NASA’s New Horizons Makes Major Discoveries: Young Ice Mountains on Pluto and Crispy Young Chasms on Charon

New close-up images of a region near Pluto’s equator reveal a giant surprise -- a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. Credits: NASA/JHU APL/SwRI

New close-up images of a region near Pluto’s equator reveal a giant surprise — a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. Credits: NASA/JHU APL/SwRI
Story/photos expanded[/caption]

APPLIED PHYSICS LABORATORY, LAUREL, MD – Scientists leading NASA’s historic New Horizons mission to the Pluto system announced the first of what is certain to be a tidal wave of new discoveries, including the totally unexpected finding of young ice mountains at Pluto and crispy clear views of young fractures on its largest moon Charon, at a NASA media briefing today (July 15) at the Applied Physics Laboratory (APL) in Laurel, Maryland.

A treasure trove of long awaited data has begun streaming back to Mission Control at Johns Hopkins University Applied Physics Laboratory to the mouth watering delight of researchers and NASA.

With the first ever flyby of Pluto, America completed the initial up close reconnaissance of the planets in our solar system. Pluto was the last unexplored planet, building on missions that exactly started 50 years ago in 1965 when Mariner IV flew past Mars.

“Pluto New Horizons is a true mission of exploration showing us why basic scientific research is so important,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington.

“The mission has had nine years to build expectations about what we would see during closest approach to Pluto and Charon. Today, we get the first sampling of the scientific treasure collected during those critical moments, and I can tell you it dramatically surpasses those high expectations.”

Crisp new view of Pluto’s largest moon, Charon shows a swath of cliffs and troughs stretches about 600 miles (1,000 kilometers) from left to right, suggesting widespread fracturing of Charon’s crust, likely a result of internal processes. At upper right, along the moon’s curving edge, is a canyon estimated to be 4 to 6 miles (7 to 9 kilometers) deep.  Credit: NASA-JHUAPL-SwRI
Crisp new view of Pluto’s largest moon, Charon shows a swath of cliffs and troughs stretches about 600 miles (1,000 kilometers) from left to right, suggesting widespread fracturing of Charon’s crust, likely a result of internal processes. At upper right, along the moon’s curving edge, is a canyon estimated to be 4 to 6 miles (7 to 9 kilometers) deep. Credit: NASA-JHUAPL-SwRI

Today the team announced that New Horizons has already made a totally unexpected discovery showing clear evidence of ice mountains on Pluto’s surface in the bright area informally known as the ‘big heart of Pluto.’

The new close-up image released today showed an icy mountain range near the base of the heart with peaks jutting as high as 11,000 feet (3,500 meters) above the surface, announced John Spencer, New Horizons science team co-investigator at the media briefing.

“It’s a very young surface, probably formed less than 100 million years old,’ said Spencer. “It may be active now.”

Spencer also announce that the heart shaped region will now be named “Tombaugh Reggio” in honor of Clyde Tombaugh, the American astronomer who discovered Pluto in 1930.

“We are seeing water ice.”

“I never would have imagined this!” Spencer exclaimed.

“And I’m very surprised that there are no craters in the first high resolution images.”

The large, heart-shaped region is front and center. Several craters are seen and much of the surface looks reworked rather than ancient. Credit: NASA
Pluto nearly fills the frame in this image from the Long Range Reconnaissance Imager (LORRI) aboard NASA’s New Horizons spacecraft, taken on July 13, 2015 when the spacecraft was 476,000 miles (768,000 kilometers) from the surface. This is the last and most detailed image sent to Earth before the spacecraft’s closest approach to Pluto on July 14. The large, heart-shaped region is front and center. Several craters are seen and much of the surface looks reworked rather than ancient. Credit: NASA-JHUAPL-SwRI

The finding of ice mountains has major scientific implications.

Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape, said the team.

“This may cause us to rethink what powers geological activity on many other icy worlds,” says Spencer of SwRI.

NASA announces discovery of icy mountain ranges on Pluto at July 15 media briefing at Johns Hopkins University Applied Physics Laboratory. Credit: Ken Kremer/kenkremer.com
NASA announces discovery of icy mountain ranges on Pluto at July 15 media briefing at Johns Hopkins University Applied Physics Laboratory. Credit: Ken Kremer/kenkremer.com

“Pluto may have internal activity. There may be geysers or cryovolcanoes,” New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, said during the media briefing. However there is no evidence for them yet.

Additional high resolution images for “Tombaugh Reggio” area are being transmitted back to Earth today and will continue.

“Finding a mountain range of ice is a complete surprise,” Stern noted.

After a nine year voyage through interplanetary space, New Horizons barreled past the Pluto system on Tuesday, July 14 for a history making first ever flyby at over 31,000 mph (49,600 kph), and survived the passage by swooping barely 7,750 miles (12,500 kilometers) above the planet’s amazingly diverse surface.

The team had to wait another 12 hours for confirmation that the spacecraft lived through the daring encounter when signals were reacquired as planned at 8:53 p.m. EDT last night. Since New Horizons swung past Pluto to continue its voyage, the probe is now more than million miles outbound just 24 hours later.

NASA Associate Administrator for the Science Mission Directorate John Grunsfeld, left, New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO, second from left, New Horizons Mission Operations Manager Alice Bowman of the Johns Hopkins University Applied Physics Laboratory (APL), second from right, and New Horizons Project Manager Glen Fountain of APL, right, are seen at the conclusion of a press conference after the team received confirmation from the spacecraft that it has completed the flyby of Pluto, Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit:  Ken Kremer/kenkremer.com
NASA Associate Administrator for the Science Mission Directorate John Grunsfeld, left, New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO, second from left, New Horizons Mission Operations Manager Alice Bowman of the Johns Hopkins University Applied Physics Laboratory (APL), second from right, and New Horizons Project Manager Glen Fountain of APL, right, are seen at the conclusion of a press conference after the team received confirmation from the spacecraft that it has completed the flyby of Pluto, Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit: Ken Kremer/kenkremer.com

The New Frontiers spacecraft was built by a team led by Stern and included researchers from SwRI and the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. APL also operates the New Horizons spacecraft and manages the mission.

NASA Administrator Charles Bolden congratulates the New Horizons team after successful Pluto flyby on July 14, 2015, to cheering crowd at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, during  live NASA TV media briefing. Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden congratulates the New Horizons team after successful Pluto flyby on July 14, 2015, to cheering crowd at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, during live NASA TV media briefing. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite coverage of the Pluto flyby on July 14 from the Johns Hopkins University Applied Physics Laboratory (APL).

