New Horizons Snaps Amazing 3-D View of Pluto’s Mysterious ‘Bladed’ Terrain

The amazing stereo view of a broad area informally named Tartarus Dorsa combines two images from the Ralph/Multispectral Visible Imaging Camera (MVIC) taken about 14 minutes apart on July 14, 2015. The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away. Credits: NASA/JHUAPL/SwRI
The amazing stereo view of a broad area informally named Tartarus Dorsa combines two images from the Ralph/Multispectral Visible Imaging Camera (MVIC) taken about 14 minutes apart on July 14, 2015. The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away.   Credits: NASA/JHUAPL/SwRI
The amazing stereo view of a broad area informally named Tartarus Dorsa combines two images from the Ralph/Multispectral Visible Imaging Camera (MVIC) taken about 14 minutes apart on July 14, 2015. The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away. Credits: NASA/JHUAPL/SwRI

It’s time to whip out your 3-D glasses to enjoy and scrutinize the remarkable detail of spectacular terrain revealed in a new high resolution stereo image of Pluto – King of the Kuiper Belt! – taken by NASA’s New Horizons spacecraft.

The amazing new stereo Plutonian image focuses on an area dominated by a mysterious feature that geologists call ‘bladed’ terrain – seen above – and its unlike anything seen elsewhere in our solar system.

Its located in a broad region of rough highlands informally known as Tartarus Dorsa – situated to the east of the Pluto’s huge heart shaped feature called Tombaugh Regio. The best resolution is approximately 1,000 feet (310 meters).

The stereo view combines a pair of images captured by New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC) science instruments. They were taken about 14 minutes apart on during history making first ever flyby of the Pluto planetary system on July 14, 2015.

The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away.

The blades align from north to south, typically reach up to about 550 yards (500 meters) high and are spaced about 2-4 miles (3-5 kilometers). Thus they are among the planets steepest features. They are “perched on a much broader set of rounded ridges that are separated by flat valley floors,” according to descriptions from the New Horizons science team.

This color image of Pluto taken by NASA’s New Horizons spacecraft shows rounded and bizarrely textured mountains, informally named the Tartarus Dorsa, rise up along Pluto’s terminator and show intricate but puzzling patterns of blue-gray ridges and reddish material in between. This view, roughly 330 miles (530 kilometers) across, combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC) on July 14, 2015, and resolves details and colors on scales as small as 0.8 miles (1.3 kilometers).   Credits: NASA/JHUAPL/SWRI
This color image of Pluto taken by NASA’s New Horizons spacecraft shows rounded and bizarrely textured mountains, informally named the Tartarus Dorsa, rise up along Pluto’s terminator and show intricate but puzzling patterns of blue-gray ridges and reddish material in between. This view, roughly 330 miles (530 kilometers) across, combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC) on July 14, 2015, and resolves details and colors on scales as small as 0.8 miles (1.3 kilometers). Credits: NASA/JHUAPL/SWRI

Mission scientists have also noted that the bladed terrain has the texture of “snakeskin” owing to their “scaly raised relief.”

In the companion global image from NASA (below), the bladed terrain is outlined in red and shown to extend quite far to the east of Tombaugh Regio.

The composite image was taken on July 13, 2015, the day before the closest approach flyby, when the probe was farther away thus shows lower resolution. It combines a pair of images from two of the science instruments – a Ralph/Multispectral Visible Imaging Camera (MVIC) color scan and an image from the Long Range Reconnaissance Imager (LORRI).

This global view of Pluto combines a Ralph/Multispectral Visible Imaging Camera (MVIC) color scan and an image from the Long Range Reconnaissance Imager (LORRI), both obtained on July 13, 2015 – the day before New Horizons’ closest approach. The red outline marks the large area of mysterious, bladed terrain extending from the eastern section of the large feature informally named Tombaugh Regio.  Credits: NASA/JHUAPL/SwRI
This global view of Pluto combines a Ralph/Multispectral Visible Imaging Camera (MVIC) color scan and an image from the Long Range Reconnaissance Imager (LORRI), both obtained on July 13, 2015 – the day before New Horizons’ closest approach. The red outline marks the large area of mysterious, bladed terrain extending from the eastern section of the large feature informally named Tombaugh Regio.
Credits: NASA/JHUAPL/SwRI

The MVIC scan was taken from a range of 1 million miles (1.6 million kilometers), at a resolution of 20 miles (32 kilometers) per pixel. The corresponding LORRI image was obtained from roughly the same range, but has a higher spatial resolution of 5 miles (8 kilometers) per pixel, say officials.

Scientists have developed several possible theories about the origins of the bladed terrain, including erosion from evaporating ices or deposition of methane ices.

Measurements from the Linear Etalon Imaging Spectral Array (LEISA) instrument reveal that that this region “is composed of methane (CH4) ice with a smattering of water,” reports New Horizons researcher Orkan Umurhan.

