have formed in our Solar System and been swallowed by the Sun. Image Credit: ESA/Hubble, M. Kornmesser

55 Cancri-e was once touted as one of the most exotic exo-planets ever discovered. Mass and radius modelling led some astronomers to speculate that its interior could be rich in carbon. And that much carbon crushed together under extreme pressure = diamonds. That’s how it got its nickname “Diamond Planet.”

But 55 Cancri-e—now named “Janssen” (Thank you International Astronomical Union!)—is even more exotic with the recent discovery of an atmosphere. A February 7th research paper in the Astrophysical Journal, by a team of European astronomers, reports that Janssen has an atmosphere rich in hydrogen. This makes Janssen the first exo-planet, that we know of, to have an atmosphere.

The team used the Wide Field Camera 3 (WDF3) on the Hubble Space Telescope, and a new scanning technique, to gain an understanding of Janssen’s atmosphere. Along with hydrogen, the team also found helium, and potentially, hydrogen cyanide.

Given Janssen’s surface temperature of 2000 K (1727 C), and its proximity to its host star, the existence of an atmosphere is surprising. The team suspects that the hydrogen-rich atmosphere is left over from the planet’s formation 8 billion years ago, and is a remnant of the nebula that the planet and star formed from.

“Our observations of 55 Cancri e’s atmosphere suggest that the planet has managed to cling on to a significant amount of hydrogen and helium from the nebula from which it formed,” said Angelos Tsiaras, a PhD student at UCL, who helped develop the new scanning technique. “This is a very exciting result because it’s the first time that we have been able to find the spectral fingerprints that show the gases present in the atmosphere of a super-Earth.”

Super-Earths are the most common type of planet in our galaxy, though none exist in our solar system. They are called super-Earths because they have more mass than Earth, but are smaller than the gas giants. A greater understanding of super-Earths should mean a greater understanding of the most common type of planet around.

“This result gives a first insight into the atmosphere of a super-Earth. We now have clues as to what the planet is currently like, how it might have formed and evolved, and this has important implications for 55 Cancri e and other super-Earths,” said Professor Giovanna Tinetti of UCL.

The existence of hydrogen cyanide in Janssen’s atmosphere is also significant. Its presence indicates a carbon-rich atmosphere. This supports the idea that Janssen is a diamond planet, though that conclusion is still far from certain. “If the presence of hydrogen cyanide and other molecules is confirmed in a few years time by the next generation of infrared telescopes, it would support the theory that this planet is indeed carbon rich and a very exotic place,” said Professor Jonathan Tennyson, UCL.

The team has used their new technique on 2 other super-Earths, but no atmosphere was found.

55-Cancri e is about 40 light years from Earth. Its host star is slightly smaller, cooler, and a little dimmer than our Sun, and its year is shorter than an Earth day.

 

 

Saturn’s Rings Continue to Surprise Scientists

Composite image of a backlit Saturn, made from Cassini images acquired on July 19, 2013. Saturn's B ring appears darkest and densest here. (NASA/JPL-Caltech/Space Science Institute)

If you try to apply simple common sense to how Saturn’s rings really work you’re going to be sorely mistaken: the giant planet’s signature features run circles around average Earthly intuition. This has been the case for centuries and is still true today after recent news from Cassini that the most opaque sections of rings aren’t necessarily the densest; with Saturn looks literally are deceiving.

Continue reading “Saturn’s Rings Continue to Surprise Scientists”

Astronomers Find Theoretical Evidence for Distant Gas Giant Planet in Our Solar System

Artist's concept of the hypothetical "Planet Nine." Could it have moons? Credit: NASA/JPL-Caltech/Robert Hurt
Artistic rendering shows the distant view from theoretical Planet Nine back towards the sun. The planet is thought to be gaseous, similar to Uranus and Neptune. Hypothetical lightning lights up the night side.  Credit: Caltech/R. Hurt (IPAC)
Artistic rendering shows the distant view from theoretical Planet Nine back towards the sun. The planet is thought to be gaseous, similar to Uranus and Neptune. Hypothetical lightning lights up the night side. Credit: Caltech/R. Hurt (IPAC)

The astronomer known worldwide for vigorously promoting the demotion of Pluto from its decades long perch as the 9th Planet, has now found theoretical evidence for a new and very distant gas giant planet lurking way beyond Pluto out to the far reaches of our solar system.

In an obvious reference to the planethood controversy, the proposed new planet is nicknamed ‘Planet Nine’ and its absolutely huge! Continue reading “Astronomers Find Theoretical Evidence for Distant Gas Giant Planet in Our Solar System”

New Dwarf Planet is Most Distant Object Yet Observed in our Solar System

A newly found object named V774104 was found using the Subaru Telescope. Credit: Scott Sheppard, Chad Trujillo, and David Tholen.

It has been estimated that there may be hundreds of dwarf planets in the Kuiper belt and Oort Cloud of the outer Solar System. So far we’ve found – and actually seen – just a few. This past week, one more dwarf planet was added to the list and comes in at the most distant object ever seen in the Solar System.

This newly found world, initially named V774104, is about 15.4 billion kilometers from the Sun. At 103 AU, it is three times further from the Sun than Pluto, and is more distant than the previous record holder, Eris, which lies at 97 AU.

The discovery of V774104 was announced by one of the astronomers who found the object, Scott Sheppard, from the Carnegie Institution for Science, at the American Astronomical Society’s Division for Planetary Sciences fall meeting last week. Sheppard, along with Chad Trujillo and David Tholen used Japan’s 8-meter Subaru Telescope in Hawaii to make the find.

Astronomers say this newly spotted dwarf planet shows the depths of our Solar System.