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New Horizons science team co-investigator John Spencer examines print of the newest Pluto image taken on July 13, 2015 after the successful Pluto flyby. Credit: Ken Kremer/kenkremer.com
New Horizons science team co-investigator John Spencer examines print of the newest Pluto image taken on July 13, 2015 after the successful Pluto flyby. Credit: Ken Kremer/kenkremer.com

NASA’s New Horizons Zooms By Pluto, Solar Systems Last Planet – King of The Kuiper Belt

The large, heart-shaped region is front and center. Several craters are seen and much of the surface looks reworked rather than ancient. Credit: NASA

APPLIED PHYSICS LABORATORY, LAUREL, MD – With this morning’s (July 14) do or die flyby of Pluto by NASA’s New Horizons spacecraft at 7:49 a.m. EDT while traveling over 3 billion miles away, America completed the initial up close reconnaissance of the last explored planet of our solar system at its frigid, far flung reaches and revealed a remarkably differentiated world dazzling us with alien terrain far beyond anyone’s expectation.

New Horizons barreled past Pluto for a history making first ever flyby at over 31,000 mph (49,600 kph) and passed only 7,750 miles (12,500 kilometers) above the planet’s amazingly diverse surface.

To mark the occasion, NASA released the highest resolution image ever taken of Pluto as the probe swooped past its prey this morning, centered on the two lobed, differentiated ‘heart’.

But because the one ton piano shaped spacecraft has been out of touch with Mission Control for the past day as planned and busily gathering hordes of priceless data, confirmation of a successful flyby didn’t reach Mission Control on Earth until half a day later when New Horizons ‘phoned home’ with critical engineering data confirmed the health of the probe at 8:53 p.m. EDT this evening- basically saying “I’m Alive”.

“With this mission we have we have visited every planet in our solar system,” proclaimed NASA Administrator Charles Bolden this evening, July 14, to a packed house of cheering team members, invited guests and media including Universe Today at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, during a live NASA TV media briefing shortly after accomplishing the historic feat after the nine year interplanetary voyage.

“No other nation has that capability. It’s a historic day for exploration.”

“We did it! exclaimed New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, during the live media briefing.

“That’s one small step for New Horizons, one giant leap for mankind,” Stern added, paraphrasing humanity’s first moonwalker, Neil Armstrong.

“New Horizons completes the first planetary reconnaissance, a capstone of our time.”

The Pluto flyby took place on the 50th anniversary of the first interplanetary flyby by America’s Mariner 4 spacecraft when it soared past Mars in 1965.

Pluto and Charon in False Color Show Compositional Diversity. This July 13, 2015, image of Pluto and Charon is presented in false colors to make differences in surface material and features easy to see. It was obtained by the Ralph instrument on NASA's New Horizons spacecraft, using three filters to obtain color information, which is exaggerated in the image.  These are not the actual colors of Pluto and Charon, and the apparent distance between the two bodies has been reduced for this side-by-side view.   Credit: NASA/APL/SwRI
Pluto and Charon in False Color Show Compositional Diversity. This July 13, 2015, image of Pluto and Charon is presented in false colors to make differences in surface material and features easy to see. It was obtained by the Ralph instrument on NASA’s New Horizons spacecraft, using three filters to obtain color information, which is exaggerated in the image. These are not the actual colors of Pluto and Charon, and the apparent distance between the two bodies has been reduced for this side-by-side view. Credit: NASA/APL/SwRI

“Today we inspired a whole generation of new explorers,” Bolden said to the crowd emotionally. “And you have more to do!” – as he pointedly acknowledge a crowd of young people in the room.

Pluto is covered by a spectacular array of craters, mountains, valleys, a whale shaped dark feature and a huge heart-shaped continent of pinkinsh bright ice as seen in the image taken on July 13 when the spacecraft was 476,000 miles (768,000 kilometers) from the surface.

“New Horizons has sent back the most detailed data ever of Pluto and its system of moons.”

“Every mission expands our horizons and bring us one step further on the Journey to Mars,” said Bolden regarding NASA’s agency wide plans to send astronauts to the Red Planet during the 2030s.

“You have made Pluto almost human.”

NASA Administrator Charles Bolden congratulates the New Horizons team after successful Pluto flyby on July 14, 2015 g, July 14, to cheering crowd at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, during  live NASA TV media briefing. Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden congratulates the New Horizons team after successful Pluto flyby on July 14, 2015, to cheering crowd at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, during live NASA TV media briefing. Credit: Ken Kremer/kenkremer.com

Tomorrow, the more than year long data playback begins.

“The best is yet to come,” said John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, at the media briefing.

“You haven’t seen anything yet. There are many more months of data to be sent back.”

“This is like the Curiosity landing. This is just the beginning for fundamental discoveries. It’s a tremendous moment in human history.”

New Horizons Principal Investigator Alan Stern celebrates in mission control after reception of signal from NASA’s New Horizons probe at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland after the successful Pluto flyby on July 14, 2015.  Credit: Ken Kremer/kenkremer.com
New Horizons Principal Investigator Alan Stern celebrates in mission control after reception of signal from NASA’s New Horizons probe at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland after the successful Pluto flyby on July 14, 2015. Credit: Ken Kremer/kenkremer.com

Congratulations rolled in from around the world including President Obama and world renowned physicist Stephen Hawking.

It has been three decades since we last visited planetary bodies at the outer reaches of our solar system when Voyager 2 flew past Uranus and Neptune in 1986 and 1989.

The New Frontiers spacecraft was built by a team led by Stern and included researchers from SwRI and the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. APL also operates the New Horizons spacecraft and manages the mission.

11713794_669270766536791_5453013284858242275_o

Watch for Ken’s continuing onsite coverage of the Pluto flyby on July 14/15 from the Johns Hopkins University Applied Physics Laboratory (APL).

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New Horizons science team co-investigator John Spencer examines print of the newest Pluto image taken on July 13, 2015 after the successful Pluto flyby. Credit: Ken Kremer/kenkremer.com
New Horizons science team co-investigator John Spencer examines print of the newest Pluto image taken on July 13, 2015 after the successful Pluto flyby. Credit: Ken Kremer/kenkremer.com
How many planets are there? A resounding 9! Says New Horizons Principal Investigator Alan Stern and Ken Kremer/Universe Today, flashing Stern’s signature ‘9 Planets’ call sign. Credit: Ken Kremer/kenkremer.com
How many planets are there? A resounding 9! Says New Horizons Principal Investigator Alan Stern and Ken Kremer/Universe Today, flashing Stern’s signature ‘9 Planets’ call sign. Credit: Ken Kremer/kenkremer.com

New Horizons Phones Home, Flyby a Success

New Horizons Flight Controllers celebrate after they received confirmation from the spacecraft that it had successfully completed the flyby of Pluto, Tuesday, July 14, 2015 in the Mission Operations Center (MOC) of the Johns Hopkins University Applied Physics Laboratory (APL), Laurel, Maryland. Credit: NASA/Bill Ingalls


Watch Pluto grow in this series of photos taken during New Horizons’ approach

Whew! We’re out of the woods. On schedule at 9 p.m. EDT, New Horizons phoned home telling the mission team and the rest of the on-edge world that all went well. The preprogrammed “phone call” —  a 15-minute series of status messages beamed back to mission operations at the Johns Hopkins University Applied Physics Laboratory in Maryland through NASA’s Deep Space Network — ended a tense 21-hour waiting period. 