He speculates that “the material making up the bladed terrain is a methane clathrate. A clathrate is a structure in which a primary molecular species (say water, or H2O) forms a crystalline ‘cage’ to contain a guest molecule (methane or CH4, for example).”

But the question of whether that methane ice is strong enough to maintain the steep walled snakeskin features, will take much more research to determine a conclusive answer.

Umurhan suggests that more research could help determine if the “methane clathrates in the icy moons of the outer solar system and also in the Kuiper Belt were formed way back before the solar system formed – i.e., within the protosolar nebula – potentially making them probably some of the oldest materials in our solar system.”

Pluto continues to amaze and surprise us as the data streams back to eagerly waiting scientists on Earth over many more months to come – followed by years and decades of painstaking analysis.

This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com
This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com

During New Horizons flyby on July 14, 2015, it discovered that Pluto is the biggest object in the outer solar system and thus the ‘King of the Kuiper Belt.”

The Kuiper Belt comprises the third and outermost region of worlds in our solar system.

Pluto is the last planet in our solar system to be visited in the initial reconnaissance of planets by spacecraft from Earth since the dawn of the Space Age.

New Horizons remains on target to fly by a second Kuiper Belt Object (KBO) on Jan. 1, 2019 – tentatively named PT1, for Potential Target 1. It is much smaller than Pluto and was recently selected based on images taken by NASA’s Hubble Space Telescope.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, SpaceX, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

High Albedo Points To Huge Collision Forming Plutonian System

Data from New Horizons supports the theory that Pluto's 4 small moons were formed as a result of a collision. Image by NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Data from New Horizons supports the theory that Pluto's 4 small moons were formed as a result of a collision. Image by NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

The high albedo (reflectivity) of some of Pluto’s moons supports the theory that those moons were formed as a result of a collision, rather than being Kuiper Belt Objects (KBOs) that wandered too close and were captured by Pluto’s gravity. Data supporting the collision theory came from NASA’s New Horizons spacecraft as it flew by Pluto in July 2015.

The Pluto system is a complex one. Pluto has 5 moons: Charon, Styx, Nix, Kerberos, and Hydra. Charon is the only moon that is tidally locked with Pluto, and the two are sometimes called a double dwarf planet. The system’s barycenter lies between Pluto and Charon, though much closer to Pluto. The objects in the system move in near-circular orbits, rather than ellipses.

Pluto and Charon were thought to have formed the same way the other planets formed in the Solar System; by coalescing out of a ring of debris left over after the Sun formed. Then, it was thought, the other Plutonian moons were captured from the Kuiper Belt. Pluto resides in the Kuiper Belt, so this made sense. Some of the other moons in our Solar System, like Neptune’s Triton and Saturn’s Phoebe, are also thought to be captured Kuiper Belt Objects (KBOs).

A competing theory for the formation of the Pluto system is the collision theory. This theory states that Pluto and Charon did indeed coalesce out of the ring of debris around the Sun, and that Charon was itself a dwarf planet. But a collision occurred after that, about 4 or 4.5 billion years ago, between Pluto and an object about the same size as Pluto.

This collision left Pluto and Charon in their binary state, but created a circumbinary disk of debris out of which the other 4 moons formed. There are competing versions of these theories, one of which suggests that all of Pluto’s 5 moons were formed by this collision, and none coalesced out of the circumstellar disk of debris that the other planets were formed from.

New Horizons has delivered measurements and data showing that the albedo of Pluto’s 4 smallest moons is much too high for captured KBOs. Their surface reflectivity is highly suggestive of a water-ice composition. Measured KBOs have a geometric albedo of less than .20, while Styx, Nix, Hydra, and Kerberos have values of .40, .57, .56, and .45 respectively. This points to the idea that the object that collided with Pluto 4 to 4.5 billion years ago had at least some icy surface layers.

Pluto’s 4 small moons, Styx, Nix, Kerberos, and Hydra, are all non-spheroidal. This also points to their origins as conglomerated objects which formed from a collision-induced debris disk, rather than as captured Kuiper Belt objects.

These results were published in the journal Science, on March 18th, 2016. They were gathered using the Long-Range Reconnaissance Imager (LORRI), and the Multispectral Visible Imaging Camera (MVIC) instruments on board New Horizons.

Half of the data from New Horizons’ visit to Pluto is yet to arrive, including data from the Linear Etalon Imaging Spectral Array (LEISA). Scientists are hopeful that this data, and all the existing data which together will take years to analyze, will answer some of the questions surrounding the formation of the Pluto system.

Ancient Pluto May Have Had Lakes And Rivers Of Nitrogen

The New Horizons team used "principal component analysis" to get this false-color image that highlights the different regions of Pluto. Image: NASA/New Horizons/JHAPL
The New Horizons team used "principal component analysis" to get this false-color image that highlights the different regions of Pluto. Image: NASA/New Horizons/JHAPL

The New Horizons probe revealed the surface features of Pluto in rich detail when it reached the dwarf planet in July 2015. Some of the features look like snapshots of rivers and lakes that are locked firmly in place by Pluto’s frigid temperatures. But now scientists studying the data coming back from New Horizons think that those frozen lakes and rivers could once have been liquid nitrogen.

