Was Pluto Ever REALLY a Planet?

Pluto, Charon, Nix and Hydra (NASA)

Ever since the infamous 2006 reclassification of Pluto off the list of “official” planets (which had a rather incendiary effect on many of the distant world’s Earthly fans) the term “planet” has been seen by some as a variable one, difficult to define and apparently able to be given and taken away. But was Pluto ever really deserving of the title to begin with?

This fun info-animation by C.G.P. Grey suggests that it wasn’t, and offers a compelling explanation why.

[/caption]

Grey writes on his blog:

“To my constant surprise the issue of Pluto’s planetary status — which I think should be a dry technical issue — really gets people riled. But it’s also been my experience that the people who most want Pluto to be a planet know the least about it and the history of its discovery. So, I hope that this video can help correct that a little bit.”

We still love you, Pluto, no matter what you are!

See more of Grey’s excellent animations on YouTube here.

Help Support a ‘New Horizons’ U.S. Postage Stamp!

Concept art for a New Horizons postage stamp. Image Credit: Dan Durda/Southwest Research Institute

[/caption]Today the New Horizons mission team, along with Principal Investigator Alan Stern have unveiled their proposal for a U.S Postage stamp, to honor the first mission to Pluto.

The current concept art for the stamp was done by Dan Durda, a space scientist and artist at The Southwest Research Institute. Durda’s work has appeared on the New Horizons website and in other locations. If the stamp is approved, it would be the successor to a U.S. postage stamp issued in 1990 that labeled Pluto as “Not Yet Explored.”

“You can help make this happen.” says Stern.

Since it can take several years for a proposed stamp to be approved by the U.S. post office, the mission team launched an internet petition today. The team plans to submit petitioners’ names along with their formal proposal, with the hopes that the stamp will be approved and printed in time to celebrate the New Horizons fly-by of Pluto in 2015.

Stern added, “We’re asking people to sign the petition, because the post office considers not just the merits of a new stamp proposal, but also whether it is supported by a significant number of people. This is a chance for us all to celebrate what American space exploration can achieve though hard work, technical excellence, the spirit of scientific inquiry, and the uniquely human drive to explore.”

Artist's impression of New Horizons' encounter with Pluto and Charon. Credit: NASA/Thierry Lombry
You can help by signing the petition urging the post office’s Citizen Stamp Advisory Committee to recommend a New Horizons stamp to the postmaster general.

The New Horizons team encourages people signing the petition to also tell their friends, family members, Facebook friends, Google plusketeers, and Twitter followers to sign as well!

The text of the petition reads as follows:

Greetings,

I just signed the following petition addressed to: Citizens’ Stamp Advisory Committee.

—————-
The nation has an opportunity to honor a truly exemplary accomplishment of humankind in general, and the U.S. space program in particular, with a new U.S. postage stamp in 2015 honoring the flyby and reconnaissance of the Pluto system by NASA’s New Horizons spacecraft.

New Horizons lifted off in January 2006 aboard a U.S. Atlas V rocket, the fastest spacecraft ever launched. In fact, New Horizons crossed the orbit of the Moon in just nine hours – almost 10 times quicker than the Apollo lunar missions. Since then, New Horizons has been speeding toward Pluto – more than three billion miles from Earth — covering nearly one million miles a day!

New Horizons will make its closest approach to Pluto and its family of moons on July 14, 2015, 50 years to the day after Mariner 4 made the first successful flyby of Mars.

With the New Horizons flyby of Pluto, the U.S. space program will complete the first era of planetary reconnaissance, a profoundly inspiring feat of lasting historical significance. Moreover, the Pluto flyby will represent the first exploration of the Kuiper Belt, the first exploration of a double planet, the first exploration of an ice dwarf planet, and the farthest object ever explored in space.

Join the mission team in asking the U.S. Postal Service to commemorate the historic achievements of New Horizons by signing this petition in support of a new postage stamp, supplanting the 1990 U.S. stamp that described Pluto simply as “Not Yet Explored.”

The petition urges the Citizen Stamp Advisory Committee to recommend to the Postmaster General a stamp in honor of New Horizons.

Let’s celebrate what humans can achieve though hard work, technical excellence, scientific inquiry and the uniquely human spirit of exploration.
—————-

Sincerely,

[Your name]

Sign the petition at: http://www.change.org/petitions/usps-honor-new-horizons-and-the-exploration-of-pluto-with-a-usps-stamp

If you’d like to learn more about the New Horizons mission, visit: http://pluto.jhuapl.edu/index.php

Source: New Horizons Mission Updates

Why Pluto is No Longer a Planet

Why is Pluto Not a Planet?
Why is Pluto Not a Planet?

This article was originally written in 2008, but we created a cool video to go along with it yesterday

Let’s find out why Pluto is no longer considered a planet.

Pluto was first discovered in 1930 by Clyde W. Tombaugh at the Lowell Observatory in Flagstaff Arizona. Astronomers had long predicted that there would be a ninth planet in the Solar System, which they called Planet X. Only 22 at the time, Tombaugh was given the laborious task of comparing photographic plates. These were two images of a region of the sky, taken two weeks apart. Any moving object, like an asteroid, comet or planet, would appear to jump from one photograph to the next.

After a year of observations, Tombaugh finally discovered an object in the right orbit, and declared that he had discovered Planet X. Because they had discovered it, the Lowell team were allowed to name it. They settled on Pluto, a name suggested by an 11-year old school girl in Oxford, England (no, it wasn’t named after the Disney character, but the Roman god of the underworld).

The Solar System now had 9 planets.