The team deliberately suspended communications with New Horizons until it was beyond the Pluto system, so the spacecraft could focus solely on data gathering. With a mountain of information now queued up, it’s estimated it will take 16 months to get it all back home. As the precious morsels arrive bit by byte, New Horizons will sail deeper into the Kuiper Belt looking for new targets until it ultimately departs the Solar System.

After Pluto, NASA hopes to send New Horizons to another asteroid or two in the Kuiper Belt and perform a flyby and reconnaissance similar to the Pluto mission. Credt: Alex Parker / SwRI
After Pluto, NASA hopes to send New Horizons to another asteroid or two in the Kuiper Belt to perform a flyby and reconnaissance similar to the Pluto mission. Credit: Alex Parker / SwRI

Assuming NASA funds a continuing mission, the team hopes to direct the spacecraft to one or two additional Kuiper Belt objects (KBO) over the next five to seven years. There are presently three possible targets – PT1, PT2, and PT3. (PT = potential target). PT1, imaged by the Hubble Space Telescope, looks like the best option at the moment and could by reached by January 2019. If you thought Pluto was small, PT 1 is only about 25 miles (40 km) across. Much lies ahead.

The image at left shows a KBO at an estimated distance of approximately 4 billion miles from Earth. Its position noticeably shifts between exposures taken approximately 10 minutes apart. The image at right shows a second KBO at roughly a similar distance.
The image at left shows a KBO at an estimated distance of approximately 4 billion miles from Earth. Its position noticeably shifts between exposures taken approximately 10 minutes apart. The image at right shows a second KBO at roughly a similar distance. Credit: NASA, ESA, SwRI, JHU/APL, and the New Horizons KBO Search Team

Pluto – Just Look at the Detail!

The large, heart-shaped region is front and center. Several craters are seen and much of the surface looks reworked rather than ancient. Credit: NASA

We did it! At 7:49 a.m. EDT today New Horizons made history when it zoomed within 7,800 miles of Pluto, the most remote object ever visited in the Solar System. I thought you’d like to see our best view yet of Pluto in this last and sharpest image taken before closest approach. The level of detail is fantastic.

Universe Today’s Ken Kremer is on the scene at mission control, and we’ll have much more news and analysis for you later  today.  For now, here’s a taste.

Members of NASA's New Horizons team react to seeing the latest image of Pluto. Credit: NASA
Members of NASA’s New Horizons team react to seeing the latest image of Pluto. Credit: NASA


Pluto encounter July 14th 11:00-12:00 UTC (6:00am CDT) by Tom Ruen

Efrain Morales created this fine document of Pluto seen from New Horizons and photographed at nearly
Efrain Morales created this fine document of the Pluto encounter by combining the recent New Horizons photo with images taken through his telescope about 6 1/2 hours before closest approach. Images taken on July 10 and 11 show Pluto’s slow crawl across the starfield. Credit: Efrain Morales
This graphic presents a view of Pluto and Charon as they would appear if placed slightly above Earth's surface and viewed from a great distance.  Recent measurements obtained by New Horizons indicate that Pluto has a diameter of 2370 km, 18.5% that of Earth's, while Charon has a diameter of 1208 km, 9.5% that of Earth's. Credit: NASA/JHUAPL/SWRI
To give you a better idea of how small New Horizons’ targets are, this graphic shows Pluto and Charon as they would appear if placed slightly above Earth’s surface and viewed from a great distance. Recent measurements obtained by New Horizons indicate that Pluto has a diameter of 1,473 miles (2370 km, making it the largest known Kuiper Belt object, while Charon has a diameter of 751 miles (1208 km). Credit: NASA/JHUAPL/SWRI

Pluto has a very complex surface. The fact that large areas show few craters – as compared to say, Ceres or Vesta – shows that there have relatively recent changes there. Maybe very recent. Alan Stern, principal investigator for the mission, was asked by a report at this morning’s press conference if it snows on Pluto. His answer: “It sure looks like it.”

Mission principal investigator has reason to smile this morning during the press conference. So far, New Horizons is doing well. Credit: NASA-TV
Mission principal investigator has reason to smile this morning during the press conference. So far, New Horizons is doing well. Credit: NASA-TV

Stern is also confident the spacecraft survived closest approach without getting bulleted by dust. We should know tonight when it “phones home” around 9 p.m. EDT.

Even Rosetta couldn't resist a look at Pluto. On July 12, the spacecraft took many images of the distant world and stacked them to create the photos above. Left: The unprocessed image is obscured by dust grains in Comet 67P/C-G’s coma. Middle: Pluto’s background of stars as seen from Rosetta. Right: The processed image shows Pluto as a bright spot within the blue circle. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Even Rosetta couldn’t resist a look at Pluto. On July 12, the spacecraft took many images of the distant world which were stacked to create the photos above. Left: The unprocessed image is obscured by dust grains in Comet 67P/C-G’s coma. Middle: Pluto’s background of stars as seen from Rosetta. Right: The processed image shows Pluto as a bright spot within the blue circle.
Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

With the Pluto flyby the latest achievement in over 50 years of humankind’s exploration of the Solar System’s wild assortment of moons, planets and comets, see the bounty of our efforts in this wonderful compendium titled From Pluto to the Sun by Jon Keegan, Chris Canipe and Alberto Cervantes.

Charon: Pluto’s Largest Moon

Charon, Pluto's Largest Moon
Chasms, craters, and a dark north polar region are revealed in this image of Pluto’s largest moon Charon taken by New Horizons on July 11, 2015. The annotated version includes a diagram showing Charon’s north pole, equator, and central meridian, with the features highlighted. Credits: NASA/JHUAPL/SWRI

Beginning in 1978, astronomers began to discover that Pluto – the most distant known object from the Sun (at the time) – had its own moons. What had once been thought to be a solitary body occupying the outer edge of our Solar System suddenly appeared to have a system with a large moon Charon. And as time went on, a total of four moons would be discovered.

Of these, Charon is the largest and most easily observed, hence why it was discovered first. In addition to being the biggest of its peers, its also quite large in comparison to Pluto. As such, Charon has always had something of a unique relationship with its parent body, and stands apart as far as objects in the outer Solar System are concerned.

