Gravitational Lens Seen for the First Time in Gamma Rays

blazar

An exciting new discovery was unveiled early this week at the 223rd  meeting of the American Astronomical Society being held in Washington D.C., when astronomers announced that a gravitational lens was detected for the first time at gamma-ray wavelengths.

The study was conducted using NASA’s Fermi Gamma Ray Space Telescope, and promises to open a new window on the universe, giving astrophysicists another tool to study the emission regions that exist near supermassive black holes.

But the hunt wasn’t easy. A gravitational lens occurs when a massive foreground object, such as a galaxy, bends the light from a distant background object. In the case of this study, researchers targeted a blazar known as B0218+357, a energetic source located 4.35 billion light years away in the direction of the constellation Triangulum.

Blazar and quasar sources are named using their respective coordinates in the sky. Think of “0218+357” as translating into “Right Ascension 2 Hours 18 Minutes, Declination +35.7 degrees north” in backyard astronomer-speak.  A blazar is a compact form of quasar that results from a supermassive black hole at the heart of an active galaxy. The term blazar was first coined by Edward Spiegel in 1978. The first quasar discovered was 3C 273 in 1970, which was also later found to be a blazar. 3C 273 is visible in Virgo using a large backyard telescope.

A foreground spiral galaxy seen face on lies along our line of sight between our vantage point and B0218+357. At 4 billion light years distant, the two have the smallest angular separation of any gravitationally lensed system so far identified at less than a third of an arc second across.

“We began thinking about the possibility of making this observation a couple of years after Fermi launch, and all of the pieces finally came together in late 2012,” said Naval Research Laboratory astrophysicist and lead scientist on the study Teddy Cheung in a recent NASA Goddard Spaceflight Center press release.

Observations of the blazar suggested that it would be flaring in September 2012, making it a prime target for the study. In fact, B0218+357 was the brightest extra-galactic gamma-ray source at the time. Cheung was granted time spanning late September into October 2012 to use Fermi’s Large Area Telescope (LAT) instrument to study the blazar in outburst.

Fermi‘s LAT instrument doesn’t have the resolution possessed by radio and optical instruments to catch the blazar in single images. Instead, the team exploited a phenomenon known as the “delayed playback effect” to catch the blazar in action.

“One light path is slightly longer than the other, so when we detect flares in one image we try and catch them days later when they replay in the other image,” Said team member Jeff Scargle, astrophysicist based at NASA’s Ames Research Center.

Cheung presented the findings of the study Monday at the American Astronomical Society meeting, which included three distinct flaring episodes from the background blazar that demonstrated the tell-tale delayed playback events with a period spanning 11.46 days.

A Hubble Space Telescope image of the gravitational lensing of B0218+357. Credit: NASA/ESA and the Hubble Legacy Archive.
A Hubble Space Telescope image of the gravitational lensing of B0218+357. Credit: NASA/ESA and the Hubble Legacy Archive.

Follow-up observations in radio and optical wavelengths supported the key observations, and demonstrate that Fermi’s LAT imager did indeed witness the event. Interestingly, the delay for the gamma-rays from the lensed blazar takes about a day longer than radio waves to reach the Earth. B0218+357 is also about four times brighter in gamma-rays than in radio wavelengths.

This occurs because the gamma-rays are emanating from a slightly different region than radio waves generated by the blazar, and are taking a different path though the gravitational field of the foreground galaxy. This demonstrates that assets like Fermi can be used to probe the heart of the distant energetic galactic nuclei which harbor supermassive black holes. This opens the hot topic of gravitationally lensed blazars and their role in extra-galactic astronomy up to the gamma-ray spectrum, and gives cosmologists another gadget for their tool box.

“Over the course of a day, one of these flares can brighten the blazar by 10 times in gamma-rays but only 10 percent in visible light and radio, which tells us that the region emitting gamma-rays is very small compared to those emitting at lower energies,” Said Stockholm University team member Stefan Larsson in the recent press release.

Using the analysis of lensing systems at gamma-ray wavelengths will not only help to probe these enigmatic cosmological beasts, but it may also assist with refining the all-important Hubble Constant, which measures the rate at which the universe is expanding.

But Fermi may just beginning to show its stuff when it comes to hunting for extra-galactic sources. The really exciting breakthrough, researchers say, would be the discovery of an energetic extra-galactic source being lensed by a foreground galaxy in gamma-rays that hasn’t been seen been seen at other wavelengths. This recent finding has certainly demonstrated how Fermi can “see” these tell-tale flashes via a clever method. Expect more news in the coming years!

Read the entire paper on the arViv server titled Fermi-LAT Detection of Gravitational Lens Delayed Gamma-ray Flares from Blazar B0218+357.

Fast Radio Bursts May Originate Closer to Home Than Previously Thought

Image

Fast radio bursts — eruptions of extreme energy that occur only once and last a thousandth of a second — are continuing to defy astronomers.  At first observations suggested they came from billions of light years away. A new study, however, points to sources much closer to home: nearby flaring stars.