Astronomers weren’t sure about Pluto’s mass until the discovery of its largest Moon, Charon, in 1978. And by knowing its mass (0.0021 Earths), they could more accurately gauge its size. The most accurate measurement currently gives the size of Pluto at 2,400 km (1,500 miles) across. Although this is small, Mercury is only 4,880 km (3,032 miles) across. Pluto is tiny, but it was considered larger than anything else past the orbit of Neptune.

Over the last few decades, powerful new ground and space-based observatories have completely changed previous understanding of the outer Solar System. Instead of being the only planet in its region, like the rest of the Solar System, Pluto and its moons are now known to be just a large example of a collection of objects called the Kuiper Belt. This region extends from the orbit of Neptune out to 55 astronomical units (55 times the distance of the Earth to the Sun).

Astronomers estimate that there are at least 70,000 icy objects, with the same composition as Pluto, that measure 100 km across or more in the Kuiper Belt. And according to the new rules, Pluto is not a planet. It’s just another Kuiper Belt object.

Here’s the problem. Astronomers had been turning up larger and larger objects in the Kuiper Belt. 2005 FY9, discovered by Caltech astronomer Mike Brown and his team is only a little smaller than Pluto. And there are several other Kuiper Belt objects in that same classification.

Astronomers realized that it was only a matter of time before an object larger than Pluto was discovered in the Kuiper Belt.

And in 2005, Mike Brown and his team dropped the bombshell. They had discovered an object, further out than the orbit of Pluto that was probably the same size, or even larger. Officially named 2003 UB313, the object was later designated as Eris. Since its discovery, astronomers have determined that Eris’ size is approximately 2,600 km (1,600 miles) across. It also has approximately 25% more mass than Pluto.

With Eris being larger, made of the same ice/rock mixture, and more massive than Pluto, the concept that we have nine planets in the Solar System began to fall apart. What is Eris, planet or Kuiper Belt Object; what is Pluto, for that matter? Astronomers decided they would make a final decision about the definition of a planet at the XXVIth General Assembly of the International Astronomical Union, which was held from August 14 to August 25, 2006 in Prague, Czech Republic.

Astronomers from the association were given the opportunity to vote on the definition of planets. One version of the definition would have actually boosted the number of planets to 12; Pluto was still a planet, and so were Eris and even Ceres, which had been thought of as the largest asteroid. A different proposal kept the total at 9, defining the planets as just the familiar ones we know without any scientific rationale, and a third would drop the number of planets down to 8, and Pluto would be out of the planet club. But, then… what is Pluto?

In the end, astronomers voted for the controversial decision of demoting Pluto (and Eris) down to the newly created classification of “dwarf planet”.

Is Pluto a planet? Does it qualify? For an object to be a planet, it needs to meet these three requirements defined by the IAU:

  • It needs to be in orbit around the Sun – Yes, so maybe Pluto is a planet.
  • It needs to have enough gravity to pull itself into a spherical shape – Pluto…check
  • It needs to have “cleared the neighborhood” of its orbit – Uh oh. Here’s the rule breaker. According to this, Pluto is not a planet.

What does “cleared its neighborhood” mean? As planets form, they become the dominant gravitational body in their orbit in the Solar System. As they interact with other, smaller objects, they either consume them, or sling them away with their gravity. Pluto is only 0.07 times the mass of the other objects in its orbit. The Earth, in comparison, has 1.7 million times the mass of the other objects in its orbit.

Any object that doesn’t meet this 3rd criteria is considered a dwarf planet. And so, Pluto is a dwarf planet. There are still many objects with similar size and mass to Pluto jostling around in its orbit. And until Pluto crashes into many of them and gains mass, it will remain a dwarf planet. Eris suffers from the same problem.

It’s not impossible to imagine a future, though, where astronomers discover a large enough object in the distant Solar System that could qualify for planethood status. Then our Solar System would have 9 planets again.

Even though Pluto is a dwarf planet, and no longer officially a planet, it’ll still be a fascinating target for study. And that’s why NASA has sent their New Horizons spacecraft off to visit it. New Horizons will reach Pluto in July 2015, and capture the first close-up images of the (dwarf) planet’s surface.

Space enthusiasts will marvel at the beauty and remoteness of Pluto, and the painful deplaneting memories will fade. We’ll just be able to appreciate it as Pluto, and not worry how to categorize it. At least now you know why Pluto was demoted.

If you’d like more information about Pluto, we did two podcasts on this topic at Astronomy Cast. The first discusses the IAU’s decision, and the second is about Pluto and the Icy Outer Solar System. Check them out.

Here is much more info about Pluto, including pictures of Pluto.

References:
NASA Solar System Exploration Guide
Caltech

2011: Top Stories from the Best Year Ever for NASA Planetary Science!

Dawn Orbiting Vesta. NASA's Dawn spacecraft achieved orbit at the giant asteroid Vesta in July 2011. The depiction of Vesta is based on images obtained by Dawn's framing cameras. Dawn is an international collaboration of the US, Germany and Italy. Credit: NASA/JPL-Caltech

[/caption]

A year ago, 2011 was proclaimed as the “Year of the Solar System” by NASA’s Planetary Science division. And what a year of excitement it was indeed for the planetary science community, amateur astronomers and the general public alike !

NASA successfully delivered astounding results on all fronts – On the Story of How We Came to Be.

“2011 was definitely the best year ever for NASA Planetary Science!” said Jim Green in an exclusive interview with Universe Today. Green is the Director of Planetary Science for the Science Mission Directorate at NASA HQ. “The Search for Life is a significant priority for NASA.”