Continue reading “Charon: Pluto’s Largest Moon”

Big Discovery from NASA’s New Horizons; Pluto is Biggest Kuiper Belt Body

A portrait from the final approach. Pluto and Charon display striking color and brightness contrast in this composite image from July 11, showing high-resolution black-and-white LORRI images colorized with Ralph data collected from the last rotation of Pluto. Color data being returned by the spacecraft now will update these images, bringing color contrast into sharper focus. Credits: NASA-JHUAPL-SWRI

Plutophiles everywhere rejoice. On the eve of history’s first ever up close flyby of mysterious Pluto on Tuesday morning July 14 making the first detailed scientific observations, NASA’s New Horizons has made a big discovery about one of the most basic questions regarding distant Pluto. How big is it?

Measurements by New Horizons gathered just in the past few days as the spacecraft barrels towards the Pluto planetary system now confirm that Pluto is indeed the biggest object in the vast region beyond the orbit of Neptune known as the Kuiper Belt.

Pluto is thus the undisputed King of the Kuiper Belt!

Pluto measures 1,473 miles (2,370 kilometers) in diameter, which is at the higher end of the range of previous estimates.

The big news was announced today, by New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, during a live media briefing at Pluto mission control at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland.

“This settles the debate about the largest object in the Kuiper Belt,” Stern noted.

11713794_669270766536791_5453013284858242275_o

New Horizons will swoop to within about 12,500 kilometers (nearly 7,750 miles) of Pluto’s surface and about 17,900 miles (28,800 kilometers) from Charon during closest approach at approximately 7:49 a.m. EDT (11:49 UTC) on July 14.

The new and definitive measurement of Pluto’s size is based on images taken by the high resolution Long Range Reconnaissance Imager (LORRI) to make this determination.

“The size of Pluto has been debated since its discovery in 1930. We are excited to finally lay this question to rest,” said mission scientist Bill McKinnon, Washington University, St. Louis.

Pluto was the first planet discovered by an American, Clyde Tombaugh.

Pluto’s “Heart” is seen in this new image from New Horizons’ Long Range Reconnaissance Imager (LORRI) received on July 8, 2015 after normal science operations resumed following the scary July 4 safe mode anomaly that briefing shut down all science operations.   The LORRI image has been combined with lower-resolution color information from the Ralph instrument.   Credits: NASA-JHUAPL-SWRI
Pluto’s “Heart” is seen in this new image from New Horizons’ Long Range Reconnaissance Imager (LORRI) received on July 8, 2015 after normal science operations resumed following the scary July 4 safe mode anomaly that briefing shut down all science operations. The LORRI image has been combined with lower-resolution color information from the Ralph instrument. Credits: NASA-JHUAPL-SWRI

Pluto is bigger than Eris, another big Kuiper Belt object discovered in 2005 by Mike Brown of Caltech, which is much further out from the Sun than Pluto. The discovery of Eris further fueled the controversial debate about the status of Pluto’s planethood.

Eris comes in second in size in the Kuiper Belt at only 1,445 miles (2,326 km) in diameter.

On July 11, 2015, New Horizons captured a world that is growing more fascinating by the day. For the first time on Pluto, this view reveals linear features that may be cliffs, as well as a circular feature that could be an impact crater. Rotating into view is the bright heart-shaped feature that will be seen in more detail during New Horizons’ closest approach on July 14. The annotated version includes a diagram indicating Pluto’s north pole, equator, and central meridian. Credits: NASA/JHUAPL/SWRI
On July 11, 2015, New Horizons captured a world that is growing more fascinating by the day. For the first time on Pluto, this view reveals linear features that may be cliffs, as well as a circular feature that could be an impact crater. Rotating into view is the bright heart-shaped feature that will be seen in more detail during New Horizons’ closest approach on July 14. The annotated version includes a diagram indicating Pluto’s north pole, equator, and central meridian.
Credits: NASA/JHUAPL/SWRI

Stern also noted that because Pluto is slight bigger than the average of previous estimates, its density is slightly lower than previously thought. Therefore the fraction of ice in its interior is slightly higher and the fraction of rock is slightly lower. But further data is required to pin the density down more precisely.

The uncertainty in Pluto’s size has persisted for decades and was due to the fact that Pluto has a very tenuous atmosphere composed of nitrogen.

Furthermore Pluto’s lowest atmospheric layer called the troposphere, is shallower than previously believed.

On the other hand, its largest moon Charon with which it forms a double planet, lacks a substantial atmosphere and its size was known with near certainty based on ground-based telescopic observation.

New Horizons LORRI imagery has confirmed that Charon measures 751 miles (1208 km) kilometers) across.

Stern also confirmed that frigid Pluto also has a polar cap composed of methane and nitrogen ices based on measurements from the Alice instrument.

LORRI has also zoomed in on two of Pluto’s smaller moons, Nix and Hydra.

“We knew from the time we designed our flyby that we would only be able to study the small moons in detail for just a few days before closest approach,” said Stern. “Now, deep inside Pluto’s sphere of influence, that time has come.”

The approximate sizes of Pluto’s moons Nix and Hydra compared to Denver, Colorado. While Nix and Hydra are illustrated as circles in this diagram, mission scientists anticipate that future observations by New Horizons will show that they are irregular in shape.  Credits: JHUAPL/Google
The approximate sizes of Pluto’s moons Nix and Hydra compared to Denver, Colorado. While Nix and Hydra are illustrated as circles in this diagram, mission scientists anticipate that future observations by New Horizons will show that they are irregular in shape. Credits: JHUAPL/Google

But because they are so small, accurate measurement with LORRI could only be made in the final week prior to the July 14 flyby.

Nix is estimated to be about 20 miles (about 35 kilometers) across, while Hydra is roughly 30 miles (roughly 45 kilometers) across. These sizes lead mission scientists to conclude that their surfaces are quite bright, possibly due to the presence of ice.

Determinations about Pluto’s two smallest moons, Kerberos and Styx, will be made later at some point during the 16-month long playback of data after the July 14 encounter.

It has been three decades since we last visited planetary bodies at the outer reaches of our solar system when Voyager 2 flew past Uranus and Neptune in 1986 and 1989.

New Horizons' last look at Pluto's Charon-facing hemisphere reveals the highest resolution view of four intriguing darks spots for decades to come.  This image, taken early the morning of July 11, 2015, shows newly-resolved linear features above the equatorial region that intersect, suggestive of polygonal shapes. This image was captured when the spacecraft was 2.5 million miles (4 million kilometers) from Pluto.  Credit: NASA/JHUAPL/SWRI
New Horizons’ last look at Pluto’s Charon-facing hemisphere reveals the highest resolution view of four intriguing darks spots for decades to come. This image, taken early the morning of July 11, 2015, shows newly-resolved linear features above the equatorial region that intersect, suggestive of polygonal shapes. This image was captured when the spacecraft was 2.5 million miles (4 million kilometers) from Pluto. Credit: NASA/JHUAPL/SWRI

New Horizons is closing in fast on its quarry at a whopping 31,000 mph (49,600 kph) after a nine year interplanetary voyage and is now less than half a million miles away, in the final hours before closest approach.