“We have argued that fast radio burst sources need not be exotic events at cosmological distances, but rather could be due to extreme magnetic activity in nearby Galactic stars,” said Harvard professor Abraham Loeb in the study.

All radio bursts show a dispersion measure — a frequency dependent time delay — as the long-wavelength component arrives a fraction of a second after the short-wavelength component. When the burst travels through a medium, the long-wavelength component moves slightly slower than short-wavelength component.

This dispersion may easily be created when light travels through intergalactic space. The farther the light travels, the more electrons it will have to travel through, and the greater time delay between the arriving wavelength components.

With this assumption, fast radio bursts are likely to have originated anywhere from five to 10 billion light years away. Universe Today covered an extra-galactic origin a few months ago (read it here).

However, Loeb and his colleagues turned their eyes instead to electrons in stellar corona. These electrons are tightly packed, more so than diffuse intergalactic electrons, and would create the same observable effect.

Flaring stars — variable stars that can undergo unpredictable increases in brightness — are a likely source of fast radio bursts. Two circumstances may create flaring stars: young, low mass stars and solar-mass contact binaries, which orbit so close to one another that they share a common envelope.

In order to test this theory, Loeb and his colleagues searched the vicinities of three of the six known fast radio bursts for flaring stars.

“We were surprised that, apparently, no one had done this before,” said graduate student Yossi Shvartzvald in a press release. Shvartzvald led the observations at Tel-Aviv University’s Wise Observatory in Mitspe Ramon, Israel.

The team discovered a contact binary system in one location. Two sun-like stars orbit one another every 7.8 hours. They calculate a five percent chance that the contact binary is there by coincidence.

No flaring stars, however, were detected in the two other fields.

“Whenever we find a new class of sources, we debate whether they are close or far away,” Loeb said in a press release. Initially we thought gamma-ray bursts were faint stars within the Milky Way. Today we know they are bright explosions in distant galaxies.

It seems the distance debate for fast radio bursts has only begun.

The paper has been accepted for publication in the Monthly Notices of the Royal Astronomical Society and is available for download here. The original press release may be found here.

Home Computers Discover Gamma-Ray Pulsars

Gamma-ray pulsars in the Milky Way's plane, found by volunteers using Einstein@Home. The sky map is from Fermi's Large Area Telescope. The brighter the color you see, the more intense the radiation in that spot. The small flags show the nationality of the volunteers whose computers spotted the pulsars. Credit: Knispel/Pletsch/AEI/NASA/DOE/Fermi LAT Collaboration

Imagine that you’re innocently running your computer in pursuit of helping data crunch a huge science project. Then, out of the thousands of machines running the project, yours happens to stumble across a discovery. That’s what happened to several volunteers with Einstein@Home, which seeks pulsars in data from the Fermi Gamma-Ray Space Telescope, among other projects.

“At first I was a bit dumbfounded and thought someone was playing a hoax on me. But after I did some research,” everything checked out. That someone as insignificant as myself could make a difference was amazing,” stated Kentucky resident Thomas M. Jackson, who contributed to the project.

Pulsars, a type of neutron star, are the leftovers of stars that exploded as supernovae. They rotate rapidly, with such precision in their rotation periods that they have sometimes been likened to celestial clocks. Although the discovery is exciting to the eight volunteers because they are the first to find these gamma-ray pulsars as part of a volunteer computing project, the pulsars also have some interesting scientific features.

Artist's illustration of a neutron star, a tiny remnant that remains after its predecessor star explodes. Here, the 12-mile (20-kilometer) sphere is compared with the size of Hannover, Germany. Credit: NASA's Goddard Space Flight Center
Artist’s illustration of a neutron star, a tiny remnant that remains after its predecessor star explodes. Here, the 12-mile (20-kilometer) sphere is compared with the size of Hannover, Germany. Credit: NASA’s Goddard Space Flight Center

The four pulsars were discovered in the plane of the Milky Way in an area that radio telescopes had looked at previously, but weren’t able to find themselves. This means that the pulsars are likely only visible in gamma rays, at least from the vantage point of Earth; the objects emit their radiation in a narrow direction with radio, but a wider stripe with gamma rays. (After the discoveries, astronomers used the Max Planck Institute for Radio Astronomy’s 100-meter Effelsberg radio telescope and the Australian Parkes Observatory to peer at those spots in the sky, and still saw no radio signals.)

Two of the pulsars also “hiccup” or exhibit a pulsar glitch, when the rotation sped up and then fell back to the usual rotation period a few weeks later. Astronomers are still learning more about these glitches, but they do know that most of them happen in young pulsars. All four pulsars are likely between 30,000 and 60,000 years old.