This past year was without doubt simply breathtaking in scope in terms of new missions, new discoveries and extraordinary technical achievements. The comprehensive list of celestial targets investigated in 2011 spanned virtually every type of object in our solar system – from the innermost planet to the outermost reaches nearly touching interplanetary space.

There was even a stunningly evocative picture showing “All of Humanity” – especially appropriate now in this Holiday season !

You and all of Humanity are here !
-- Earth & Moon Portrait by Juno from 6 Million miles away --
First Photo transmitted from Jupiter Bound Juno shows Earth (on the left) and the Moon (on the right). Taken on Aug. 26, 2011 when spacecraft was about 6 million miles (9.66 million kilometers) away from Earth. Credit: NASA/JPL-Caltech

Three brand new missions were launched and ongoing missions orbited a planet and an asteroid and flew past a comet.

“NASA has never had the pace of so many planetary launches in such a short time,” said Green.

And three missions here were awarded ‘Best of 2011’ for innovation !

Mars Science Laboratory (MSL), Dawn and MESSENGER named “Best of What’s New” in 2011 by Popular Science magazine. 3 NASA Planetary Science missions received the innovation award for 2011 from Popular Science magazine. Artist concept shows mosaic of MESSENGER, Mars Science Laboratory and Dawn missions. Credit: NASA/JPL-Caltech

Here’s the Top NASA Planetary Science Stories of 2011 – ‘The Year of the Solar System’ – in chronological order

1. Stardust-NExT Fly By of Comet Tempel 1

Starting from the first moments of 2011 at the dawn of Jan. 1, hopes were already running high for planetary scientists and engineers busily engaged in setting up a romantic celestial date in space between a volatile icy comet and an aging, thrusting probe on Valentine’s Day.

The comet chasing Stardust-Next spacecraft successfully zoomed past Comet Tempel 1 on Feb. 14 at 10.9 km/sec (24,000 MPH) after flying over 6 Billion kilometers (3.5 Billion mi).

6 Views of Comet Tempel 1 and Deep Impact crater during Stardust-NExT flyby on Feb. 14, 2011
Arrows show location of man-made crater created in 2005 by NASA’s prior Deep Impact comet mission and newly imaged as Stardust-NExT zoomed past comet in 2011. The images progress in time during closest approach to comet beginning at upper left and moving clockwise to lower left. Credit: NASA/JPL-Caltech/University of Maryland. Post process and annotations by Marco Di Lorenzo & Kenneth Kremer

The craft approached within 178 km (111mi) and snapped 72 astonishingly detailed high resolution science images over barely 8 minutes. It also fulfilled the teams highest hopes by photographing the human-made crater created on Tempel 1 in 2005 by a cosmic collision with a penetrator hurled by NASA’s Deep Impact spacecraft. The probe previously flew by Comet Wild 2 in 2004 and returned cometary coma particles to Earth in 2006

Tempel 1 is the first comet to be visited by two spaceships from Earth and provided the first-ever opportunity to compare observations on two successive passages around the Sun.

Don Brownlee, the original Principal Investigator, summarized the results for Universe Today; “A great bonus of the mission was the ability to flyby two comets and take images and measurements. The wonderfully successful flyby of Comet Tempel 1 was a great cap to the 12 year mission and provided a great deal of new information to study the diversity among comets.”

“The new images of Tempel showed features that form a link between seemingly disparate surface features of the 4 comets imaged by spacecraft. Combining data on the same comet from the Deep Impact and Stardust missions has provided important new insights in to how comet surfaces evolve over time and how they release gas and dust into space”.

2. MESSENGER at Mercury

On March 18, the Mercury Surface, Space Environment, Geochemistry, and Ranging, or MESSENGER, spacecraft became the first spacecraft inserted into orbit around Mercury, the innermost planet.

So far MESSENGER has completed 1 solar day – 176 Earth days- circling above Mercury. The probe has collected a treasure trove of new data from the seven instruments onboard yielding a scientific bonanza; these include global imagery of most of the surface, measurements of the planet’s surface chemical composition, topographic evidence for significant amounts of water ice, magnetic field and interactions with the solar wind.

“MESSENGER discovered that Mercury has an enormous core, larger than Earth’s. We are trying to understand why that is and why Mercury’s density is similar to Earth’s,” Jim Green explained to Universe Today.

The First Solar Day
After its first Mercury solar day (176 Earth days) in orbit, MESSENGER has nearly completed two of its main global imaging campaigns: a monochrome map at 250 m/pixel and an eight-color, 1-km/pixel color map. Small gaps will be filled in during the next solar day. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

“The primary mission lasts 2 solar days, equivalent to 4 Mercury years.”

“NASA has granted a 1 year mission extension, for a total of 8 Mercury years. This will allow the team to understand the environment at Mercury during Solar Maximum for the first time. All prior spacecraft observations were closer to solar minimum,” said Green.

MESSENGER was launched in 2004 and the goal is to produce the first global scientific observations of Mercury and piece together the puzzle of how Mercury fits in with the origin and evolution of our solar system.

NASA’s Mariner 10 was the only previous robotic probe to explore Mercury, during three flyby’s back in the mid-1970’s early in the space age.

3. Dawn Asteroid Orbiter

The Dawn spacecraft achieved orbit around the giant asteroid Vesta in July 2011 after a four year interplanetary cruise and began transmitting the history making first ever close-up observations of the mysteriously diverse and alien world that is nothing short of a ‘Space Spectacular’.

“We do not have a good analog to Vesta anywhere else in the Solar System,” Chris Russell said to Universe Today. Russell, from UCLA, is the scientific Principal Investigator for Dawn.