The New Frontiers spacecraft was built by a team led by Stern and included researchers from SwRI and the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. APL also operates the New Horizons spacecraft and manages the mission.

Watch for Ken’s continuing onsite coverage of the Pluto flyby on July 14 from the Johns Hopkins University Applied Physics Laboratory (APL).

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Pluto’s Moon Hydra

The Pluto system seen from the surface of Hydra. Credit: NASA

In 1930, Pluto was observed for the first time. For many decades, astronomers thought that the “ninth planet of the Solar System” was a solitary object. But by 1978, astronomers discovered that it also had a moon roughly half its size. This moon would come to be known as Charon, and it would be the first of many discoveries made within the Pluto’s system.

In fact, within the last decade, four additional satellites have been discovered in orbit of Pluto. Of these, the outermost to be observed is the moon now known as Hydra.

Discovery:
Hydra was first discovered in June 2005 by the Hubble Space Telescope‘s “Pluto Companion Search Team”, using images that were taken on May 15th and 18th of that year. At the time, the team was preparing for the launch of the New Horizons mission to Pluto, seeking to gain as much information as they could about any addition Plutonian moons.

By June, Hydra was again discovered. This time, it was independently observed by two members of the team, along with Nix –  another small Plutonian moon. The discoveries were announced on October 31st, 2005, and were provisionally given the designations of S/2005 P 1 and S/2005 P 2 (for Hydra and Nix, respectively).

This illustration shows the scale and comparative brightness of Pluto’s small satellites. The surface craters are for illustration only and are not real. Credits: NASA/ESA/A. Feild (STScI)
Artist’s illustration comparing the scale and comparative brightness of Pluto’s small satellites.
Credits: NASA/ESA/A. Feild (STScI)

Name:
By June 21st, 2006, the name Hydra was assigned by the IAU (along with the formal designation Pluto III). The name Hydra, which is derived from the nine-headed serpent of Greek mythology, was selected for two reasons. The letter H refers to the Hubble Telescope, which was used to make the discovery, while the nine-headed serpent referred to Pluto’s tenure as the ninth planet of the Solar System.

Size, Mass and Orbit:
Although its size has not been directly measured, calculations based on its brightness have indicated that Hydra’s diameter is between 40 and 160 kilometers (38 and 104 mi). Similar measurements estimate its mass to be in the vicinity of 4.2 x 1017 kg. Because of the uncertainty in these measurements, Hydra is either comparable in size to either the main moons of Saturn and Neptune, or the inner and irregular moons of Jupiter, Saturn and Uranus.

Hydra orbits Pluto at a distance of about 65,000 km with a very low eccentricity (0.0059) and an orbital inclination of about 0.24°. It orbits in the same plane as Charon and Nix and has an orbital period of 38.2 days.

Composition:
Little is known about Hydra’s composition, and its density and albedo are both currently unknown. However, it is believed that if its diameter is towards the lower end of its estimated range (40 km), then it must have a geometric albedo similar to Charons (35%).

Labeled image of Hydra released upon IAU name approval. Credit: NASA/ESA/Hubble
Labeled image of Hydra released upon IAU name approval. Credit: NASA/ESA/Hubble

However, assuming it is at the higher end of that range, it would likely have a reflectivity of about 4%, like the darkest Kuiper belt objects. Like all outer bodies in the outer Solar System, and its host planet Pluto, it is possible that Hydra’s composition is differentiated into a rocky core and an icy mantle that contains nitrogen and methane in ice form.

At the time of its discovery, Hydra appeared to be brighter than Nix. Observations made with the Hubble Telescope in 2005–06, which specifically targeting the two moons, once again confirmed that Hydra is the brighter of the two. Hydra appears to be spectrally neutral like Charon and Nix (i.e. greyish), whereas Pluto is reddish.

Interesting Facts:
Hydra, not being massive enough to form a spheroid under its own gravity, is believed to be oblong in shape – the same holds true for Pluto’s moon of Nix. As with the rest of the Pluto system, Hydra was imaged by NASA’s New Horizons spacecraft in February of 2015. When New Horizons conducts its flyby at 7:49:57 a.m. EDT, July 14, 2015, it will provide the most detailed images of Hydra and the Pluto system to date.

We have several interesting articles on Pluto’s moon of Hydra. Here’s one on the First New Images of Pluto from New Horizons, and New Horizons Now Close Enough to See Pluto’s Smaller Moons.

For more information on the constellation of Hydra, click here. For more information on New Horizons mission to Hydra, click here.

Naming Pluto: Christening Features on Brave New Worlds

Artist's impression of Charon (left) and Pluto (right), showing their relative sizes. Credit:

‘Here be Dragons…’ read the inscriptions of old maps used by early seafaring explorers. Such maps were crude, and often wildly inaccurate.

The same could be said for our very understanding of distant planetary surfaces today. But this week, we’ll be filling in one of those ‘terra incognita’ labels, as New Horizons conducts humanity’s very first reconnaissance of Pluto and its moons.

The closest approach for New Horizons is set for Tuesday, July 14th at 11:49 UT/7:49 AM EDT, as the intrepid spacecraft passes 12,600 kilometres (7,800 miles) from Pluto’s surface. At over 4 light hours or nearly 32 astronomical units (AUs) away, New Horizons is on its own, and must perform its complex pirouette through the Pluto system as it cruises by at over 14 kilometres (8 miles) a second.

This also means that we’ll be hearing relatively little from the spacecraft on flyby day, as it can’t waste precious time pointing its main dish back at the Earth. With a downlink rate of 2 kilobits a second—think ye ole 1990’s dial-up, plus frozen molasses—it’ll take months to finish off data retrieval post flyby. A great place to watch a simulation of the flyby ‘live’ is JPL’s Eyes on the Solar System, along with who is talking to New Horizons currently on the Deep Space Network with DSN Now.

A snapshot of the current July 13th view of New Horizons as it nears Pluto. (Image credit: NASA's Eyes on the Solar System).
A snapshot of the current July 13th view of New Horizons as it nears Pluto. (Image credit: NASA’s Eyes on the Solar System).

Launched in 2006, New Horizons is about to join the ranks of nuclear-fueled explorers that have conducted first time reconnaissance of solar system objects.

Bob King also wrote up an excellent timeline of New Horizons events for Universe Today yesterday. Also be sure to check out the Planetary Society’s in-depth look at what to expect by Emily Lakdawalla.