Pluto has turned out be a surprisingly active place. New Horizons has shown us what might be clouds in Pluto’s atmosphere, mountains that might be ice volcanoes, and cliffs made of methane ice that melt away into the plains. If there were oceans and rivers of liquid nitrogen on the surface of Pluto, that would fit in with our evolving understanding of Pluto as a much more active planet than we thought.

Richard Binzel, a New Horizons team member from MIT, thinks that lakes of liquid nitrogen could have existed some 800 or 900 million years ago. It all stems from Pluto’s axial tilt, which at 120 degrees is much more pronounced than Earth’s relatively mild 23 degree tilt. And computer modelling suggests that this tilt could have even been more extreme many millions of years ago.

The result of this extreme tilt is that much more of Pluto’s surface would have been exposed to sunlight. That may have warmed Pluto enough to allow liquid nitrogen to flow over the planet’s surface. These kinds of changes to a planet’s axial tilt, (and precession and eccentricity) affect a planet’s climate in what are called Milankovitch cycles. The same cycles are thought to have a similar effect on Earth’s climate, though not as extreme as on Pluto.

According to Binzel, Pluto could be somewhere in between its temperature extremes, meaning that if Pluto will ever be warm enough for liquid nitrogen again, it could be hundreds of millions of years from now. “Right now, Pluto is between two extreme climate states,” Binzel says.

Alan Stern is a planetary scientist at the Southwest Research Institute, and New Horizons’ Principal Investigator. He thinks that these long-cycle climate changes could have a very pronounced effect on Pluto, which has a nitrogen-rich atmosphere. In ancient times, Pluto’s atmosphere could have been more dense than Mars’. “This opens up the possibility that liquid nitrogen may have once or even many times flowed on Pluto’s surface,” he said.

More data from New Horizons is still on its way. About half is yet to arrive. That data, and further analysis, might discredit the fledgling idea that Pluto had and will have again lakes of liquid nitrogen. “We are just beginning to understand the long-term climate of Pluto,” said Binzel.

This week is the 47th Lunar and Planetary Science Conference (LPSC) in Houston. Members of the New Horizons team will be presenting almost 40 reports on Pluto and its system of moons at this conference. Stern’s lecture, titled “The Exploration of Pluto,” will be archived online at http://livestream.com/viewnow/LPSC2016.

New Horizons Team Releases First Papers On Pluto And Its Moons

This image of Pluto taken by the New Horizons spacecraft shows the blue color of Pluto's high-altitude haze. Image: NASA/New Horizons.
This image of Pluto taken by the New Horizons spacecraft shows the blue color of Pluto's high-altitude haze. Image: NASA/New Horizons.

The New Horizons team is releasing their first set of five research papers on Pluto and its moons. What the team is calling a “comprehensive set of papers” is the result of the New Horizons spacecraft’s close encounter with Pluto and its moons last summer. New Horizons has been transmitting data from the encounter that time, and will be sending data back for months to come.

We can tell from images that Pluto is not what we thought it was. Images and data show that Pluto is a much more active planet than we thought, and its surface shows a diversity of landscapes and geological processes. There’s been a lot of discussion about Pluto and its moons, and a lot of educated guesses about what’s going on there, but the 5 papers released by the team will take the discussion to a new level.

“These five detailed papers completely transform our view of Pluto – revealing the former ‘astronomer’s planet’ to be a real world with diverse and active geology, exotic surface chemistry, a complex atmosphere, puzzling interaction with the sun and an intriguing system of small moons,” said Alan Stern, New Horizons principal investigator from the Southwest Research Institute (SwRI), Boulder, Colorado.

The surface of Pluto is a constantly changing palette, shaped by the interactions between the volatile compounds nitrogen, methane, and carbon monoxide ices with the much sturdier and more predictable water ice. The evaporation and condensation of these compounds shapes the surface of Pluto. “These cycles are a lot richer than those on Earth, where there’s really only one material that condenses and evaporates – water,” said Will Grundy of the Lowell Observatory, Flagstaff, Arizona.

The New Horizons team used "principal component analysis" to get this false-color image of Pluto that highlights the different regions of Pluto. Image: NASA/New Horizons/JHAPL
The New Horizons team used “principal component analysis” to get this false-color image of Pluto that highlights the different regions of Pluto. Image: NASA/New Horizons/JHAPL

Images from New Horizons showed that Pluto’s moons are highly reflective, much more reflective than other bodies in the Kuiper Belt. This led scientists to believe that rather than being captured from the Kuiper Belt and drawn into orbit around Pluto, the moons may have been a result of a collision that formed the Pluto system.

The New Horizons team has found evidence to support this, and evidence that the surface ages of some moons are at least 4 billion years old. “These latter two results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary system,” said Hal Weaver, New Horizons project scientist from the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

There’s a lot of material in these papers, and I direct interested readers to a summary here: Top New Horizons Findings.

