Three Iron Rings Around A Star Show Where Planets are Forming

Observations with the European Southern Observatory's (ESO) Very Large Telescope Interferometer (VLTI) found various silicate compounds and potentially iron, substances we also find in large amounts in the solar system's rocky planets. Credit: Jenry

Researchers using the ESO’s Very Large Telescope Interferometer (VLTI) have found three iron rings around a young star about 500 light-years away. The rings indicate that planets are forming. What can these rings tell us about how Earth and the other planets in our Solar System formed?

Continue reading “Three Iron Rings Around A Star Show Where Planets are Forming”

This Planet is Way Too Big for its Star

This artist's illustration shows what the star LHS 3145 might look like from the surface of its planet, LHS 314b. Image Credit: Penn State / Penn State. Creative Commons

Scientists love outliers. Outliers are nature’s way of telling us what its boundaries are and where its limits lie. Rather than being upset when an outlier disrupts their understanding, scientists feed on the curiosity that outliers inspire.

It’s true in the case of a new discovery of a massive planet orbiting a small star. That goes against our understanding of how planets form, meaning our planet-formation model needs an update.

Continue reading “This Planet is Way Too Big for its Star”

A Planetary System With Six Sub-Neptunes Locked in Perfect Resonance

SCIENCE & EXPLORATION Orbital geometry of HD110067 29/11/2023 457 VIEWS 19 LIKES 492309 ID LIKE DOWNLOAD XFacebookCopy LinkShare DETAILS RELATED Tracing a link between two neighbour planets at regular time intervals along their orbits, creates a pattern unique to each couple. The six planets of the HD110067 system together create a mesmerising geometric pattern due to their resonance-chain.
Credit: Thibaut Roger/NCCR PlanetS

A team of researchers led by University of Chicago astronomer Rafael Luque analyzed data acquired by both NASA’s Transiting Exoplanet Survey Satellite (TESS) and ESA’s CHaracterising ExOPlanet Satellite (Cheops) and found a unique planetary system. Orbiting a star cataloged as HD110067, this system contains six sub-Neptune planets. Incredibly, all six planets are orbiting in direct resonance with each other. The results of the work were published on November 29 in Nature.

Continue reading “A Planetary System With Six Sub-Neptunes Locked in Perfect Resonance”

ALMA Takes Next-Level Images of a Protoplanetary Disk

This ALMA image of the young star HL Tauri shows rings of dust surrounding the star. The line patterns show the orientation of polarized light. It's the deepest dust polarization image of any protoplanetary disk captured thus far, revealing details about the dust grains in the disk. Credit: NSF/AUI/NRAO/B. Saxton/Stephens et al.

The ESO’s Atacama Large Millimeter/submillimeter Array (ALMA) is perched high in the Chilean Andes. ALMA is made of 66 high-precision antennae that all work together to observe light just between radio and infrared. Its specialty is cold objects, and in recent years, it has taken some stunning and scientifically illuminating images of protoplanetary disks and the planets forming in them.

But its newest image supersedes them all.

Continue reading “ALMA Takes Next-Level Images of a Protoplanetary Disk”

JWST Follows Neon Signs Toward New Thinking on Planet Formation

This artist's illustration shows the young star SZ Chamaeleontis (SZ Cha). SZ Cha is surrounded by a protoplanetary disk of gas and dust. Planets may form in the disk, but they're running out of time. Image Credit: NASA, ESA, CSA, Ralf Crawford (STScI)

Everyone knows that the James Webb Space Telescope is a ground-breaking infrared space telescope that’s helping us better understand the cosmos. The JWST’s discerning infrared eyes are deepening our understanding of everything from exoplanets to primitive galaxies to the birth of stars.

But it’s not the first ground-breaking infrared space telescope we’ve launched. There was IRAS, then ISO, then the Spitzer Space Telescope. The Spitzer is the JWST’s most recent infrared predecessor, and the JWST is observing one of the same targets that the Spitzer did, taking note of some puzzling changes.

