Coming To A Theatre Near You… Extreme Neutron Stars!

Artist's Conception of a Neutron Star Courtesy of NASA

[/caption]

They came into existence violently… Born at the death of a massive star. They are composed almost entirely of neutrons, barren of electrical charge and with a slightly larger mass than protons. They are quantum degenerates with an average density typically more than one billion tons per teaspoonful – a state which can never be created here on Earth. And they are absolutely perfect for study of how matter and exotic particles behave under extreme conditions. We welcome the extreme neutron star…

In 1934 Walter Baade and Fritz Zwicky proposed the existence of the neutron star, only a year after the discovery of the neutron by Sir James Chadwick. But it took another 30 years before the first neutron star was actually observed. Up until now, neutron stars have had their mass accurately measured to about 1.4 times that of Sol. Now a group of astronomers using the Green Bank Radio Telescope found a neutron star that has a mass of nearly twice that of the Sun. How can they make estimates so precise? Because the extreme neutron star in question is actually a pulsar – PSR J1614-2230. With heartbeat-like precision, PSR J1614-2230 sends out a radio signal each time it spins on its axis at 317 times per second.

According to the team; “What makes this discovery so remarkable is that the existence of a very massive neutron star allows astrophysicists to rule out a wide variety of theoretical models that claim that the neutron star could be composed of exotic subatomic particles such as hyperons or condensates of kaons.”

The presence of this extreme star poses new questions about its origin… and its nearby white dwarf companion. Did it become so extreme from pulling material from its binary neighbor – or did it simply become that way through natural causes? According to Professor Lorne Nelson (Bishop’s University) and his colleagues at MIT, Oxford, and UCSB, the neutron star was likely spun up to become a fast-rotating (millisecond) pulsar as a result of the neutron star having cannibalized its stellar companion many millions of years ago, leaving behind a dead core composed mostly of carbon and oxygen. According to Nelson, “Although it is common to find a high fraction of stars in binary systems, it is rare for them to be close enough so that one star can strip off mass from its companion star. But when this happens, it is spectacular.”

Through the use of theoretical models, the team hopes to gain insight as to how binary systems evolve over the entire lifetime of the Universe. With today’s extreme super-computing powers, Nelson and his team members were able to calculate the evolution of more than 40,000 plausible starting cases for the binary and determine which ones were relevant. As they describe at this week’s CASCA meeting in Ontario, Canada, they found many instances where the neutron star could evolve higher in mass at the expense of its companion, but as Nelson says, “It isn’t easy for Nature to make such high-mass neutron stars, and this probably explains why they are so rare.”

Original story source at Physorg.com.

{EAV_BLOG_VER:7ce92688539bb819}

Take a Look: Huge Asteroid to Fly By Earth in November

This radar image of asteroid 2005 YU55 was generated from data taken in April of 2010 by the Arecibo Radar Telescope in Puerto Rico. Image credit: NASA/Cornell/Arecibo

[/caption]

A large space rock will pass close to Earth on November 8, 2011 and astronomers are anticipating the chance to see asteroid 2005 YU55 close up. Just like meteorites offer a free “sample return” mission from space, this close flyby is akin to sending a spacecraft to fly by an asteroid – just like how the Rosetta mission recently flew by asteroid Lutetia – but this time, no rocket is required. Astronomers are making sure Spaceship Earth will have all available resources trained on 2005 YU55 as it makes its closest approach, and this might be a chance for you to see the asteroid for yourself, as well.

“While near-Earth objects of this size have flown within a lunar distance in the past, we did not have the foreknowledge and technology to take advantage of the opportunity,” said Barbara Wilson, a scientist at JPL. “When it flies past, it should be a great opportunity for science instruments on the ground to get a good look.”

2005 YU55 is about 400 meters [1,300 feet] wide, and closest approach will be about 325,000 kilometers (201,700 miles) from Earth.

“This is the largest space rock we have identified that will come this close until 2028,” said Don Yeomans, manager of NASA’s Near-Earth Object Program Office at JPL, and Yeomans assured that we are in no danger from this asteroid.

“YU55 poses no threat of an Earth collision over, at the very least, the next 100 years,” he said. “During its closest approach, its gravitational effect on the Earth will be so miniscule as to be immeasurable. It will not affect the tides or anything else.”

Astronomers estimate that asteroids the size of YU55 come this close to Earth about every 25 years. We just haven’t had this much advance warning – a testament to the work that Yeomans and his team does at the NEO Program in detecting asteroids and detecting them early.

So, here’s a chance for a close-up look. The 70-meter (230-foot) newly upgraded Goldstone antenna in California, part of NASA’s Deep Space Network, will be imaging the asteroid with radar.

“Using the Goldstone radar operating with the software and hardware upgrades, the resulting images of YU55 could come in with resolution as fine as 4 meters per pixel,” said Benner. “We’re talking about getting down to the kind of surface detail you dream of when you have a spacecraft fly by one of these targets.”

Combining the radar images with ground-based optical and near-infrared observations, astronomers should get a good overview of one of the larger near-Earth objects.