The papers are published in Science.

Eat Your Heart Out Pluto

Sublimation of methane ice (shown in purple in the right inset) to methane gas may be eroding the cliffs of Piri Rupes. This process is creating what looks like a bite mark in Pluto's surface, and leaving the Piri Planitia in their wake. (All names for the geographical features on Pluto are still informal.) Image: NASA/JHUAPL/SwRI
Sublimation of methane ice (shown in purple in the right inset) to methane gas may be eroding the cliffs of Piri Rupes. This process is creating what looks like a bite mark in Pluto's surface, and leaving the Piri Planitia in their wake. (All names for the geographical features on Pluto are still informal.) Image: NASA/JHUAPL/SwRI

Images from the New Horizons spacecraft show a bite-mark shaped feature on the surface of Pluto. Scientists think that the feature is caused by the sublimation of methane ice, causing cliffs to erode and leaving a flat plain in their place. The images were captured just prior to New Horizon’s closest approach to Pluto on July 14th, 2015.

In the image above, which is of Pluto’s western hemisphere, three main features are shown. The first is Vega Terra, which as a raised plateau area. The second is the Piri Planitia, which is a flatter and lower area of plains. Piri Planitia shows an absence of craters, meaning it is geologically younger. Dividing Terra and Planitia are the Piri Rupes, the cliffs which have the bite-mark shaped feature that caught the interest of scientist.

The colored image on the right shows methane-rich areas in purple. Scientists think that as the methane ice of Piri Rupes is sublimated away into the atmosphere, the cliffs are removed and the flat plains of Piri Planitia take their place. The image also shows some methane mesas which have not sublimated away yet.

This image shows the location on Pluto where the sublimation of methane is leaving a bite-mark shape, and changing the surface of Pluto. Image: NASA/JHUAPL/SwRI
This image shows the location on Pluto where the sublimation of methane is leaving a bite-mark shape, and changing the surface of Pluto. Image: NASA/JHUAPL/SwRI

New Horizons’ data also shows that Piri Planitia has a higher content of water ice, which is shown in blue. Because of the frigid temperature on Pluto, it’s thought that this water ice is like bedrock. It is immobile, and as the methane ice is sublimated away, the water ice bedrock of Piri Planitia is left exposed.

Prior to New Horizons’ arrival at Pluto, it was generally thought that not much was happening at Pluto. But as these images show, and as New Horizons keeps proving, Pluto is far from an inactive place, and there’s a lot to hold the interest of planetary scientists.

Clouds Seen On Pluto For First Time

Recent images sent by NASA's New Horizons spacecraft show possible clouds floating over the frozen landscape including the streaky patch at right. Credit: NASA/JHUAPL/SwR
Recent images sent by NASA's New Horizons spacecraft show possible clouds floating over the frozen landscape including the streaky patch at right. Credit: NASA/JHUAPL/SwR
Recent images sent by NASA’s New Horizons spacecraft show possible clouds floating over the frozen landscape including the hazy streak right of center. Credit: NASA/JHUAPL/SwRI

I think we were all blown away when the New Horizons spacecraft looked back at Pluto’s dark side and returned the first photos of a surprisingly complex, layered atmosphere. Colorless nitrogen along with a small percentage of methane make up Pluto’s air. Layers of haze are likely created when the two gases react in sunlight to form tiny, soot-like particles called tholins. These can ultimately grow large enough to settle toward the surface and coat and color Pluto’s icy exterior.

Close up of the back side of Pluto taken by New Horizons shows multiple layers of haze in its mostly nitrogen atmosphere. Credit:
Close up of the back side of Pluto taken by New Horizons shows multiple layers of haze in its mostly nitrogen atmosphere. Credit: NASA/JHUAPL/SwRI

Now it seems Pluto’s atmosphere is capable of doing even more — making clouds! In an e-mail exchange with New Scientist, Lowell Observatory astronomer Will Grundy discusses the possibility that streaks and small condensations within the hazes might be individual clouds. Grundy also tracked a feature as it passed over different parts of the Plutonian landscape below, strongly suggesting a cloud.  If confirmed, they’d be the first-ever clouds seen on the dwarf planet, and a sign this small 1,473-mile-wide (2,370 km) orb possesses an even more complex atmosphere than imagined.