Continue reading “JWST Follows Neon Signs Toward New Thinking on Planet Formation”

JWST Searches for Planets in the Fomalhaut System

This image shows Fomalhaut, the star around which the newly discovered planet orbits. Fomalhaut is much hotter than our Sun, 15 times as bright, and lies 25 light-years from Earth. It is blazing through hydrogen at such a furious rate that it will burn out in only one billion years, 10% the lifespan of our star. The field of view is 2.7 x 2.9 degrees.

The Fomalhaut system is nearby in astronomical terms, and it’s also one of the brightest stars in the night sky. That means astronomers have studied it intensely over the years. Now that we have the powerful James Webb Space Telescope the observations have intensified.

The Fomalhaut system has a confounding and complex dusty disk, including a dusty blob. The blob has been the subject of an ongoing debate in astronomy. Can the JWST see through its complexity and find answers to the systems unanswered questions?

Continue reading “JWST Searches for Planets in the Fomalhaut System”

Seeing the Moment Planets Start to Form

ALMA captured this high-resolution image of the protoplanetary disk surrounding DG Taurus at a 1.3 mm wavelength. The young star is still embedded in its disk, and the smooth appearance, absent of ring-like structures, indicates a phase shortly before planets form. Credit: ALMA (ESO/NAOJ/NRAO), S. Ohashi, et al.

Nature makes few duplicates, and planets are as distinct from one another as snowflakes are. But planets all start out in the same circumstances: the whirling disks of material surrounding young stars. ALMA’s made great progress imaging these disks and the telltale gaps excavated by young, still-forming planets.

But new images from ALMA (Atacama Large Millimeter/submillimeter Array) show a star and disk so young that there are no telltale gaps in the disk. Is this the moment that planets start to form?

Continue reading “Seeing the Moment Planets Start to Form”

Arrokoth is Covered in Bizarre Mounds

The large mound structures that dominate one of the lobes of the Kuiper belt object Arrokoth are similar enough to suggest a common origin. Credit: Southwest Research Institute.

When New Horizons flew past Arrokoth in 2019, it revealed close-up images of this enigmatic Kuiper Belt Object for the first time. Astronomers are still studying all the data sent home by the spacecraft, trying to understand this two-lobed object, which looks like a red, flattened snowman.

Scientists have now identified 12 mounds on Arrokoth’s larger lobe, which are roughly the same size – about 5-kilometers long – as well as the same shape, color, and reflectivity. The scientists think their similar look is because they all formed the same way, where icy material slowly accumulated on the surface of Arrokoth.

Continue reading “Arrokoth is Covered in Bizarre Mounds”

Hundreds of Free-Floating Planets Found in the Orion Nebula

This image shows the full survey of the inner Orion Nebula and Trapezium Cluster made using the NIRCam instrument on the NASA/ESA/CSA James Webb Space Telescope. This is the long-wavelength colour composite, which focuses on the gas, dust, and molecules in the region with unprecedented sensitivity in the thermal infrared. Credit: NASA, ESA, CSA / Science leads and image processing: M. McCaughrean, S. Pearson.

It appears that rogue planets – free floating worlds that aren’t gravitationally bound to a parent star – might be more common than we thought. New data from the James Webb Space Telescope have revealed 540 (yes, that’s right) planetary-mass objects in the Orion Nebula and Trapezium Cluster.

If confirmed, this would be by far the largest sample of rogue planets ever discovered.

Continue reading “Hundreds of Free-Floating Planets Found in the Orion Nebula”

This Exoplanet is Probably a Solid Ball of Metal

An illustration of the exoplanet Gliese 367 b. It's an oddball planet that may be composed entirely of iron. Image Credit: NASA

We can’t understand nature without understanding its range. That’s apparent in exoplanet science and in our theories of planetary formation. Nature’s outliers and oddballs put pressure on our models and motivate scientists to dig deeper.

Continue reading “This Exoplanet is Probably a Solid Ball of Metal”