Artist's conception of a gamma-ray pulsar. Gamma rays are shown in purple, and radio radiation in green. Credit: NASA/Fermi/Cruz de Wilde
Artist’s conception of a gamma-ray pulsar. Gamma rays are shown in purple, and radio radiation in green. Credit: NASA/Fermi/Cruz de Wilde

“The first-time discovery of gamma-ray pulsars by Einstein@Home is a milestone – not only for us but also for our project volunteers. It shows that everyone with a computer can contribute to cutting-edge science and make astronomical discoveries,” stated co-author Bruce Allen, principal investigator of Einstein@Home. “I’m hoping that our enthusiasm will inspire more people to help us with making further discoveries.”

Einstein@Home is run jointly by the Center for Gravitation and Cosmology at the University of Wisconsin–Milwaukee and the Albert Einstein Institute in Hannover, Germany. It is funded by the National Science Foundation and the Max Planck Society. As for the volunteers, their names were mentioned in the scientific literature and they also received certificates of discovery for their work.

Source: Max Planck Institute for Gravitational Physics

Delving Into The Mystery Of Black Hole Jets

Black hole with disc and jets visualization courtesy of ESA

The concept of a black hole jet isn’t a new one, but we still have a lot to learn about the mixture of particles found in the vicinity of them. Through the use of ESA’s XMM-Newton Observatory, astronomers have been taking a look at a black hole in our galaxy and found some surprising results.

As we know, stellar mass black holes take on materials from nearby stars. Matter from these companion stars is pulled away from the parent body toward the black hole and radiates a temperture so intense that it emits X-rays. However, a black hole doesn’t always ingest everything that comes its way. Sometimes they reject small portions of this incoming mass, pushing it away in the form of a set of powerful jets. These jets also feed the surroundings, releasing both mass and energy… robbing the black hole of fuel.

Through the study of jet composition, researchers are able to better determine what gets taken into a black hole and what doesn’t. Through observations taken at the radio wavelength of the electromagnetic spectrum, we have seen electrons crusing along at nearly the speed of light. However, it hasn’t been clearly determined whether the negative charge of the electrons is complemented by their anti-particles, positrons, or rather by heavier positively-charged particles in the jets, like protons or atomic nuclei.” With XMM-Newton’s power behind them, astronomers have had the opportunity to examine a black hole binary system called 4U1630–47 – a candidate known to have unexpected outbursts of X-rays for segments of time which last between months and years.

“In our observations, we found signs of highly ionised nuclei of two heavy elements, iron and nickel,” says María Díaz Trigo of the European Southern Observatory in Munich, Germany, lead author of the paper published in the journal Nature. “The discovery came as a surprise – and a good one, since it shows beyond doubt that the composition of black hole jets is much richer than just electrons.”

During September 2012, a team of astronomers headed up by Dr. Díaz Trigo and collaborators, observed 4U1630–47 with XMM-Newton. They also backed up their observations with near-simultaneous radio observations taken from the Australia Telescope Compact Array. Even though the studies were done close to each other – within just a couple of weeks – the results couldn’t have been more different.

According to Trigo’s team, the initial set of observations picked up X-ray signatures from the accretion disc, but there was no activity in the radio band. This is an indicator that the jets weren’t active at that time. However, in the second set of observations, there was activity in both X-ray and radio… the jets had turned back on! While examining the X-ray data from the second set, they also found iron nuclei in motion. These particles were moving both toward and away from XMM-Newton – proof the ions were part of twin jets aimed in opposite directions. However, that’s not all. There was also evidence of nickel nuclei pointing toward the observatory.

“From these ‘fingerprints’ of iron and nickel, we could show that the speed of the jet is very high, about two-thirds of the speed of light,” says co-author James Miller-Jones from the Curtin University node of the International Centre for Radio Astronomy Research in Perth, Australia.

“Moreover, the presence of heavy atomic nuclei in black hole jets means that mass and energy are being carried away from the black hole in much larger amounts than we previously thought, which may have an impact on the mechanism and rate by which the black hole accretes matter,” adds co-author Simone Migliari from the University of Barcelona, Spain.

Astounding new findings? Well… yeah. For a typical stellar-mass black hole, this is the first time that heavy nuclei has been detected within the jets. As of the present, there is only “one other X-ray binary that shows similar signatures from atomic nuclei in its jets – a source known as SS 433. This black hole system, however, is characterised by an unusually high accretion rate, which makes it difficult to compare its properties to those of more ordinary black holes.” Through these new observations of 4U1630–47, astronomers will be able to fill in information gaps about what causes jets to occur in black hole accretion disks and what drives them.

“While we now know a great deal about black holes and what happens around them, the formation of jets is still a big puzzle, so this observation is a major step forward in understanding this fascinating phenomenon,” says Norbert Schartel, ESA’s XMM-Newton Project Scientist.

Original Story Source: ESA Press Release.

This Is How The World’s Largest Radio Telescope Is Divvying Up Design Work

Artist's conception of the Square Kilometer Array. Credit: SKA Organisation

The world’s largest radio telescope will act very much like a jigsaw; every piece of it must be precisely engineered to “fit” and to work with all the other elements. This week, the organizers of the Square Kilometer Array released which teams will be responsible for the individual “work packages” for this massive telescope, which will be in both South Africa and Australia.