Faint arrows along Pluto's limb point to possible clouds in a low altitude haze layer. More distinct possible clouds are arrowed at left. Credit: NASA/JHUAPL/SwR
Faint arrows along Pluto’s limb point to possible clouds in a low altitude haze layer. More distinct possible clouds are arrowed at left. Credit: NASA/JHUAPL/SwRI
The smooth expanse of the informally named Sputnik Planum (right) is flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. The backlighting highlights more than a dozen layers of haze in Pluto's tenuous but distended atmosphere.
15 minutes after its closest approach, New Horizons snapped this image of the smooth expanse of Sputnik Planum (right) flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. The backlighting highlights more than a dozen layers of haze in Pluto’s tenuous but distended atmosphere. Credit: NASA/JHUAPL/SwRI

Given the onion-like layers of haze and potential clouds, perhaps we shouldn’t be surprise that it snows on Pluto. The New Horizons team announced the discovery this week of a chain of exotic snowcapped mountains stretching across the dark expanse of the informally named Cthulhu Regio. Cthulhu, pronounced kuh-THU-lu and named for a character in American horror writer H.P. Lovecraft’s books, stretches nearly halfway around Pluto’s equator, starting from the west of the vast nitrogen ice plain, Sputnik Planum. At 1,850 miles (3,000 km) long and 450 miles (750 km) wide, Cthulhu is a bit larger than the state of Alaska. But ever so much colder!

A section of Cthulhu Regio boasts peaks covered in methane frost or snow.
The upper slopes of Cthulhu’s highest peaks are coated with a bright material that contrasts sharply with the dark red color of the surrounding plains. Scientists think it’s methane ice condensed from Pluto’s atmosphere. The far right panel shows the distribution of methane ice on the surface. Credit: NASA/JHUAPL/SwRI

Cthulhu’s red color probably comes from a covering of dark tholins formed when methane interacts with sunlight. But new close-up images reveal that the region’s highest mountains appear coated with a much brighter material. Scientists think it’s methane, condensed as ice onto the peaks from Pluto’s atmosphere.

“That this material coats only the upper slopes of the peaks suggests methane ice may act like water in Earth’s atmosphere, condensing as frost at high altitude,” said John Stansberry, a New Horizons science team member.

Compositional data from the New Horizon’s Ralph/Multispectral Visible Imaging Camera (MVIC), shown in the right panel in the image above, shows that the location of the bright ice on the mountain peaks correlates almost exactly with the distribution of methane ice, shown in false color as purple.

New Horizons still has plenty of images stored on its hard drive, so we’re likely to see more clouds, frosty peaks and gosh-knows-what-else as the probe speeds ever deeper into space while returning daily postcards from its historic encounter.

Spotlight On Pluto’s Frozen Polar Canyons

This enhanced color view Long canyons run vertically across the polar area—part of the informally named Lowell Regio, named for Percival Lowell, who founded Lowell Observatory and initiated the search that led to Pluto’s discovery. The widest of the canyons is about 45 miles (75 kilometers) wide and runs close to the north pole. Roughly parallel subsidiary canyons to the east and west are approximately 6 miles (10 kilometers) wide.
This enhanced color view Long canyons run vertically across the polar area—part of the informally named Lowell Regio, named for Percival Lowell, who founded Lowell Observatory and initiated the search that led to Pluto’s discovery. The widest of the canyons is about 45 miles (75 kilometers) wide and runs close to the north pole. Roughly parallel subsidiary canyons to the east and west are approximately 6 miles (10 kilometers) wide.
This enhanced color view shows long canyons running vertically across Pluto’s north polar region — part of the informally named Lowell Regio, named for Percival Lowell, who founded Lowell Observatory and initiated the search that led to Pluto’s discovery. The widest of the canyons is about 45 miles (75 km) wide and runs close to the north pole. Roughly parallel secondary canyons to the east and west are approximately 6 miles (10 km) wide. Click for a hi-res view. Credit: NASA/JHUAPL/SRI

Pluto’s frozen nitrogen custard “heart” has certainly received its share of attention. Dozens of wide and close-up photos homing on this fascinating region rimmed by mountains and badlands have been relayed back to Earth by NASA’s New Horizons probe after last July’s flyby. For being only 1,473 miles (2,370 km) in diameter, Pluto displays an incredible diversity of landscapes.

Annotated version of Pluto's north polar region.
Annotated version showing sinuous valleys, canyons and depressions and irregular-shaped pits. Credit: NASA/JHUAPL/SRI with additional annotations by the author

This week, the New Horizons team shifted its focus northward, re-releasing an enhanced color image of the north polar area that was originally part of a high-resolution full-disk photograph of Pluto. Inside of the widest canyon, you can trace the sinuous outline of a narrower valley similar in outward appearance to the Moon’s Alpine Valleycut by a narrow, curvy rill that once served as a conduit for lava.

A composite of enhanced color images of Pluto (lower right) and Charon (upper left), taken by NASA's New Horizons spacecraft as it passed through the Pluto system on July 14, 2015. This image highlights the striking differences between Pluto and Charon. The color and brightness of both Pluto and Charon have been processed identically to allow direct comparison of their surface properties, and to highlight the similarity between Charon's polar red terrain and Pluto's equatorial red terrain. Pluto and Charon are shown with approximately correct relative sizes, but their true separation is not to scale.
A composite of enhanced color images of Pluto (lower right) and Charon, taken by NASA’s New Horizons spacecraft on July 14, 2015. This image highlights the striking differences between Pluto and Charon. The color and brightness of both Pluto and Charon have been processed identically to allow direct comparison of their surface properties, and to highlight the similarity between Charon’s polar red terrain and Pluto’s equatorial red terrain. Pluto and Charon are shown with approximately correct relative sizes, but their separation is not to scale. Credit: NASA/JHUAPL/SRI

We see multiple canyons in Pluto’s polar region, their walls broken and degraded compared to canyons seen elsewhere on the planet. Signs that they may be older and made of weaker materials and likely formed in ancient times when Pluto was more tectonically active. Perhaps they’re related to that long-ago dance between Pluto and its largest moon Charon as the two transitioned into their current tidally-locked embrace.