Before Dawn, Vesta was just another fuzzy blob in the most powerful telescopes. Dawn has completely unveiled Vesta as a remarkably dichotomous, heavily battered and pockmarked world that’s littered with thousands of craters, mountains and landslides and ringed by mystifying grooves and troughs. It will unlock details about the elemental abundances, chemical composition and interior structure of this marvelously intriguing body.

Cataclysmic collisions eons ago excavated Vesta so it lacks a south pole. Dawn discovered that what unexpectedly remains is an enormous mountain some 16 miles (25 kilometers) high, twice the height of Mt. Everest.

Dawn is now about midway through its 1 year mission at Vesta which ends in July 2012 with a departure for Ceres, the largest asteroid. So far the framing cameras have snapped more than 10,000 never-before-seen images.

“What can be more exciting than to explore an alien world that until recently was virtually unknown!. ” Dr. Marc Rayman said to Universe Today. Rayman is Dawn’s Chief Engineer from NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif.

“Dawn is NASA at its best: ambitious, exciting, innovative, and productive.”

4. Juno Jupiter Orbiter

The solar powered Juno spacecraft was launched on Aug. 5 at Cape Canaveral Air Force Station in Florida, to embark on a five year, 2.8 billion kilometer (1.7 Billion mi) trek to Jupiter, our solar system’s largest planet. It was the first of three NASA planetary science liftoffs scheduled in 2011.

Juno Jupiter Orbiter soars skyward to Jupiter on Aug. 5, 2011 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

Juno’s goal is to map to the depths of the planets interior and elucidate the ingredients of Jupiter’s genesis hidden deep inside. These measurements will help answer how Jupiter’s birth and evolution applies to the formation of the other eight planets.

The 4 ton spacecraft will arrive at the gas giant in July 2016 and fire its braking rockets to go into a polar orbit and circle the planet 33 times over about one year.

The suite of nine instruments will scan the gas giant to find out more about the planets origins, interior structure and atmosphere, measure the amount of water and ammonia, observe the aurora, map the intense magnetic field and search for the existence of a solid planetary core.

“Jupiter is the Rosetta Stone of our solar system,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”

5. Opportunity reaches Endeavour Crater on Mars

The long lived Opportunity rover finally arrived at the rim of the vast 14 mile (22 kilometer) wide Endeavour Crater in mid-August 2011 following an epic three year trek across treacherous dune fields – a feat once thought unimaginable. All told, Opportunity has driven more than 34 km ( 21 mi) since landing on the Red Planet way back in 2004 for a mere 90 sol mission.

Endeavour Crater Panorama from Opportunity Mars Rover in August 2011
Opportunity arrived at the rim of Endeavour on Sol 2681, August 9, 2011 after a three year trek. The robot photographed segments of the huge craters eroded rim in this panoramic vista. Endeavour Crater is 14 miles (22 kilometers) in diameter. Mosaic Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Kenneth Kremer

In November, the rover discovered the most scientifically compelling evidence yet for the flow of liquid water on ancient Mars in the form of a water related mineral vein at a spot dubbed “Homestake” along an eroded ridge of Endeavour’s rim.

Read my story about the Homestake discovery here, along with our panoramic mosaic showing the location – created by Ken Kremer and Marco Di Lorenzo and published by Astronomy Picture of the Day (APOD) on 12 Dec. 2011.

Watch for my upcoming story detailing Opportunity’s accomplishments in 2011.

6. GRAIL Moon Mappers

The Gravity Recovery and Interior Laboratory, or GRAIL mission is comprised of twin spacecraft tasked to map the moon’s gravity and study the structure of the lunar interior from crust to core.

Twin GRAIL Probes GO for Lunar Orbit Insertion on New Year’s Eve and New Year’s Day
GRAIL spacecraft will map the moon's gravity field and interior composition. Credit: NASA/JPL-Caltech

The dynamic duo lifted off from Cape Canaveral on September 10, 2011 atop the last Delta II rocket that will likely soar to space from Florida. After a three month voyage of more than 2.5 million miles (4 million kilometers) since blastoff, the two mirror image GRAIL spacecraft dubbed Grail-A and GRAIL-B are sailing on a trajectory placing them on a course over the Moon’s south pole on New Year’s weekend.

Each spacecraft will fire the braking rockets for about 40 minutes for insertion into Lunar Orbit about 25 hours apart on New Year’s Eve and New Year’s Day.

Engineers will then gradually lower the satellites to a near-polar near-circular orbital altitude of about 34 miles (55 kilometers).

The spacecraft will fly in tandem and the 82 day science phase will begin in March 2012.

“GRAIL is a Journey to the Center of the Moon”, says Maria Zuber, GRAIL principal investigator from the Massachusetts Institute of Technology (MIT). “GRAIL will rewrite the book on the formation of the moon and the beginning of us.”

“By globally mapping the moon’s gravity field to high precision scientists can deduce information about the interior structure, density and composition of the lunar interior. We’ll evaluate whether there even is a solid or liquid core or a mixture and advance the understanding of the thermal evolution of the moon and the solar system,” explained co-investigator Sami Asmar to Universe Today. Asmar is from NASA’s Jet Propulsion Laboratory (JPL)

7. Curiosity Mars Rover

The Curiosity Mars Science Lab (MSL) rover soared skywards on Nov. 26, the last of 2011’s three planetary science missions. Curiosity is the newest, largest and most technologically sophisticated robotic surveyor that NASA has ever assembled.

“MSL packs the most bang for the buck yet sent to Mars.” John Grotzinger, the Mars Science Laboratory Project Scientist of the California Institute of Technology, told Universe Today.