“Each element of the SKA is critical to the overall success of the project, and we certainly look forward to seeing the fruits of each consortium’s hard work shape up over the coming years”, stated John Womersley, chair of the SKA board.

“Now this multi-disciplinary team of experts has three full years to come up with the best technological solutions for the final design of the telescope, so we can start tendering for construction of the first phase in 2017 as planned.”

Key science goals for SKA include the evolution of galaxies, the nature of mysterious dark energy, examining the nature of gravity and magnetism, looking at how black holes and stars are created, and even searching for extraterrestrial signals. We’ll illustrate some of those key science concepts while talking about the teams below.

This illustration shows a messy, chaotic galaxy undergoing bursts of star formation. This star formation is intense; it was known that it affects its host galaxy, but this new research shows it has an even greater effect than first thought. The winds created by these star formation processes stream out of the galaxy, ionising gas at distances of up to 650 000 light-years from the galactic centre. Credit: ESA, NASA, L. Calçada
This illustration shows a messy, chaotic galaxy undergoing bursts of star formation. This star formation is intense; it was known that it affects its host galaxy, but this new research shows it has an even greater effect than first thought. The winds created by these star formation processes stream out of the galaxy, ionising gas at distances of up to 650 000 light-years from the galactic centre. Credit: ESA, NASA, L. Calçada

The numbers themselves on the teams are staggering: more than 350 scientists and engineers, representing 18 countries and almost 100 institutions. There are 10 main work packages that these people are responsible for. Here they are, along with SKA’s descriptions of each element:

Dish: “The “Dish” element includes all activities necessary to prepare for the procurement of the SKA dishes, including local monitoring & control of the individual dish in pointing and other functionality, their feeds, necessary electronics and local infrastructure.” (Led by Mark McKinnon of  Australia’s Commonwealth Scientific and Industrial Research Organisation, or CSIRO.)

– Low Frequency Aperture Array: “The set of antennas, on board amplifiers and local processing required for the Aperture Array telescope of the SKA.” (Led by Jan Geralt Bij de Vaate of ASTRON, or the Netherlands Institute for Radio Astronomy).

– Mid Frequency Aperture Array: “Includes the activities necessary for the development of a set of antennas, on board amplifiers and local processing required for the Aperture Array telescope of the SKA.” (Led by de Vaate.)

Artist’s schematic impression of the distortion of spacetime by a supermassive black hole at the centre of a galaxy. The black hole will swallow dark matter at a rate which depends on its mass and on the amount of dark matter around it. Image: Felipe Esquivel Reed.
Artist’s schematic impression of the distortion of spacetime by a supermassive black hole at the centre of a galaxy. The black hole will swallow dark matter at a rate which depends on its mass and on the amount of dark matter around it. Image: Felipe Esquivel Reed.

– Telescope Manager: “Will be responsible for the monitoring of the entire telescope, the engineering and operational status of its component parts.” (Led by Yashwant Gupta of the NCRA or National Centre for Radio Astrophysics in India.)

– Science Data Processor: “Will focus on the design of the computing hardware platforms, software, and algorithms needed to process science data from the correlator or non-imaging processor into science data products.” (Led by Paul Alexander of the University of Cambridge, United Kingdom.)

– Central Signal Processor: “It converts digitised astronomical signals detected by SKA receivers (antennas & dipole (“rabbit-ear”) arrays) into the vital information needed by the Science Data Processor to make detailed images of deep space astronomical phenomena that the SKA is observing.” (David Loop of the NRC, National Research Council of Canada.)

The supernova that produced the Crab Nebula was detected by naked-eye observers around the world in 1054 A.D. This composite image uses data from NASA’s Great Observatories, Chandra, Hubble, and Spitzer, to show that a superdense neutron star is energizing the expanding Nebula by spewing out magnetic fields and a blizzard of extremely high-energy particles. The Chandra X-ray image is shown in light blue, the Hubble Space Telescope optical images are in green and dark blue, and the Spitzer Space Telescope’s infrared image is in red. The size of the X-ray image is smaller than the others because ultrahigh-energy X-ray emitting electrons radiate away their energy more quickly than the lower-energy electrons emitting optical and infrared light. The neutron star is the bright white dot in the center of the image.
The supernova that produced the Crab Nebula was detected by naked-eye observers around the world in 1054 A.D. This composite image uses data from NASA’s Great Observatories, Chandra, Hubble, and Spitzer, to show that a superdense neutron star is energizing the expanding Nebula by spewing out magnetic fields and a blizzard of extremely high-energy particles. The Chandra X-ray image is shown in light blue, the Hubble Space Telescope optical images are in green and dark blue, and the Spitzer Space Telescope’s infrared image is in red. The size of the X-ray image is smaller than the others because ultrahigh-energy X-ray emitting electrons radiate away their energy more quickly than the lower-energy electrons emitting optical and infrared light. The neutron star is the bright white dot in the center of the image.