Look for more information in the near future about observing campaigns for amateur astronomers of this object. At first, 2005 YU55 will be too close to the sun and too faint for optical observers. But late in the day (Universal Time) on Nov. 8, and early on Nov. 9, the asteroid could reach about 11th magnitude for several hours before it fades as its distance rapidly increases.

This radar image of asteroid 2005 YU55 was generated from data taken in April of 2010 by the Arecibo Radar Telescope in Puerto Rico. Image credit: NASA/Cornell/Arecibo

2005 YU55 was discovered in December 2005 by Robert McMillan, head of the NASA-funded Spacewatch Program at the University of Arizona, Tucson. In April 2010, Mike Nolan and colleagues at the Arecibo Observatory in Puerto Rico generated some ghostly images of 2005 YU55 when the asteroid was about 2.3 million kilometers (1.5 million miles) from Earth.

“The best resolution of the radar images was 7.5 meters [25 feet] per pixel,” said JPL radar astronomer Lance Benner. “When 2005 YU55 returns this fall … the asteroid will be seven times closer. We’re expecting some very detailed radar images.”

Radar antennas beam directed microwave signals at their celestial targets — which can be as close as our moon and as far away as the moons of Saturn. These signals bounce off the target, and the resulting “echo” is collected and precisely collated to create radar images, which can be used to reconstruct detailed three-dimensional models of the object. This defines its rotation precisely and gives scientists a good idea of the object’s surface roughness. They can even make out surface features, and astronomers hope to see boulders and craters on the surfaces of 2005 YU55, as well as detailing the mineral composition of the asteroid.

“This is a C-type asteroid, and those are thought to be representative of the primordial materials from which our solar system was formed,” said Wilson. “This flyby will be an excellent opportunity to test how we study, document and quantify which asteroids would be most appropriate for a future human mission.”
Yeomans said this is a great opportunity for scientific discovery. “So stay tuned. This is going to be fun.”

Source: JPL

Astronomy Without A Telescope – Cosmic Magnetic Fields

The whirlpool galaxy with its magnetic field mapped by observing how distant radio light from pulsars is altered as it passes through the galaxy. Credit: MPIfR Bonn.

[/caption]

The mention of cosmic-scale magnetic fields is still likely to met with an uncomfortable silence in some astronomical circles – and after a bit of foot-shuffling and throat-clearing, the discussion will be moved on to safer topics. But look, they’re out there. They probably do play a role in galaxy evolution, if not galaxy formation – and are certainly a feature of the interstellar medium and the intergalactic medium.

It is expected that the next generation of radio telescopes, such as LOFAR (Low Frequency Array) and the SKA (Square Kilometre Array), will make it possible to map these fields in unprecedented detail – so even if it turns out that cosmic magnetic fields only play a trivial role in large-scale cosmology – it’s at least worth having a look.

At the stellar level, magnetic fields play a key role in star formation, by enabling a protostar to unload angular momentum. Essentially, the protostar’s spin is slowed by magnetic drag against the surrounding accretion disk – which allows the protostar to keep drawing in more mass without spinning itself apart.

At the galactic level, accretion disks around stellar-sized black holes create jets that inject hot ionised material into the interstellar medium – while central supermassive black holes may create jets that inject such material into the intergalactic medium.

Within galaxies, ‘seed’ magnetic fields may arise from the turbulent flow of ionised material, perhaps further stirred up by supernova explosions. In disk galaxies, such seed fields may then be further amplified by a dynamo effect arising from being drawn into the rotational flow of the whole galaxy. Such galactic scale magnetic fields are often seen forming spiral patterns across a disk galaxy, as well as showing some vertical structure within a galactic halo.

It is anticipated that next generation radio telescopes like the Square Kilometre Array will significantly enhance cosmic magnetic field research. Credit Swinburne AP.

Similar seed fields may arise in the intergalactic medium – or at least the intracluster medium. It’s not clear whether the great voids between galactic clusters would contain a sufficient density of charged particles to generate significant magnetic fields.

Seed fields in the intracluster medium might be amplified by a degree of turbulent flow driven by supermassive black hole jets but, in the absence of more data, we might assume that such fields maybe more diffuse and disorganised that those seen within galaxies.

The strength of intracluster magnetic fields averages around 3 x 10-6 gauss (G), which isn’t a lot. The Earth’s magnetic fields averages around 0.5 G and a refrigerator magnet is about 50 G. Nonetheless, these intracluster fields offer the opportunity to trace back past interactions between galaxies or clusters (e.g. collisions or mergers) – and perhaps to determine what role magnetic fields played in the early universe, particularly with respect to the formation of the first stars and galaxies.

Magnetic fields can be indirectly identified through a variety of phenomena:
• Optical light is partly polarised by the presence of dust grains which are drawn into a particular orientation by a magnetic field and then only let through light in a certain plane.
• At a larger scale, Faraday rotation comes into play, where the plane of already polarised light is rotated in the presence of a magnetic field.
• There’s also Zeeman splitting, where spectral lines – which normally identify the presence of elements such as hydrogen – may become split in light that has passed through a magnetic field.