The three meter long robot is the first astrobiology mission since the Viking landers in the 1970’s and specifically tasked to hunt for the ‘Ingredients of Life’ on Mars – the most Earth-like planet in our Solar System.


Video caption: Action packed animation depicts sequences of Curiosity departing Earth, the nail biting terror of the never before used entry, descent and landing on the Martian surface and then looking for signs of life at Gale Crater during her minimum two year expedition across hitherto unseen and unexplored Martian landscapes, mountains and craters. Credit: NASA

Curiosity will gather and analyze samples of Martian dirt in pursuit of the tell-tale signatures of life in the form of organic molecules – the carbon based building blocks of life as we know it.

NASA is targeting Curiosity to a pinpoint touch down inside the 154 km (96 mile) wide Gale Crater on Aug. 6, 2012. The crater exhibits exposures of phyllosilicates and other minerals that may have preserved evidence of ancient or extant Martian life and is dominated by a towering 3 mile (5 km) high mountain.

“10 science instruments are all aimed at a mountain whose stratigraphic layering records the major breakpoints in the history of Mars’ environments over likely hundreds of millions of years, including those that may have been habitable for life,” Grotzinger told me.

Titan Upfront
The colorful globe of Saturn's largest moon, Titan, passes in front of the planet and its rings in this true color snapshot from NASA's Cassini spacecraft. Credit: NASA/JPL-Caltech/Space Science Institute
Curiosity Mars Science Laboratory Rover and Ken Kremer - inside the Cleanroom at the Kennedy Space Center. Last View of Curiosity just prior to folding and encapsulation for launch. Credit: Ken Kremer

This past year Ken was incredibly fortunate to witness the ongoing efforts of many of these magnificent endeavors.

Dr. Alan Stern Answers Your Questions!

Dr. Alan Stern preparing for a high-altitude test flight in A two-seater, NASA WB-57 aircraft. Photo Credit: SOuthwest Research Institute.

[/caption]Some of you may know, we recently launched a new “Ask” feature here at Universe Today. Our inaugural launch features Dr. Alan Stern, Principal Investigator for the New Horizons mission to Pluto and the Kuiper Belt. We collected your questions in our initial post and passed them along to Dr. Stern who graciously took the time to answer them.

Here are the questions picked by you, the readers, and Dr. Stern’s responses. We’d like to thank our readers for making this kick-off a success, as well as Dr. Stern for his participation.


1.) Many sci-fi authors have dreamed of putting some sort of telescope on the surface of Pluto to take advantage of the relative darkness and extreme cold encountered on this distant dwarf planet. How feasible would it be, judging from what we’re learning from the New Horizons expedition, to actually land a spacecraft, or a telescope, on Pluto’s surface? If such a telescope where deployed, how much more effective, if at all, could it be than an instrument like the JWST?

Alan Stern:“Space astronomy has revolutionized the way we look at the universe and is fundamental to modern astrophysics.” There are benefits to getting telescopes out of the atmosphere, and even benefits to getting out of Earth orbit, as in the case of Kepler and someday maybe JWST.

With regard to taking advantage of Pluto’s cold temperature – we’ve gotten really good at cooling down space telescopes. “There would be a benefit to placing a radio telescope on the far side of the Moon, but there’s no real practical reasons to place a telescope on Pluto—particularly given the cost of getting there, other than it being cool.”

2.) Kuiper objects differentiate strongly in color suggesting compositional or perhaps formation differences. Interestingly the color distribution correlates with the two different cold and hot Kuiper populations. Assuming the spectral analysis capability of New Horizon works for identifying the follow up Kuiper objects beyond Pluto-Charon, and given the putative possibility of choosing between several such targets, what type of target would the mission aim for? Would it try to cover as much diversity of objects as possible or is there a certain class of objects that could be important to concentrate on?

A.S: “We have to find Kuiper belt objects within our spacecraft’s fuel supply.” Stern elaborated, stating, “Predictions from our computer models tell us to expect to be able to have perhaps six possible candidates, to choose from, but so far we’ve just begun to search for these and though we’re finding KBOs, none we’ve found are yet are within the fuel supply.”

Stern also added, “Keep in mind our search for candidates isn’t easy – these are 27th magnitude objects which are roughly 50,000 times fainter than Pluto. What we’ll use to select between candidates once we have them are color, orbits, moons, rotational speeds – basically what combination of properties give us the most science for our fuel budget. The longer we wait after the Pluto flyby in July 2015 to make a decision, the more fuel will be consumed, so the “sweet spot” would be to have preliminary candidates in early 2015.”
(UT Note: New Horizons will perform its Pluto flyby in mid-2015 ).

3.) Given the limited funds available, Which do you recommend (Europa or Enceladus) as a suitable target for a mission in the 2025 time-frame in terms of value for money, scientific return, and practicality, and what kind of mission do you propose (lander vs. orbiter) ?

A.S: “Every scientist has their own judgment of what would make a good outer system flagship mission, or the best world to perform a series of missions that would equal a flagship mission.” Dr. Stern’s opinion is to explore Titan first, with Enceladus as a secondary target of that mission and Europa last, stating “Titan is the belle of the ball”, citing Titan’s active liquid cycle and thick atmosphere. Stern also added that he believes a mission to Titan would provide the most science per budget dollar.

4.) Four of the craft escaping the Solar System – Pioneers 10 & 11 and Voyagers 1 & 2 – have on board some sort of “message” to any possible extraterrestrials in the unlikely event they find it. Why was not some sort of message like that included on New Horizons, which may be the last (in our lifetimes) craft to also escape the Solar System?