“The discovery of V774104 is more proof that the Solar System is bigger than we thought,” said astronomer Joseph Burns from Cornell University, who was not associated with the discovery. “We need a little more time to pin down the orbit and determine the object’s exact size, but it must be big to see it at this distance.”

The size of V774104 is currently estimated to be between 500 and 1000 kilometers in diameter, which is less than half Pluto’s size.

While the size of the object is of some interest to astronomers who are searching for KBOs, even more interesting is pinning down its orbit. With its recent discovery, the orbit of V774104 has yet to be tracked for long periods of time.

If the orbit of V774104 comes closer to the Sun, such as between 30 to 50 AU, then it would be considered an icy Kuiper Belt objects which are more common among bodies like this found so far. Their orbits are more elongated because they fall under the gravitational influence of Neptune.

Of even more interest are what Sheppard called “inner Oort Cloud objects,” (also called “sednoids”). Theses bodies exist in a part of the Solar System that astronomers used to think was fairy empty. Of the two previously observed objects in this class — Sedna and 2012 VP113. — their orbits never come closer to the Sun than 50 AU, and they have a semi-major axis greater than 150 AU. The eccentric orbits of these objects have yet to be explained.

Colin Johnston from the Armagh Planetarium clarifies:

This means at their closest to the Sun they are still beyond the Kuiper Belt which lies 30-50 au from the Sun. Only two other objects in this category are known: 90377 Sedna and 2012 VP113.

They intrigue astronomers as they inhabit what was expected to be a largely empty region between the Kuiper Belt and the Oort Cloud, the Solar System’s yet to observed reservoir of comets. As well, the current highly elliptical orbits of Sednoids cannot be their original orbits, the chance of smaller bodies in such eccentric paths accreting into objects hundreds of kilometres across is fantastically low. Sednoids must have originally formed in relatively circular orbits, possibly in the Oort Cloud.

“Non-eccentric orbits seem to be the anomaly here,” Burns told Universe Today.

So, this likely means that something other than the Sun is responsible for influencing the erratic orbits of such small objects like V774104. One theory is that there might be a large planet at the outer reaches of the Solar System influencing the orbits of these distant objects.

Of course, among some crowds that brings up the hypothetical Planet X. But Burns was quick to dismiss that idea.

“While we certainly don’t understand well these objects, we may want to scatter off an object like Planet X,” he said via email.

At the AAS meeting last week, Sheppard said the likely alternative is that the orbits of these objects might reflect the primordial conditions of the Solar System, which formed more than 4.5 billion years ago. This makes them even more enticing for study, and Sheppard and his team will be keeping a close eye on V774104 to try and learn more. Nature News reported that the team plans to look for it again this week using the Magellan Telescopes in Chile, and then again in a year, to calculate its orbit and determine whether if it is an inner Oort cloud resident or an icy Kuiper Belt object.

Further reading: Nature, Armagh Planetarium,Centauri Dreams, Science.

A New “Mathematical” Definition Proposed for What Constitutes a Planet

Three exoplanet candidates found by the Planet Hunters citizen science project. Credit: Zooniverse

In the current (heated) debate of what constitutes a planet, it seems everyone can agree at least one thing: The current definition put forth by the International Astronomical Union is actually quite vague and it really only applies to our own Solar System. So while the definition is unclear at best in our own neighborhood, it also doesn’t provide a framework for classifying the thousands of exo-worlds that are being discovered on almost a weekly basis.

Since math has been dubbed “the language of the Universe” it seems rather fitting and logical to use arithmetic to help in framing a better definition for planethood.

This week, UCLA professor Jean-Luc Margot has proposed a simple mathematical test that can be used to separate planets from other bodies like dwarf planets and minor planets. He says his new system is easy.

“One should not need a teleportation device to decide whether a newly discovered object is a planet,” Margot said.

The new approach would use estimates of the star’s mass and the planet’s mass and orbital period. Since the IAU’s definition is based primarily on the ability of a planet to “clear its orbit,” (whether it can accumulate or dominate small bodies in its orbital neighborhood), Margot’s test narrows this down to a specific timeframe of determining whether a body can clear a specific region around its orbit.

“A simple metric can be used to determine whether a planet or exoplanet can clear its orbital zone during a characteristic time scale, such as the lifetime of the host star on the main sequence,” Margot writes in his paper. “This criterion requires only estimates of star mass, planet mass, and orbital period, making it possible to immediately classify 99% of all known exoplanets.”

Under these criteria, all 8 planets and all classifiable exoplanets would be classified as planets. It also keeps the distinction between planets and dwarf planets. Some have pointed out that Margot’s criteria would make our Moon a planet. But, as Margot told Universe Today, that’s not necessarily so. “It really depends on how the IAU decides to define satellites and if or how they decide to define double planets,” he said.

Margot says his definition would be useful in generalizing and simplifying the definition of a planet, and that the information for applying this for exoplanets is easily obtained with Earth- or space-based telescopes.

“The disparity between planets and non-planets is striking,” Margot said. “The sharp distinction suggests that there is a fundamental difference in how these bodies formed, and the mere act of classifying them reveals something profound about nature.”

Margot also found that bodies that can clear their orbits — and therefore qualify as planets — are typically spherical.

“Because a quantitative orbit-clearing criterion can be applied to all planets and exoplanets,” Margot writes, “it is possible to extend the 2006 IAU planet definition to stars other than the Sun and to remove any possible ambiguity about what it means to clear an orbital zone.”

Margot presented his proposal at the annual meeting of the AAS’s Division for Planetary Sciences. It is not known whether the new approach will be considered by the IAU.

Further reading: Margot’s paper, UCLA press release