Seems strange that after more than a decade of recycling the same blurry images and artist’s conceptions in articles, we’re now getting a new and improved shot of Pluto and Charon daily!

To follow the tale of Pluto is to know the story of modern planetary astronomy. Discovered in 1930 by American astronomer Clyde Tombaugh from the Lowell Observatory, Pluto was named by 11-year old Venetia Burney. Venetia just passed away in 2009, and there’s a great short documentary interview with her entitled Naming Pluto.

Blink comparitor
The blink comparitor Clyde Tombaugh used to discover Pluto, on display at the Lowell Observatory. Image Credit: David Dickinson

Fun fact: Historians at the Carnegie Institute recently found images of Pluto on glass plates… dated 1925, from five years before its discovery.

Despite the pop culture reference, Pluto was not named after the Disney dog, but after the Roman god of the underworld. Pluto the dog was not named in Disney features until late 1930, and if anything, the character was more than likely named after the buzz surrounding the newest planet on the block.

We’re already seeing features on Pluto and Charon in the latest images, such as the ‘heart,’ ‘donut,’ and the ‘whale’ of Pluto, along with chasms, craters and a dark patch on Charon. The conspicuous lack of large craters on Pluto suggests an active world.

The International Astronomical Union (IAU) convention for naming any new moons discovered in the Plutonian system specifies characters related to the Roman god Pluto and tales of the underworld.

Image credit:
Brake for New Horizons on July 14th… Image credit: David Dickinson

With features, however, cartographers of Pluto should get a bit more flexibility. Earlier this year, the Our Pluto campaign invited the public to cast votes to name features on Pluto and Charon related to famous scientists, explorers and more. The themes of ‘fictional explorers and vessels’ has, of course, garnered much public interest, and Star Trek’s Mr. Spock and the Firefly vessel Serenity may yet be memorialized on Charon. Certainly, it would be a fitting tribute to the late Leonard Nimoy. We’d like to see Clyde Tombaugh and Venetia Burney paid homage to on Pluto as well.

We’ve even proposed the discovery of a new moon be named after the mythological underworld character Alecto, complete with a Greek ‘ct’ spelling to honor Clyde Tombaugh.

The discovery and naming of Charon in 1978 by astronomer Robert Christy set a similar precedent. Christy choose the name of the mythological boatman who plied the river Styx (which also later became a Plutonian moon) as it included his wife Charlene’s nickname ‘Char.’ This shibboleth  also set up a minor modern controversy as to the exact pronunciation of Charon, as the mythological character is pronounced with a hard ‘k’ sound, but most folks (including NASA) say the moon as ‘Sharon’ in keeping with Christy’s in-joke that slipped past the IAU.

And speaking of Pluto’s large moon, someone did rise to the occasion and take our ‘Charon challenge,’ we posed during the ongoing Pluto opposition season recently. Check out this amazing capture of the +17th magnitude moon winking in and out of view next to Pluto courtesy of Wendy Clark:

Image credit
Click here to see the animation of the possible capture of Charon near Pluto. Image credit and copyright: Wendy Clark

Clark used the 17” iTelescope astrograph located at Siding Spring Observatory in Australia to tease out the possible capture of the itinerant moon.

Great job!

What’s in a name? What strange and wonderful discoveries await New Horizons this week? We should get our very first signal back tomorrow night, as New Horizons ‘phones home’ with its message that it survived the journey around 9:10 PM EDT/1:10 UT. Expect this following Wednesday—in the words of New Horizons principal Investigator Alan Stern—to begin “raining data,” as the phase of interpreting and evaluating information begins.

Image credit
The women who power the New Horizons mission to Pluto. Image credit: SwRI/JHUAPL

And there’s more in store, as the New Horizons team will make the decision to maneuver the spacecraft for a rendezvous with a Kuiper Belt Object (KBO) next month. Said KBO flyby will occur in the 2019-2020 timeframe, and perhaps, we’ll one day see a Pluto orbiter mission or lander in the decades to come…

Maybe one way journeys to ‘the other Red Planet’ are the wave of the future.’ Pluto One anyone?

Charon Up Close Reveals Colossal Chasms and Craters: 1 Day and 1 Million Miles Out from Pluto Flyby

Chasms, craters, and a dark north polar region are revealed in this image of Pluto’s largest moon Charon taken by New Horizons on July 11, 2015. The annotated version includes a diagram showing Charon’s north pole, equator, and central meridian, with the features highlighted. Credits: NASA/JHUAPL/SWRI

Chasms, craters, and a dark north polar region are revealed in this image of Pluto’s largest moon Charon taken by New Horizons on July 11, 2015. The annotated version includes a diagram showing Charon’s north pole, equator, and central meridian, with the features highlighted. Credits: NASA/JHUAPL/SWRI
Story/imagery updated[/caption]

In the final days before humankinds first ever flyby of mysterious and tantalizing Pluto for the history making up close visit on Tuesday, July 14, NASA’s New Horizons spacecraft has just delivered the sharpest and most stunning view yet of its binary companion Charon – and unveiled it to be a geologically rich world with colossal chasms, a multitude of craters and a humongous dark splotch in the northern regions. It’s obviously quite different in appearance and varies in composition from its larger planetary host.

Indeed the largest of Charon’s chasms stretches farther than Earth’s Grand Canyon. And it’s taken New Horizons over nine years speeding through space – since launching back in 2006 as the fastest spacecraft departing Earth – to get close enough to see these wonders for the first time.

“The most pronounced chasm, which lies in the southern hemisphere, is longer and miles deeper than Earth’s Grand Canyon,” says William McKinnon, deputy lead scientist with New Horizon’s Geology and Geophysics investigation team, in a NASA statement.

To put that into perspective, consider this; Charon is only about 750 miles (1200 kilometers) across, about half the diameter of Pluto. The Grand Canyon stretches 277 miles (446 km) across the western United States and is up to 18 miles (29 km) wide and attains a depth of over a mile (6093 feet or 1857 meters). Thus Charon’s ‘Grand Canyon’ is truly gargantuan in comparison to its moons size when compared to our Grand Canyon.

At 1471 miles (2368 km) across, Pluto is about half the diameter of the United States. Both Pluto and Charon and largely composed of icy materials, with much less rock compared to the terrestrial planets like Earth.

“This is the first clear evidence of faulting and surface disruption on Charon,” says McKinnon, who is based at the Washington University in St. Louis.

“New Horizons has transformed our view of this distant moon from a nearly featureless ball of ice to a world displaying all kinds of geologic activity.”