A.S “There are several mementos onboard New Horizons, but no Voyager-like message.” Dr. Stern discussed a promise he made to his team that New Horizons would not be canceled and that he wanted his team focused on the science of the mission. Stern also pointed out that the process of deciding what to place on the Voyager plaques became mired in political correctness, (should the humans have been clothed? What cultures and races should be represented, etc.)

By separating the “icing from the cake”. Stern and his team have been able to concentrate on their main objective—to execute the New Horizons mission for about twenty cents on the dollar, as compared to the Voyager missions. Stern concluded with, “I’m proud that we got this done and that New Horizons is operating perfectly now way out there between Uranus and Neptune and flying almost a million kilometers per day toward the Pluto system.”

5.) Are any present or foreseeable technologies being considered for exploring the depths of our four “gas giant” planets?

A.S “There are no serious proposals to put a probe into one of the giant planets now, or even any call for such in the recent decadal survey for planetary missions. Keep in mind, though, that the Juno mission (now en route to Jupiter ) will use powerful remote sensing techniques to probe Jupiter from orbit around it to greater depths than the Galileo probe (which actually entered Jupiter’s atmosphere).”

6.) Why was it considered “urgent” to get to Pluto before the atmosphere refroze?

A.S “We have three “Group 1″ objectives for New Horizons. Map the surface, map the composition, and assay the atmosphere.” Stern referred to the objectives as a “three legged stool” in that no one objective could be omitted and still justify the mission, adding “so we need to accomplish that.. we need to get there before the atmosphere collapses”. Stern also referred to Pluto’s atmosphere as “very different from any other planet yet studied”, hence its inclusion as one of the three “Group 1” objectives.

7.) The Dawn mission to Vesta has shown us a body that was much less round than expected. Do you think it is possible that New Horizons will surprise us about Pluto, to the same degree? Please compare the expectations of the New Horizons fly by, to the early images of Vesta from Dawn.

A.S “With New Horizons being the first mission to Pluto, we will be surprised—after all, we’re always surprised on first reconnaissance flybys”. Stern added, “With Mariner 10, we discovered Mercury was all core, with Voyager we discovered volcanos and geysers across the outer solar system, and of course we were surprised when craters and river valleys were discovered by early Mars probes.”

Regarding Pluto, Stern stated “Pluto is the first discovered and soon to be reconnoitered of the most plentiful class of planets, while I’m not big on making predictions, I will say that what we will find will certainly be, well, wonderful.”

9.) Can new horizons now take more detailed photos of Pluto than HST? If not, when does it get close enough?

A.S “Great question! We actually thought about that a lot when designing New Horizons. One of our instruments, LORRI (Long-Range Reconnaissance Imager – http://pluto.jhuapl.edu/spacecraft/sciencePay.html) will provide us with views better than HST around April of 2015, and we expect to have about twenty weeks (10 weeks before, 10 weeks after the Pluto flyby) when we “own” the Pluto system — and I can guarantee the best images we hope to make should be as good as Landsat images of Earth!”

That wraps up our interview with Dr. Alan Stern. Once again, we at Universe Today would like to thank Dr. Stern for his gracious participation. If you’d like to learn more about the New Horizons mission to Pluto and The Kuiper Belt, visit: http://pluto.jhuapl.edu/index.php

Next month, we’ll be having an “Ask an Astronaut” feature with Mike Fossum, Commander of Expedition 29 on the International Space Station. Stay tuned!

Have Complex Molecules Been Found on Pluto’s Surface?

Artist's conception of New Horizons during its flyby of Pluto in 2015. Credit:Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI)

[/caption]

First there was the recent story about evidence for a possible subsurface ocean on Pluto, of all places. Now there is a new report regarding evidence for complex molecules on its surface, from scientists at Southwest Research Institute and Nebraska Wesleyan University. Little enigmatic Pluto is starting to get even more interesting…

The findings come from the Hubble Space Telescope, using the new and highly sensitive Cosmic Origins Spectrograph which indicate that there is a strong ultraviolet-wavelength absorber on the surface. This absorbing material is thought to likely be complex hydrocarbons and/or nitriles. The results have been published in the Astronomical Journal.

Pluto’s surface is known to be coated with ices composed of methane, carbon monoxide and nitrogen (it is extremely cold there!). The putative molecules can be produced by sunlight or cosmic rays interacting with those ices.

“This is an exciting finding because complex Plutonian hydrocarbons and other molecules that could be responsible for the ultraviolet spectral features we found with Hubble may, among other things, be responsible for giving Pluto its ruddy color,” said project leader Dr. Alan Stern.

The team also found evidence for surface changes in the ultraviolet spectrum, comparing current observations to those from the 1990s. The cause may be an increase in the pressure of Pluto’s tenuous atmosphere or different terrain which is being viewed at different times.

In a unique first for Universe Today, Dr. Alan Stern was the first researcher to be asked questions from readers via the comments section of this recent interview article by Ray Sanders. His answers to the top five questions (as ranked by “likes” on the discussion posts) will be posted soon in a subsequent article. Stern is also the principal investigator for the New Horizons spacecraft currently en route to Pluto.

A copy of the paper by Stern et al. is available here.

With all of the new discoveries already being made about Pluto, it should be very interesting when New Horizons gets there in 2015, providing us with the first close-up look of this fascinating little world.

Ask Dr. Alan Stern

Dr. Alan Stern, Associate Vice President, Space Science and Engineering Division, Southwest Research Institute. Photo Credit: Southwest Research Institute

[/caption]
We’re testing a new “Ask” article format here at Universe Today and we know you’ve got a question you’d like to ask Alan Stern!