 Signal and Data Transport: “The Signal and Data Transport (SADT) consortium is responsible for the design of three data transport networks.” (Led by Richard Schilizzi of the University of Manchester, United Kingdom.)

– Assembly, Integration & Verification: “Includes the planning for all activities at the remote sites that are necessary to incorporate the elements of the SKA into existing infrastructures, whether these be precursors or new components of the SKA.” (Led by Richard Lord of SKA South Africa.)

– Infrastructure: “Requires two consortia, each managing their respective local sites in Australia and Africa … This includes all work undertaken to deploy and be able to operate the SKA in both countries such as roads, buildings, power generation and distribution, reticulation, vehicles, cranes and specialist equipment needed for maintenance which are not included in the supply of the other elements.” (Led by Michelle Storey of CSIRO.)

Wideband Single Pixel Feeds: “Includes the activities necessary to develop a broadband spectrum single pixel feed for the SKA.” (Led by John Conway of Chalmers University, Sweden.)

ALMA Peers Into Giant Black Hole Jets

This detailed view shows the central parts of the nearby active galaxy NGC 1433. The dim blue background image, showing the central dust lanes of this galaxy, comes from the NASA/ESA Hubble Space Telescope. The coloured structures near the centre are from recent ALMA observations that have revealed a spiral shape, as well as an unexpected outflow, for the first time. Credit: ALMA (ESO/NAOJ/NRAO)/NASA/ESA/F. Combes

Did you ever wonder what it would be like to observe what happens to a galaxy near a black hole? For all of us who remember that wonderful Disney movie, it would be a remarkable – if not hypnotic – experience. Now, thanks to the powerful observational tools of the Atacama Large Millimeter/submillimeter Array (ALMA), two international astronomy teams have had the opportunity to study the jets of black holes near their galactic cores and see just how they impact their neighborhood. The researchers have captured the best view so far of a molecular gas cloud surrounding a nearby, quiescent black hole and were gifted with a surprise look at the base of a massive jet near a distant one.

These aren’t lightweights. The black holes the astronomers are studying weigh in a several billion solar masses and make their homes at the center of nearly all the galaxies in the Universe – including the Milky Way. Once upon a time, these enigmatic galactic phenomena were busy creatures. They absorbed huge amounts of matter from their surroundings, shining like bright beacons. These early black holes thrust small amounts of the matter they took in through highly powerful jets, but their current counterparts aren’t quite as active. While things may have changed a bit with time, the correlation of black hole jets and their surroundings still play a crucial role in how galaxies evolve. In the very latest of studies, both published today in the journal Astronomy & Astrophysics, astronomers employed ALMA to investigate black hole jets at very different scales: a nearby and relatively quiet black hole in the galaxy NGC 1433 and a very distant and active object called PKS 1830-211.

“ALMA has revealed a surprising spiral structure in the molecular gas close to the center of NGC 1433,” says Françoise Combes (Observatoire de Paris, France), who is the lead author of the first paper. “This explains how the material is flowing in to fuel the black hole. With the sharp new observations from ALMA, we have discovered a jet of material flowing away from the black hole, extending for only 150 light-years. This is the smallest such molecular outflow ever observed in an external galaxy.”

Need feedback? Well, that’s exactly what this process is called. “Feedback” may enlighten us to the relationship between black hole mass and the mass of the surrounding galactic bulge. The black hole consumes gas and becomes active, but then it creates jets which purge gas from its proximity. This halts star formation and controls the growth of the central bulge. In PKS 1830-211, Ivan Marti-Vidal (Chalmers University of Technology, Onsala Space Observatory, Onsala, Sweden) and his team witnessed a supermassive black hole with a jet, “but a much brighter and more active one in the early universe. It is unusual because its brilliant light passes a massive intervening galaxy on its way to Earth, and is split into two images by gravitational lensing.”

Are supermassive black holes messy eaters? You bet. There have been occasions when a supermassive black hole will unexpectedly consume a staggering amount of mass which, in turn, turbo-charges the power of the jets and lights up the radiation output to the very pinnacle of energy output. This energy is emitted as gamma rays, the shortest wavelength and highest energy form of electromagnetic radiation. And now ALMA has, by chance, caught one of these events as it happened in PKS 1830-211.

“The ALMA observation of this case of black hole indigestion has been completely serendipitous. We were observing PKS 1830-211 for another purpose, and then we spotted subtle changes of color and intensity among the images of the gravitational lens. A very careful look at this unexpected behavior led us to the conclusion that we were observing, just by a very lucky chance, right at the time when fresh new matter entered into the jet base of the black hole,” says Sebastien Muller, a co-author of the second paper.