Chasms, craters, and a dark north polar region are revealed in this image of Pluto’s largest moon Charon taken by New Horizons on July 11, 2015.  Credits: NASA/JHUAPL/SWRI
Chasms, craters, and a dark north polar region are revealed in this image of Pluto’s largest moon Charon taken by New Horizons on July 11, 2015. Credits: NASA/JHUAPL/SWRI

The exquisite new image of Charon’s chasms and canyons was just released by NASA this evening, Sunday, July 12. It was taken yesterday, Saturday, July 11, by New Horizons Long Range Reconnaissance Imager (LORRI) at a distance of 2.5 million miles (4 million kilometers) from Pluto and Charon, and radioed back to Earth today.

The largest crater seen in the July 11 images lies near Charon’s south pole and is about 60 miles (96.5 kilometers) across.

“The brightness of the rays of material blasted out of the crater suggest it formed relatively recently in geologic terms, during a collision with a small body some time in the last billion million years,” says the team.

“The darkness of the crater’s floor is especially intriguing,” says McKinnon.

“One explanation is that the crater has exposed a different type of icy material than the more reflective ices that lie on the surface. Another possibility is that the ice in the crater floor is the same material as its surroundings but has a larger ice grain size, which reflects less sunlight. In this scenario, the impactor that gouged the crater melted the ice in the crater floor, which then refroze into larger grains.”

New Horizons is now merely one day and one million miles (1.6 million km) out from its history making encounter with the Pluto planetary system – some three billion miles (4.8 billion km) from Earth. It passed the million mile milestone at 11:23 p.m. EDT, Sunday night July 12.

And its closing in fast on its quarry at a whopping 31,000 mph (49,600 kph) after a nine year interplanetary voyage.

Facts about Pluto. Credit: NASA
Facts about Pluto. Credit: NASA

The high resolution LORRI imager is achieving an image resolution of 5 mile per pixel at this moment at a million miles away. And it will gets thousands of times better during the closest approach.

“Features as small as the lakes in New York’s Central Park and wharfs on the Hudson will be resolved,” said New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, during a live mission update today, July 12. The image resolution will reach a maximum of about 230 feet (70 meters).

New Horizons suite of seven science instruments will collected 44 gigabits of data during the flyby encounter period lasting from July 7 to July 16, from Pluto, Charon and the four tiny moons – Hydra, Styx, Nix and Kerberos.

New Horizons will swoop to within about 12,500 kilometers (nearly 7,750 miles) of Pluto’s surface and about 17,900 miles (28,800 kilometers) from Charon during closest approach at approximately 7:49 a.m. EDT (11:49 UTC) on July 14.

Pluto and Charon are gravitationally locked with an orbital period of 6.4 days, so they always show the same face to one another. They orbit about 12,160 mi (19,570 kilometers) apart but about a center of gravity, or barycenter, above the surface of Pluto, unlike any of the other major bodies in our solar system.

Image of Pluto and Charon from July 8, 2015; color information obtained earlier in the mission from the Ralph instrument has been added.  Credits: NASA-JHUAPL-SWRI
Image of Pluto and Charon from July 8, 2015; color information obtained earlier in the mission from the Ralph instrument has been added. Credits: NASA-JHUAPL-SWRI

Charon is by far the largest of Pluto’s five moons. The new July 11 image also shows that it sports a “mysterious dark region” stretching some 200 miles across near the north pole.

Pluto is the last of the nine classical planets to be explored up close and completes the initial the initial reconnaissance of the solar system nearly six decades after the dawn of the space age. It represents a whole new class of objects known as the ice dwarfs, located in the Kuiper Belt – a relic of solar system formation replete with countless bodies.

It has been three decades since we last visited planetary bodies at the outer reaches of our solar system when Voyager 2 flew past Uranus and Neptune in 1986 and 1989.

New Horizons trajectory to the Pluto System. Credit: NASA
New Horizons trajectory to the Pluto System. Credit: NASA

The New Frontiers spacecraft was built by a team led by Stern and included researchers from SwRI and the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. APL also operates the New Horizons spacecraft and manages the mission.

Watch for Ken’s continuing onsite coverage of the Pluto flyby on July 14 from the Johns Hopkins University Applied Physics Laboratory (APL).

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Pluto’s Time to Shine Just Hours Away – A Guide and Timetable

Graphic showing New Horizons' busy schedule before and during the flyby. Credit: NASA

Countdown to discovery! Not since Voyager 2’s flyby of Neptune in 1989 have we flung a probe into the frozen outskirts of the Solar System. Speeding along at 30,800 miles per hour New Horizons will pierce the Pluto system like a smartly aimed arrow. 

Pluto as seen from New Horizons on July 11, 2015. Credits: NASA/JHUAPL/SWRI
Newest view of Pluto seen from New Horizons on July 11, 2015 shows a world that continues to grow more fascinating and look stranger every day. See annotated version below.
Credits: NASA/JHUAPL/SWRI
On July 11, 2015, New Horizons captured a world that is growing more fascinating by the day. For the first time on Pluto, this view reveals linear features that may be cliffs, as well as a circular feature that could be an impact crater. Rotating into view is the bright heart-shaped feature that will be seen in more detail during New Horizons’ closest approach on July 14. The annotated version includes a diagram indicating Pluto’s north pole, equator, and central meridian. Credits: NASA/JHUAPL/SWRI
For the first time on Pluto, this view reveals linear features that may be cliffs, as well as a circular feature that could be an impact crater. Rotating into view is the bright heart-shaped feature that will be seen in more detail during New Horizons’ closest approach on July 14. The annotated version includes a diagram indicating Pluto’s north pole, equator, and central meridian.
Credits: NASA/JHUAPL/SWRI

Edging within 7,800 miles of its surface at 7:49 a.m. EDT, the spacecraft’s long-range telescopic camera will resolve features as small as 230 feet (70 meters). Fourteen minutes later, it will zip within 17,930 miles of Charon as well as image Pluto’s four smaller satellites — Hydra, Styx, Nix and Kerberos.

This image shows New Horizons' current position (3 p.m. EDT July 12) along its planned Pluto flyby trajectory. The green segment of the line shows where New Horizons has traveled; the red indicates the spacecraft's future path. The Pluto is tilted up like a target because the planet's axis is tipped 123° to the plane of its orbit. Credit: NASA/JHUAPL/SWRI
This image shows New Horizons’ current position (3 p.m. EDT July 12) along its planned Pluto flyby trajectory. The green segment of the line shows where New Horizons has traveled; the red indicates the spacecraft’s future path. The Pluto system is tilted on end because the planet’s axis is tipped 123° to the plane of its orbit. Credit: NASA/JHUAPL/SWRI

After zooming past, the craft will turn to photograph Pluto eclipsing the Sun as it looks for the faint glow of rings or dust sheets illuminated by backlight. At the same time, sunlight reflecting off Charon will faintly illuminate Pluto’s backside. What could be more romantic than Charonshine?