Here’s how it works: Readers can submit questions they would like Universe Today to ask the guest responder. Simply post your question in the comments section of this article. We’ll take the top five (or so) questions, as ranked by “likes” on the discussion posts. If you see a question you think is good, click the “like” button to give it a vote.

Keep in mind that final question acceptance is based on the discretion of Universe Today and in some cases, the responder and/or their employer.

Our inaugural launch (pun intended) will feature Dr. Alan Stern, principal investigator for NASA’s “New Horizons” mission to Pluto.

Stern is a planetary scientist and an author who has published more than 175 technical papers and 40 popular articles. His research has focused on studies of our solar system’s Kuiper belt and Oort cloud, comets, satellites of the outer planets, Pluto and the search for evidence of solar systems around other stars. He has worked on spacecraft rendezvous theory, terrestrial polar mesospheric clouds, galactic astrophysics and studies of tenuous satellite atmospheres, including the atmosphere of the Moon.

Stern has a long association with NASA, serving the agency’s Associate Administrator for the Science Mission Directorate from 2007-2008; he was on the NASA Advisory Council and was the principal investigator on a number of planetary and lunar missions, including his current stint with the New Horizons Pluto-Kuiper Belt mission. He was the principal investigator of the Southwest Ultraviolet Imaging System, which flew on two space shuttle missions, STS-85 in 1997 and STS-93 in 1999.

He has been a guest observer on numerous NASA satellite observatories, including the International Ultraviolet Explorer, the Hubble Space Telescope, the International Infrared Observer and the Extreme Ultraviolet Observer.

Stern holds bachelor’s degrees in physics and astronomy and master’s degrees in aerospace engineering and planetary atmospheres from the University of Texas, Austin. In 1989, Stern earned a doctorate in astrophysics and planetary science from the University of Colorado at Boulder.

Aside from being the Principal Investigator for NASA’s “New Horizons” mission to Pluto, Currently Stern is the Associate Vice President of R&D – Space Science and Engineering Division at the Southwest Research Institute and recently was appointed director of the Florida Space Institute at Kennedy Space Center.

For those of you who are fans of Pluto, Dr. Stern went on the record against the IAU’s decision in 2006, stating “It’s an awful definition; it’s sloppy science and it would never pass peer review..”

Before submitting your question, take a minute and read a bit more about Dr. Stern at: Dr. Alan Stern

We’ll take questions until 4:00PM (MST) Tuesday December 20th and provide a follow up article with Dr. Stern’s responses to your questions.

NASA’s Pluto Probe Marks a New Milestone

Artist's impression of New Horizons' encounter with Pluto and Charon. Credit: NASA/Thierry Lombry

[/caption]

It may not have noticed anything different as it continued its high-speed trek through interplanetary space, but today New Horizons passed a new milestone: it is now (and will be for quite some time) the closest spacecraft ever to Pluto!

This breaks the previous record held by Voyager 1, which came within 983 million miles (1.58 billion km) of the dwarf planet on January 29, 1986.

New Horizons has been traveling through the solar system since its launch on January 19, 2006 and is now speeding toward Pluto at around 34,500 mph (55,500 km/hr). It has thus far traveled for 2,143 days and is just over halfway to the distant icy world.

“Although we’re still a long way — 1.5 billion kilometers from Pluto — we’re now in new territory as the closest any spacecraft has ever gotten to Pluto, and getting closer every day by over a million kilometers.”

– Alan Stern, New Horizons Principal Investigator

A gravity boost obtained by a close pass of Jupiter in 2007 gave the spacecraft the extra speed needed to make it to Pluto by 2015. (Without that, it wouldn’t have been reaching Pluto until 2036!)

Achievements like this are wonderful indicators that New Horizons is alive and well and that its historic goal is getting increasingly closer every day.

Diagram of the Pluto-Charon encounter in July 2015 (NASA/APL)

“We’ve come a long way across the solar system,” said Glen Fountain, New Horizons project manager at the Johns Hopkins University Applied Physics Laboratory (APL). “When we launched it seemed like our 10-year journey would take forever, but those years have been passing us quickly. We’re almost six years in flight, and it’s just about three years until our encounter begins.”

See answers to some FAQs about Pluto

New Horizons will pass by Pluto and its moons on July 14, 2015, becoming the first spacecraft ever to visit the distant system. It will image Pluto’s surface in unprecedented detail, resolving features as small as 200 feet (60 meters) across.

New Horizons will not land or enter orbit around Pluto but instead quickly pass by and continue on into the Kuiper Belt, where even more distant frozen worlds await. The New Horizons team is currently investigating further exploration targets should its mission be extended.

 Read more on the New Horizons mission site.

The New Horizons mission timeline (click to enlarge). Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.

 

Does Pluto Have a Hidden Ocean?

Credit: Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI)

[/caption]

In recent years, it has become surprisingly apparent that, contrary to previous belief, Earth is not the only place in the solar system with liquid water. Jupiter’s moon Europa, and possibly others, are now thought to have a deep ocean below the icy crust and even subsurface lakes within the crust itself, between the ocean below and the surface. Saturn’s moon Titan may also have a subsurface ocean of ammonia-enriched water in addition to its surface lakes and seas of liquid methane. Then of course there is another Saturnian moon, Enceladus, which seems to not only have liquid water below its surface, but huge geysers of water vapour and ice particles erupting from long fissures at its south pole, which have been sampled directly by the Cassini spacecraft. Even some asteroids may have liquid water layers beneath their surfaces. There is also still a chance that Mars might have subsurface aquifers.