Cropped version showing three, odd-shaped pits that may reflect sinking of Pluto's crust. Credit:
Cropped version with arrows pointing to three, odd-shaped pits that may reflect sinking of Pluto’s crust. Credit: NASA/JHUAPL/SRI

In the lower right corner of the image, check out those funky-shaped pits that resemble the melting outlines of boot prints in the snow. They reach 45 miles (70 km) across and 2.5 miles (4 km) deep and may indicate locations where subsurface ice has melted or sublimated (vaporized) from below, causing the ground to collapse.

Notice the variation in color across the landscape from yellow-orange to pale blue. High elevations show up in a distinctive yellow, not seen elsewhere on Pluto, with lower elevations and latitudes a bluish gray. New Horizons’ infrared measurements show abundant methane ice across the Lowell Region, with relatively little nitrogen ice. The yellow terrains may be older methane deposits that have been more processed by solar UV light than the bluer terrain. The color variations are especially striking in the area of the collapse pits.

The new map shows exposed water ice to be considerably more widespread across Pluto's surface than was previously known - an important discovery.
The new map shows exposed water ice at Pluto to be considerably more widespread across its surface than was previously known. Its greatest concentration lies in the red-hued regions (in visual light) to the west of Tombaugh Regio, the large, heart-shaped feature. Credit: NASA/JHUAPL/SRI

Pluto’s icy riches include not only methane and nitrogen but also water, which forms the planet’s bedrock. NASA poetically refers to the water ice as “the canvas on which (Pluto’s) more volatile ices paint their seasonally changing patterns”. Recent images made in infrared light shows little or no water ice in the informally named places called Sputnik Planum (the left or western region of Pluto’s “heart”) and Lowell Regio. This indicates that at least in these regions, Pluto’s bedrock remains well hidden beneath a thick blanket of other ices such as methane, nitrogen and carbon monoxide.

To delve more deeply into Pluto, visit the NASA’s photojournal archive, where you’ll find 130 photos (and counting!) of the dwarf planet and its satellites.

Obama Administration Proposes Smaller 2017 NASA Budget of $19 Billion with Big Exploration Cuts

NASA releases budget request for Fiscal Year 2017. Credit: NASA
NASA releases budget request for Fiscal Year 2017. Credit: NASA
NASA releases budget request for Fiscal Year 2017. Credit: NASA

The Obama Administration has announced its new Federal budget and is proposing to cut NASA’s Fiscal Year 2017 Budget to $19 billion by carving away significant funding for deep space exploration, whereas the overall US Federal budget actually increases to over $4.1 trillion.

This 2017 budget request amounts to almost $300 million less than the recently enacted NASA budget for 2016 and specifically stipulates deep funding cuts for deep space exploration programs involving both humans and robots, during President Obama’s final year in office.

The 2017 budget proposal would slash funding to the very programs designed to expand the frontiers of human knowledge and aimed at propelling humans outward to the Red Planet and robots to a Jovian moon that might be conducive to the formation of life.

Absent sufficient and reliable funding to keep NASA’s exploration endeavors on track, further launch delays are almost certainly inevitable – thereby fraying American leadership in space and science.

The administration is specifying big funding cuts to the ongoing development of NASA’s mammoth Space Launch System (SLS) heavy lift rocket and the state of the art Orion deep space crew capsule. They are the essential first ingredients to carry out NASA’s ambitious plans to send astronauts on deep space ‘Journey to Mars’ expeditions during the 2030s.

The overall Exploration Systems Development account for human deep space missions would be slashed about 18 percent from the 2016 funding level; from $4.0 Billion to only $3.3 Billion, or nearly $700 million.

SLS alone is reduced the most by $700 million from $2.0 billion to $1,31 billion, or a whopping 35 percent loss. Orion is reduced from $1.27 billion to $1.12 billion for a loss of some $150 million.

Make no mistake. These programs are already starved for funding and the Obama administration tried to force similar cuts to these programs in 2016, until Congress intervened.

Likewise, the Obama administration is proposing a draconian cut to the proposed robotic mission to Jupiter’s moon Europa that would surely delay the launch by at least another half a decade or more – to the late 2020s.

The Europa mission budget proposal is cut to only $49 million and the launch is postponed until the late 2020s. The mission received $175 million in funding in 2016 – amounting to a 72 percent reduction.