The main image, showing the nearby active galaxy NGC 1433, comes from the NASA/ESA Hubble Space Telescope. The coloured structures near the centre shown in the insert are from recent ALMA observations that have revealed a spiral shape, as well as an unexpected outflow, for the first time. Credit: ALMA (ESO/NAOJ/NRAO)/NASA/ESA/F. Combes
The main image, showing the nearby active galaxy NGC 1433, comes from the NASA/ESA Hubble Space Telescope. The coloured structures near the centre shown in the insert are from recent ALMA observations that have revealed a spiral shape, as well as an unexpected outflow, for the first time. Credit: ALMA (ESO/NAOJ/NRAO)/NASA/ESA/F. Combes
As with all astronomical observations, the key to discovery is confirmation. Did the ALMA findings show up on other telescopic observations? The answer is yes. Thanks to monitoring observations with NASA’s Fermi Gamma-ray Space Telescope, there was a definite gamma ray signature exactly where it should be. Whatever was responsible for the scaling up of radiation at ALMA’s long wavelengths was also responsible for making the light of the black hole jet flare impressively.

“This is the first time that such a clear connection between gamma rays and submillimeter radio waves has been established as coming from the real base of a black hole’s jet,” adds Sebastien Muller.

It isn’t the end of the story, however. It’s just the beginning. ALMA will continue to probe into the mysterious workings of supermassive black hole jets – both near and far. Combes and her investigative team are already observing close active galaxies with ALMA, and even a unique object cataloged as PKS 1830-211. The research will continue, and with it we may one day have answers to many questions.

“There is still a lot to be learned about how black holes can create these huge energetic jets of matter and radiation,” concludes Ivan Marti-Vidal. “But the new results, obtained even before ALMA was completed, show that it is a uniquely powerful tool for probing these jets — and the discoveries are just beginning!”

Original Story Source: ESO News Release.

This Neutron Star Behaves Just Like The Hulk

The Hulk (Bruce Banner), as portrayed in The Avengers. Credit: Marvel & Subs

When Bruce Banner gets angry, he gets big and green and strong and well, vengeful. The Hulk is the stuff of comic book legend and as Mark Ruffalo recently showed us in The Avengers, Banner’s/Hulk’s personality can transform on a dime.

Turns out rapid transformations are the case in astronomy, too! Scientists found a peculiar neutron star that can change from radio pulsar, to X-ray pulsar, back and forth. In the Hulk’s case, a big dose of gamma rays likely fuelled his ability to transform. This star’s superpowers, however, likely come from a companion star.

“What we’re seeing is a star that is the cosmic equivalent of ‘Dr. Jekyll and Mr. Hyde,’ with the ability to change from one form to its more intense counterpart with startling speed,” stated Scott Ransom, an astronomer at the National Radio Astronomy Observatory.

“Though we have known that X-ray binaries — some of which are observed as X-ray pulsars — can evolve over millions of years to become rapidly spinning radio pulsars, we were surprised to find one that seemed to swing so quickly between the two.”

A neutron star and its companion flipping between accretion (when it emits X-rays) and when accretion has stopped (when it emits radio pulses). Credit: Bill Saxton; NRAO/AUI/NSF. Animation by Elizabeth Howell
A neutron star and its companion flipping between accretion (when it emits X-rays) and when accretion has stopped (when it emits radio pulses). Credit: Bill Saxton; NRAO/AUI/NSF. Animation by Elizabeth Howell

The star’s double personality came to light after astronomers made an accidental double-discovery. IGR J18245-2452, as the star is called, was flagged as a millisecond radio pulsar in 2005 using the  National Science Foundation’s Robert C. Byrd Green Bank Telescope. Then this year, another team found an X-ray pulsar in the same region of the star cluster M28.

It took a little while to sort out the confusion, we’re sure, but eventually astronomers realized it was the same object behaving differently. That said, they were mighty confused: “This was particularly intriguing because radio pulses don’t come from an X-ray binary and the X-ray source has to be long gone before radio signals can emerge,” stated lead researcher Alessandro Papitto, who is with of Institute of Space Sciences in Catalunya (Institut d’Estudis Espacials de Catalunya) in Spain.

The key, it turns out, comes from the interplay with the star’s companion. Material doesn’t flow continuously, as astronomers previously believed is true of these system types, but in bunches. Starting and stopping the flow then led to swings in the behavior, making the star alternate between X-ray and radio emissions.

So to sum up what is happening:

– Neutron stars like IGR J18245-2452 are superdense star remnants that formed after supernovas. A teaspoon of this material is often cited as being as heavy as a mountain (but be careful, as mass and weight are different). Still, we can all understand this stuff is very dense and would take a superhero (Hulk?) to move.

– A neutron star that has a normal star nearby forms an X-ray binary, which happens when the neutron star poaches starstuff off its companion. When the material hits the neutron star, the stuff gets really hot and emits X-rays.

– When the material stops, magnetic fields on the neutron produce radio waves. These appear to blink on and off from the perspective of Earth, as the neutron rotates super-fast (several times a second).