But now there is another contender which at first thought might seem to be the most unlikely place to find water – Pluto.

Inhabiting the bitterly cold, lonely outer reaches of the solar system, this dwarf planet would hardly seem to be a good place to look for liquid water, but new research is indicating that, like the other moons already mentioned, it may yet surprise us. It is now being suggested that a subsurface ocean is not only possible, but likely.

The New Horizons spacecraft is scheduled to fly by Pluto in 2015, and it may be able to confirm the existence of the ocean if it is actually there. As it is understood right now, Pluto has a thin shell of nitrogen ice covering a thicker shell of water ice. But is there a layer of liquid water below that? The way for New Horizons to help to determine that is to study the surface features and shape of Pluto as it passes. If there is a noticeable bulge toward the equator, then that means that any primordial ocean or liquid layer probably froze a long time ago, since a liquid layer would tend to cause the surface ice to flow, reducing any bulge. This is based on the fact that a spherical body, as it rotates, will push material toward the equator by angular momentum. If there is no bulge, then any liquid layer is probably still liquid today.

The surface itself can also provide clues about what lies beneath. If there are large fractures, as there are on Europa and Enceladus, their characteristics can be an indication of whether there is an ocean down below. The fractures are caused by surface stresses; tensional stresses would result from icy water beneath the outer ice shell while compressional stresses would indicate a solid layer instead. The long fractures on Europa are particularly reminiscent of the cracked ice floes in Antarctica on Earth where an ice layer covers the sea water beneath it. If geysers similar to those on Enceladus were to be seen on Pluto, that would also of course be good evidence for an ocean.

There is also, inevitably, the question of life. If Pluto’s rocky interior contains radioactive isotopes such as potassium, as seems likely, they could provide enough heat to maintain an ocean. “I think there is a good chance that Pluto has enough potassium to maintain an ocean,” said planetary scientist Francis Nimmo from the University of California at Santa Cruz, who is involved with the new studies. And if you have liquid water and heat… Pluto, however, is thought to lack organics, which would be necessary as a starting point for life.

A Plutonian ocean? Who would have ever thought? When New Horizons finally reaches Pluto in 2015, we should hopefully have a better idea one way or the other regarding this intriguing possibility.

Does The Pluto System Pose A Threat To New Horizons?

Pluto's newest found moon, P4, orbits between Nix and Hydra, both of which orbit beyond Charon. Could there be still more moons of Pluto? Perhaps, and the New Horizons team plans to look harder to ensure that we don't run into something that could damage or destroy New Horizons. Credit: NASA

[/caption]

With nearly two-thirds of its journey complete, the New Horizons spacecraft is still alive and well. It recently experienced a “hibernation wakeup” which started on November 5th and will last until November 15th… and it will sleep again until a month-long call in January. However, the real “wakeup call” may be when it reaches the complicated Pluto system. Watch out for that rock!

As more and more moons are discovered around Pluto, the higher the probability becomes of one of them – or debris surrounding them – could impact the delicate probe. With P4 discovered just a few short months ago, scientists are beginning to wonder just how many more are there which are too small and faint to be seen.

Says New Horizons Principal Investigator Alan Stern: “Even more worrisome than the possibility of many small moons themselves is the concern that these moons will generate debris rings, or even 3-D debris clouds around Pluto that could pose an impact hazard to New Horizons as it flies through the system at high speed. After all, at our 14-kilometer-per-second flyby speed, even particles less than a milligram can penetrate our micrometeoroid blankets and do a lot of damage to electronics, fuel lines and sensors.”

To enable research into what might be a prospective problem, the New Horizons team brought together about 20 of the world’s experts in ring systems, orbital dynamics and state-of-the-art astronomical observing techniques to search for small satellites and rings at distant Pluto. During a two day workshop, the group hashed and rehashed every possible scenario – including all the hazards that a small moon and debris-strewn system might cause.

The presenters and attendees of the New Horizons Pluto Encounter Hazards Workshop on November 4, 2011. Credit: NASA

“We found a plausible chance that New Horizons might face real danger of a killer impact; and that to mitigate that hazard, we need to undertake two broad classes of work.” said Stern. “First, we need to look harder at the Pluto system for still undiscovered satellites and rings. The best tools for this are going to be the Hubble Space Telescope, some very large ground-based telescopes, telescopes that can make stellar occultation observations of the space between Pluto and Charon where New Horizons is currently targeted, and thermal observations of the system by the ALMA radio telescope array just now being commissioned.”

The next step is planning – planning on a possible safer route through the Pluto system in the event that observations confirm navigational hazards. Studies presented at the Encounter Hazards Workshop show a good “safe haven bailout trajectory” (or SHBOT) could be designed to target a closest-approach aim point about 10,000 kilometers farther than the nominal mission trajectory. In this case, it would be a matter of aiming more towards Charon’s orbit, where the moon itself has cleared a path. However, even 180 degrees away on closest approach may not be enough. There’s always a chance of a debris field – one that doesn’t follow a plane, but has created a torus. In this event, material could be sailing along at speeds of up to 1-2 kilometers per second. Enough to annihilate delicate instruments.

“The question of whether the Pluto system could be hazardous to New Horizons remains open –but one we’ll be studying hard over the next year, with everything from computer models to big ground-based telescopes to the Hubble.” concludes Stern. “I’ll report on results as we obtain them, but it is not lost on us that there is a certain irony that the very object of our long-held scientific interest and affection may, after so many years of work to reach her, turn out to be less hospitable than other planets have been. We’ll see.”

Original Story Source: New Horizons News.