Six other science instruments will build thermal maps of the Pluto-Charon pair, measure the composition of the surface and atmosphere and observe Pluto’s interaction with the solar wind. All of this will happen autopilot. It has to. There’s just no time to send a change instructions because of the nearly 9-hour lag in round-trip communications between Earth and probe.

Instruments New Horizons will use to characterize Pluto are REX (atmospheric composition and temperature; PEPSSI (composition of plasma escaping Pluto's atmosphere); SWAP (solar wind); LORRI (close up camera for mapping, geological data); Star Dust Counter (student experiment measuring space dust during the voyage); Ralph (visible and IR imager/spectrometer for surface composition and thermal maps and Alice (composition of atmosphere and search for atmosphere around Charon). Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Instruments New Horizons will use to characterize Pluto are REX (atmospheric composition and temperature); PEPSSI (composition of plasma escaping Pluto’s atmosphere); SWAP (solar wind studies); LORRI (close up camera for mapping, geological data); Star Dust Counter (student experiment measuring space dust during the voyage); Ralph (visible and IR imager/spectrometer for surface composition and thermal maps) and Alice (composition of atmosphere and search for atmosphere around Charon). Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Want to go along for the ride? Download and install NASA’s interactive app Eyes on Pluto and then click the launch button on the website. You’ll be shown several options including a live view and preview. Click preview and sit back to watch the next few days of the mission unfold before your eyes.

American astronomer Clyde Tombaugh discovered Pluto in 1903 from Lowell Observatory. Tombaugh died in 1997, but an ounce of his ashes, affixed to the spacecraft in a 2-inch aluminum container. "Interned herein are remains of American Clyde W. Tombaugh, discoverer of Pluto and the solar system's 'third zone.' Adelle and Muron's boy, Patricia's husband, Annette and Alden's father, astronomer, teacher, punster, and friend: Clyde Tombaugh (1906-1997)"
American astronomer Clyde Tombaugh discovered Pluto in 1930 from Lowell Observatory. Tombaugh died in 1997, but an ounce of his ashes, affixed to the spacecraft in a 2-inch aluminum container. “Interned herein are remains of American Clyde W. Tombaugh, discoverer of Pluto and the solar system’s ‘third zone.’ Adelle and Muron’s boy, Patricia’s husband, Annette and Alden’s father, astronomer, teacher, punster, and friend: Clyde Tombaugh (1906-1997)”

Like me, you’ve probably wondered how daylight on Pluto compares to that on Earth. From 3 billion miles away, the Sun’s too small to see as a disk with the naked eye but still wildly bright. With NASA’s Pluto Time, select your city on an interactive map and get the time of day when the two are equal. For my city, daylight on Pluto equals the gentle light of early evening twilight six minutes after sunset. An ideal time for walking, but step lightly. In Pluto’s gentle gravity, you only weigh 1/15 as much as on Earth.

Pluto and its cohorts in the icy-asteroid-rich Kuiper Belt beyond the orbit of Neptune. Credit: NASA
Pluto and its inclined orbit are highlighted among the hundreds of thousands of icy asteroids in the Kuiper Belt beyond Neptune. Credit: NASA

New Horizons is the first mission to the Kuiper Belt, a gigantic zone of icy bodies and mysterious small objects orbiting beyond Neptune. This region also is known as the “third” zone of our solar system, beyond the inner rocky planets and outer gas giants. Pluto is its most famous member, though not necessarily the largest. Eris, first observed in 2003, is nearly identical in size. It’s estimated there are hundreds of thousands of icy asteroids larger than 61 miles (100 km) across along with a trillion comets in the Belt, which begins at 30 a.u. (30 times Earth’s distance from the Sun) and reaches to 55 a.u.

During its fleeting flyby, New Horizons will slice across the Pluto system, turning this way and that to photograph and gather data on everything it can. Crucial occultations are shown that will be used to determine the structure and composition of Pluto’s (and possibly Charon’s) atmosphere. Credit: NASA with additions by the author
During its fleeting flyby, New Horizons will slice across the Pluto system, turning this way and that to photograph and gather data on everything it can. Crucial occultations are shown that will be used to determine the structure and composition of Pluto’s (and possibly Charon’s) atmosphere. Sunlight reflected from Charon will also faintly illuminate Pluto’s backside. Credit: NASA with additions by the author

Below you’ll find a schedule of events in Eastern Time. (Subtract one hour for Central, 2 hours for Mountain and 3 hours for Pacific). Keep in mind the probe will be busy shooting photos and gathering data during the flyby, so we’ll have to wait until Wednesday July 15 to see the the detailed close ups of Pluto and its moons. Even then, New Horizons’ recorders will be so jammed with data and images, it’ll take months to beam it all back to Earth.

Chasms, craters, and a dark north polar region are revealed in this image of Pluto’s largest moon Charon taken by New Horizons on July 11, 2015. The annotated version includes a diagram showing Charon’s north pole, equator, and central meridian, with the features highlighted. Credits: NASA/JHUAPL/SWRI
A new photo of Charon, too! Chasms, craters, and a dark north polar region are revealed in this image of Pluto’s largest moon taken by New Horizons on July 11, 2015. The annotated version includes a diagram showing Charon’s north pole, equator, and central meridian, with the features highlighted. The prominent crater is about 60 miles (96 km) across; the chasms appear to be geological faults. 
Credits: NASA/JHUAPL/SWRI

Fasten your seat belts — we’re in for an exciting ride.

We’ll be reporting on results and sharing photos from the flyby here at Universe Today, but you’ll also want to check out NASA’s live coverage on NASA TV, its website and social media.

Monday, July 13
10:30 a.m. to noon – Media briefing on mission status and what to expect broadcast live on NASA TV

Tuesday, July 14
7:30 to 8 a.m. – Arrival at Pluto! Countdown program on NASA TV

At approximately 7:49 a.m., New Horizons is scheduled to be as close as the spacecraft will get to Pluto, approximately 7,800 miles (12,500 km) above the surface, after a journey of more than 9 years and 3 billion miles. For much of the day, New Horizons will be out of communication with mission control as it gathers data about Pluto and its moons.

The moment of closest approach will be marked during a live NASA TV broadcast that includes a countdown and discussion of what’s expected next as New Horizons makes its way past Pluto and potentially dangerous debris.

8 to 9 a.m. – Media briefing, image release on NASA TV

Wednesday, July 15

3 to 4 p.m. – Media Briefing: Seeing Pluto in a New Light; live on NASA TV and release of close-up images of Pluto’s surface and moons, along with initial science team reactions.

We’ll have the latest Pluto photos for you, but you can also check these excellent sites:

* Long Range Reconnaissance Imager (LORRI) archive
Pluto Photojournal
* New Horizons science photo gallery

Need more Pluto? Spend a few minutes watching this excellent New York Times mission documentary.