Furthermore there is no funding for a proposed lander and the launch vehicle changes from SLS to a far less powerful EELV – causing a year’s long increased travel time.

In order to maintain an SLS launch in approximately 2022, NASA would require a budget of about $150 million in 2017, said David Radzanowski, NASA’s chief financial officer, during a Feb. 9 teleconference with reporters.

Why is Europa worth exploring? Because Europa likely possesses a subsurface ocean of water and is a prime target in the search for life!

Overall, NASA’s hugely successful Planetary Sciences division suffers a huge and nearly 10 percent cut of $141 million to $1.51 billion – despite undeniably groundbreaking scientific successes this past year at Pluto, Ceres, Mars and more!

Altogether NASA would receive $19.025 billion in FY 2017. This totals $260 million less than the $19.285 billion appropriated in FY 2016, and thus corresponds to a reduction of 1.5 percent.

By contrast, the overall US Federal Budget will increase nearly 5 percent to approximately $4.1 trillion. Simple math demonstrates that NASA is clearly not a high priority for the administration. NASA’s share of the Federal budget comes in at less than half a cent on the dollar.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

NASA’s Fiscal Year 2017 budget proposal was announced by NASA Administrator Charles Bolden during a televised ‘State of NASA’ address at the agency’s Langley Research Center in Virginia on Feb. 9.

Bolden did not dwell at all on the significant funding reductions for exploration.

“We are hitting our benchmarks with new exploration systems like the Space Launch System rocket and the Orion Crew Vehicle. A new consensus is emerging in the scientific and policy communities around our vision, timetable and plan for sending American astronauts to Mars in the 2030s.”

And he outlined some milestones ahead.

“We’ll continue to make great progress on the Space Launch System – SLS–rocket and we’re preparing for a second series of engine tests,” said Bolden.

“At the Kennedy Space Center, our teams will outfit Orion’s crew module with the spacecraft’s heat-shielding thermal protection systems, avionics and subsystems like electrical power storage, cabin pressure control and flight software –to name just a few.”

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

NASA plans to launch the first combined SLS/Orion on the uncrewed Exploration Mission-1 (EM-1) in November 2018.

Indeed the Orion EM-1 pressure vessel just arrived at the Kennedy Space Center last week to completely install all the systems required for flight.

NASA’s Orion EM-1 crew module pressure vessel arrived at the Kennedy Space Center’s Shuttle Landing Facility tucked inside NASA’s Super Guppy aircraft on Feb 1, 2016. The Super Guppy opens its hinged nose to unload cargo.  Credit: Ken Kremer/kenkremer.com
NASA’s Orion EM-1 crew module pressure vessel arrived at the Kennedy Space Center’s Shuttle Landing Facility tucked inside NASA’s Super Guppy aircraft on Feb 1, 2016. The Super Guppy opens its hinged nose to unload cargo. Credit: Ken Kremer/kenkremer.com

The launch date for the first crewed flight on EM-2 was targeted for 2021. But EM-2 is likely to slip to the right to 2023, due to insufficient funding.

Lack of funding will also force NASA to delay development of the far more capable and powerful Exploration Upper Stage (EUS) to propel Orion on deep space missions. It will now not be available for the SLS/EM-2 launch as hoped.

The proposed huge budget cuts to SLS, Orion and Europa are certain to arose the ire of multiple members of Congress and space interest groups, who just successfully fought to increase NASA’s FY 2016 budget for these same programs in the recently passed 2016 omnibus spending bill.

“This administration cannot continue to tout plans to send astronauts to Mars while strangling the programs that will take us there,” said Rep. Lamar Smith (R-Texas), Chairman of the House Science, Space, and Technology Committee, in a statement in response to the president’s budget proposal.

“President Obama’s FY17 budget proposal shrinks our deep space exploration programs by more than $800 million. And the administration once more proposes cuts of more than $100 million to the Planetary Science accounts, which have previously funded missions like this past year’s Pluto flyby.”

“This imbalanced proposal continues to tie our astronauts’ feet to the ground and makes a Mars mission all but impossible. This is not the proposal of an administration that is serious about maintaining America’s leadership in space.”

A "true color" image of the surface of Jupiter's moon Europa as seen by the Galileo spacecraft. Image credit: NASA/JPL-Caltech/SETI Institute
A “true color” image of the surface of Jupiter’s moon Europa as seen by the Galileo spacecraft. Image credit: NASA/JPL-Caltech/SETI Institute

“The Coalition for Deep Space Exploration … had hoped the request would reflect the priorities laid out for NASA in the FY16 Omnibus, for which there was broad support,” said Mary Lynne Dittmar, executive director of the Coalition for Deep Space Exploration, in a statement.

“Unfortunately this was not the case. The Coalition is disappointed with the proposed reduction in funding below the FY16 Omnibus for NASA’s exploration programs. We are deeply concerned about the Administration’s proposed cut to NASA’s human exploration development programs.”