Pulsar diagram (© Mark Garlick)
Pulsar diagram (© Mark Garlick)

In the case of IGR J18245-2452, it behaved like an X-ray binary star for about a month, stopped suddenly, and then sent out radio waves for a while before flipping back again. (A month is less than a blink in astronomical terms, when you recall the universe is 13.8 billion years old.)

To take the longer view, astronomers used to believe that X-ray binaries could evolve into radio emitters over time. Now, though, it appears a star can be these two things at almost the same time.

“During periods when the mass flow is less intense, the magnetic field sweeps away the gas and prevents it from reaching the surface and creating X-ray emission,” NASA stated. “With the region around the neutron star relatively gas free, radio signals can easily escape and astronomers detect a radio pulsar.”

A whole suite of telescopes in Earth and space contributed to this discovery, but of note: the X-ray source was first spotted with the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). You can read more details in the paper published in Nature.

Sources: National Radio Astronomy Observatory and NASA

New Camera Aboard APEX Gets First Light

This image of the star formation region NGC 6334 is one of the first scientific images from the ArTeMiS instrument on APEX. The picture shows the glow detected at a wavelength of 0.35 millimetres coming from dense clouds of interstellar dust grains. The new observations from ArTeMiS show up in orange and have been superimposed on a view of the same region taken in near-infrared light by ESO’s VISTA telescope at Paranal. Credit: ArTeMiS team/Ph. André, M. Hennemann, V. Revéret et al./ESO/J. Emerson/VISTA Acknowledgment: Cambridge Astronomical Survey Unit

And the “Cat’s Paw” was waiting to strike! In this exceptionally detailed image of star-forming region NGC 6334 we can get a sense of just how important new instrumentation can be. In this case it’s a new camera called ArTeMiS and it has just been installed on a 12-meter diameter telescope located high in the Atacama Desert. The Atacama Pathfinder Experiment – or APEX for short – operates at millimeter and submillimeter wavelengths, providing us with observations ranging between radio wavelengths and infrared light. These images give astronomers powerful new data to help them further understand the construction of the Universe.

Exactly what is ArTeMiS? The camera provides wide field views at submillimeter wavelengths. When added to APEX’s arsenal, it will substantially increase the amount of details a particular object has to offer. It has a detector array similar to a CCD camera – a new technology which will enable it to create wide-field maps of target areas with a greater amount of speed and a larger amount of pixels.

Like almost all new telescope projects, both personal and professional, the APEX team met up with “first light” problems. Although the ArTeMiS Camera was ready to go, the weather simply wouldn’t cooperate. According to the news release, very heavy snow on the Chajnantor Plateau had almost buried the building in which the scope operations are housed! However, the team was determined. Using a makeshift road and dodging snow drifts, the team and the staff at the ALMA Operations Support Facility and APEX somehow managed to get the camera to its location safely. Undaunted, they installed the ArTeMiS camera, worked the cryostat into position and locked the instrumentation down in its final position.

However, digging their way out of the snow wasn’t all the team had to contend with. To get ArTeMis on-line, they then had to wait for very dry weather since submillimeter wavelengths of light are highly absorbed by atmospheric moisture. Do good things come to those who wait? You bet. When the “magic moment” arrived, the APEX team was ready and the initial test observations were a resounding success. ArTeMiS quickly became the focus tool for a variety of scientific projects and commissioned observations. One of these projects was to image star-forming region NGC 6334 – the Cat’s Paw Nebula – in the southern constellation of Scorpius. Thanks to the new technology, the ArTeMiS image shows a superior amount of detail over earlier photographic observations taken with APEX.

What’s next for ArTeMiS? Now that the camera has been tested, it will be returned to Saclay in France to have even more detectors installed. According to the researchers: ” The whole team is already very excited by the results from these initial observations, which are a wonderful reward for many years of hard work and could not have been achieved without the help and support of the APEX staff.”

Original Story Source: ESO Public News Release.

Endings and Beginnings – Magnetic Jets Shape Stellar Transformation

A jet of energetic particles (shown in magenta) is shaping the environment around the star IRAS 15445-5449. Infrared light from dusty material which the jet has already shaped into a symmetric form is shown in green. The star itself is hidden by dust in its environment. Credit: E. Lagadec/ESO/A. Pérez Sánchez)

The incredible visual appearance of planetary nebulae are some of the most studied and observed of deep space objects. However, these enigmatic clouds of gas have defied explanation as to their shapes and astronomers are seeking answers. Thanks to a new discovery made by an international team of scientists from Sweden, Germany and Austria, we have now observed a jet of high-energy particles in the process of being ejected from an expiring star.

When a sun-like star reaches the end of its life, it begins to shed itself of its outer layers. These layers blossom into space at speeds of a few kilometers per second, forming a variety of shapes and sizes – yet we know little about what causes their ultimate appearance. Now astronomers are taking a close look at a rather normal star that has reached the end of its life and is beginning to form a planetary nebula. Cataloged as IRAS 15445-5449, this stellar study resides 230,000 light years away in the constellation of Triangulum Australe (the Southern Triangle). Through the use of the CSIRO Australia Telescope Compact Array, a compliment of six 22-meter radio telescopes in New South Wales, Australia, researchers have found what may be the answer to this mystery… high-speed magnetic jets.