“This proposed budget falls well short of the investment needed to support NASA’s exploration missions, and would have detrimental impacts on cornerstone, game-changing programs such as the super-heavy lift rocket, the Space Launch System (SLS), and the Orion spacecraft – the first spacecraft designed to reach multiple destinations in the human exploration of deep space.”

Homecoming view of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014 after successful blastoff on Dec. 5, 2014.  Credit: Ken Kremer - kenkremer.com
Homecoming view of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014 after successful blastoff on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

Funding for the James Webb Space Telescope (JWST) was maintained at planned levels to keep it on track for launch in 2018.

All 18 primary mirrors of NASA’s James Webb Space Telescope are seen fully installed on the backplane structure by technicians using a robotic arm (center) inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credit: Ken Kremer/kenkremer.com
All 18 primary mirrors of NASA’s James Webb Space Telescope are seen fully installed on the backplane structure by technicians using a robotic arm (center) inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: Ken Kremer/kenkremer.com

On Dec. 18, 2015, the US Congress passed and the president signed the 2016 omnibus spending bill which funds the US government through the remainder of the 2016 Fiscal Year.

As part of the omnibus bill, NASA’s approved budget amounted to nearly $19.3 Billion. That was an outstanding result and a remarkable turnaround to some long awaited good news from the decidedly negative outlook earlier in 2015.

The 2016 budget represented an increase of some $750 million above the Obama Administration’s proposed NASA budget allocation of $18.5 Billion for Fiscal Year 2016, and an increase of more than $1.2 Billion over the enacted budget for FY 2015.

Under the proposed NASA budget for Fiscal Year 2017, the fictional exploits of ‘The Martian’ will never become reality.

And the hunt for extraterrestrial life on the icy moons of the outer solar system is postponed yet again.

Scene from ‘The Martian’ starring Matt Damon as NASA astronaut Mark Watney contemplating magnificent panoramic vista while stranded alone on Mars.    Credits: 20th Century Fox
Scene from ‘The Martian’ starring Matt Damon as NASA astronaut Mark Watney contemplating magnificent panoramic vista while stranded alone on Mars. Credits: 20th Century Fox

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

This global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015.   The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers).  This mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized.  Right side mosaic comprises twelve highest resolution views of Tombaugh Regio heart shaped feature and shows objects as small as 0.5 miles (0.8 kilometers) in size.  Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/ Ken Kremer/kenkremer.com/Marco Di Lorenzo
This global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Right side mosaic comprises twelve highest resolution views of Tombaugh Regio heart shaped feature and shows objects as small as 0.5 miles (0.8 kilometers) in size. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/ Ken Kremer/kenkremer.com/Marco Di Lorenzo

Astronomers Find Theoretical Evidence for Distant Gas Giant Planet in Our Solar System

Artist's concept of the hypothetical "Planet Nine." Could it have moons? Credit: NASA/JPL-Caltech/Robert Hurt
Artistic rendering shows the distant view from theoretical Planet Nine back towards the sun. The planet is thought to be gaseous, similar to Uranus and Neptune. Hypothetical lightning lights up the night side.  Credit: Caltech/R. Hurt (IPAC)
Artistic rendering shows the distant view from theoretical Planet Nine back towards the sun. The planet is thought to be gaseous, similar to Uranus and Neptune. Hypothetical lightning lights up the night side. Credit: Caltech/R. Hurt (IPAC)

The astronomer known worldwide for vigorously promoting the demotion of Pluto from its decades long perch as the 9th Planet, has now found theoretical evidence for a new and very distant gas giant planet lurking way beyond Pluto out to the far reaches of our solar system.

In an obvious reference to the planethood controversy, the proposed new planet is nicknamed ‘Planet Nine’ and its absolutely huge! Continue reading “Astronomers Find Theoretical Evidence for Distant Gas Giant Planet in Our Solar System”

“X” Marks the Spot of Convective Churning on Hot Pluto

“X” marks the spot in this image transmitted to Earth on Dec. 24, 2015 from the Long Range Reconnaissance Imager (LORRI) from NASA’s New Horizons’ showing the highest-resolution swath of Pluto at the center of Sputnik Planum, the informally named plain that forms the left side of Pluto’s “heart.” The pattern of polygonal cells stems from the slow thermal convection of the nitrogen-dominated ices. Also visible is a a dirty block of water ice “floating” in denser solid nitrogen. Credits: NASA/JHUAPL/SwRI

“X” marks the spot that’s illustrative of “convective churning” resulting from subsurface planetary heating, as seen in a fascinating new super high resolution image received from NASA’s New Horizons spacecraft on Christmas Eve, Dec. 24, 2015. Its situated at the very center of the left ventricle of Pluto’s huge “heart” – an icy flow plain that’s informally named “Sputnik Planum.”

The “X” feature – see image above – is located in an area of intersecting cells, shaped like polygons, on the plains of “Sputnik Planum” which are mostly comprised of frozen nitrogen ices.

Continue reading ““X” Marks the Spot of Convective Churning on Hot Pluto”