“In our data we found the clear signature of a narrow and extremely energetic jet of a type which has never been seen before in an old, Sun-like star,” says Andrés Pérez Sánchez, graduate student in astronomy at Bonn University, who led the study.

How does a radio telescope aid researchers in an optical study? In this case the radio waves emitted by the dying star are compatible with the trademark high-energy particles they are expected to produce. These “spouts” of particles travel at nearly the speed of light and coincident jets are also known to emanate from other astronomical objects that range from newborn stars to supermassive black holes.

“What we’re seeing is a powerful jet of particles spiraling through a strong magnetic field,” says Wouter Vlemmings, astronomer at Onsala Space Observatory, Chalmers. “Its brightness indicates that it’s in the process of creating a symmetric nebula around the star.”

Will these high-energy particles contained within the jet eventually craft the planetary nebula into an ethereal beauty? According to the astronomers, the current state of IRAS 15445-5449 is probably a short-lived phenomenon and nothing more than an intense and dramatic phase in its life… One we’re lucky to have observed.

“The radio signal from the jet varies in a way that means that it may only last a few decades. Over the course of just a few hundred years the jet can determine how the nebula will look when it finally gets lit up by the star,” says team member Jessica Chapman, astronomer at CSIRO in Sydney, Australia.

Will our Sun also follow suit? Right now the answer is unclear. There may be more to this radio picture than meets the ear. However, rest assured that this new information is being heard and might well become the target of additional radio studies. Considering the life of a planetary nebula is generally expected to last few tens of thousands of years, this is a unique opportunity for astronomers to observe what might be a transient occurrence.

“The star may have an unseen companion – another star or large planet — that helps create the jet. With the help of other front-line radio telescopes, like ALMA, and future facilities like the Square Kilometre Array (SKA), we’ll be able to find out just which stars create jets like this one, and how they do it,” says Andrés Pérez Sánchez.

Original Story Source: Royal Astronomical Society News Release.

Supermassive Black Holes Keep Galaxies From Getting Bigger

Radio telescope image of the galaxy 4C12.50, nearly 1.5 billion light-years from Earth. Inset shows detail of location at end of superfast jet of particles, where a massive gas cloud (yellow-orange) is being pushed by the jet. (Credit: Morganti et al., NRAO/AUI/NSF)

It’s long been a mystery for astronomers: why aren’t galaxies bigger? What regulates their rates of star formation and keeps them from just becoming even more chock-full-of-stars than they already are? Now, using a worldwide network of radio telescopes, researchers have observed one of the processes that was on the short list of suspects: one supermassive black hole’s jets are plowing huge amounts of potential star-stuff clear out of its galaxy.

Astronomers have theorized that many galaxies should be more massive and have more stars than is actually the case. Scientists proposed two major mechanisms that would slow or halt the process of mass growth and star formation — violent stellar winds from bursts of star formation and pushback from the jets powered by the galaxy’s central, supermassive black hole.

Read more: Our Galaxy’s Supermassive Black Hole is a Sloppy Eater

“With the finely-detailed images provided by an intercontinental combination of radio telescopes, we have been able to see massive clumps of cold gas being pushed away from the galaxy’s center by the black-hole-powered jets,” said Raffaella Morganti, of the Netherlands Institute for Radio Astronomy and the University of Groningen.

The scientists studied a galaxy called 4C12.50, nearly 1.5 billion light-years from Earth. They chose this galaxy because it is at a stage where the black-hole “engine” that produces the jets is just turning on. As the black hole, a concentration of mass so dense that not even light can escape, pulls material toward it, the material forms a swirling disk surrounding the black hole. Processes in the disk tap the tremendous gravitational energy of the black hole to propel material outward from the poles of the disk.

NGC 253, aka the Sculptor Galaxy, is also blowing out gas but as the result of star formation (Image: T.A. Rector/University of Alaska Anchorage, T. Abbott and NOAO/AURA/NSF)
NGC 253, aka the Sculptor Galaxy, is also blowing out gas but as the result of star formation (Image: T.A. Rector/University of Alaska Anchorage, T. Abbott and NOAO/AURA/NSF)

At the ends of both jets, the researchers found clumps of hydrogen gas moving outward from the galaxy at 1,000 kilometers per second. One of the clouds has much as 16,000 times the mass of the Sun, while the other contains 140,000 times the mass of the Sun.

The larger cloud, the scientists said, is roughly 160 by 190 light-years in size.

“This is the most definitive evidence yet for an interaction between the swift-moving jet of such a galaxy and a dense interstellar gas cloud,” Morganti said. “We believe we are seeing in action the process by which an active, central engine can remove gas — the raw material for star formation — from a young galaxy,” she added.

The researchers published their findings in the September 6 issue of the journal Science.

Source: NRAO press release