Wide angle or all-sky surveys of synchrotron radiation sources (e.g. pulsars and blazars) allow measurement of a grid of data points, which may undergo Faraday rotation as a result of magnetic fields at the intergalactic or intracluster scale. It is anticipated the high resolution offered by the SKA will enable observations of magnetic fields in the early universe back to a redshift of about z =5, which gives you a view of the universe as it was about 12 billion years ago.

Further reading: Beck, R. Cosmic Magnetic Fields: Observations and Prospects.

Students Find Rare “Recycled” Pulsar

Alexander Snider and Hannah Mabry in GBT Control Room, Casey Thompson on-screen, during confirmation observation. CREDIT: NRAO/AUI/NSF

[/caption]

From a press release from the National Radio Astronomy Observatory:

In the constellation of Ophiuchus, above the disk of our Milky Way Galaxy, there lurks a stellar corpse spinning 30 times per second — an exotic star known as a radio pulsar. This object was unknown until it was discovered last week by three high school students. These students are part of the Pulsar Search Collaboratory (PSC) project, run by the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, and West Virginia University (WVU).

The pulsar, which may be a rare kind of neutron star called a recycled pulsar, was discovered independently by Virginia students Alexander Snider and Casey Thompson, on January 20, and a day later by Kentucky student Hannah Mabry. “Every day, I told myself, ‘I have to find a pulsar. I better find a pulsar before this class ends,'” said Mabry.

When she actually made the discovery, she could barely contain her excitement. “I started screaming and jumping up and down.”

Thompson was similarly expressive. “After three years of searching, I hadn’t found a single thing,” he said, “but when I did, I threw my hands up in the air and said, ‘Yes!’.”

Snider said, “It actually feels really neat to be the first person to ever see something like that. It’s an uplifting feeling.”

As part of the PSC, the students analyze real data from NRAO’s Robert C. Byrd Green Bank Telescope (GBT) to find pulsars. The students’ teachers — Debra Edwards of Sherando High School, Leah Lorton of James River High School, and Jennifer Carter of Rowan County Senior High School — all introduced the PSC in their classes, and interested students formed teams to continue the work.

Even before the discovery, Mabry simply enjoyed the search. “It just feels like you’re actually doing something,” she said. “It’s a good feeling.”

Basics of a Pulsar CREDIT: Bill Saxton, NRAO/AUI/NSF

Once the pulsar candidate was reported to NRAO, Project Director Rachel Rosen took a look and agreed with the young scientists. A followup observing session was scheduled on the GBT. Snider and Mabry traveled to West Virginia to assist in the follow-up observations, and Thompson joined online.

“Observing with the students is very exciting. It gives the students a chance to learn about radio telescopes and pulsar observing in a very hands-on way, and it is extra fun when we find a pulsar,” said Rosen.

Snider, on the other hand, said, “I got very, very nervous. I expected when I went there that I would just be watching other people do things, and then I actually go to sit down at the controls. I definitely didn’t want to mess something up.”

Everything went well, and the observations confirmed that the students had found an exotic pulsar. “I learned more in the two hours in the control room than I would have in school the whole day,” Mabry said.

Pulsars are spinning neutron stars that sling lighthouse beams of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its normal life. With no nuclear fuel left to produce energy to offset the stellar remnant’s weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name neutron star. One tablespoon of material from a pulsar would weigh 10 million tons — as much as a supertanker.

The object that the students discovered is in a special class of pulsar that spins very fast – in this case, about 30 times per second, comparable to the speed of a kitchen blender.

“The big question we need to answer first is whether this is a young pulsar or a recycled pulsar,” said Maura McLaughlin, an astronomer at WVU. “A pulsar spinning that fast is very interesting as it could be newly born or it could be a very old, recycled pulsar.”

A recycled pulsar is one that was once in a binary system. Material from the companion star is deposited onto the pulsar, causing it to speed up, or be recycled. Mystery remains, however, about whether this pulsar has ever had a companion star.

If it did, “it may be that this pulsar had a massive companion that exploded in a supernova, disrupting its orbit,” McLaughlin said. Astronomers and students will work together in the coming months to find answers to these questions.

The PSC is a joint project of the National Radio Astronomy Observatory and West Virginia University, funded by a grant from the National Science Foundation. The PSC, led by NRAO Education Officer Sue Ann Heatherly and Project Director Rachel Rosen, includes training for teachers and student leaders, and provides parcels of data from the GBT to student teams. The project involves teachers and students in helping astronomers analyze data from the GBT, a giant, 17-million-pound telescope.

Some 300 hours of observing data were reserved for analysis by student teams. Thompson, Snider, and Mabry have been working with about 170 other students across the country. The responsibility for the work, and for the discoveries, is theirs. They are trained by astronomers and by their teachers to distinguish between pulsars and noise. The students’ collective judgment sifts the pulsars from the noise.

All three students had analyzed thousands of data plots before coming upon this one. Casey Thompson, who has been with the PSC for three years, has analyzed more than 30,000 plots.

“Sometimes I just stop and think about the fact that I’m looking at data from space,” Thompson said. “It’s really special to me.”

In addition to this discovery, two other astronomical objects have been discovered by students. In 2009, Shay Bloxton of Summersville, WV, discovered a pulsar that spins once every four seconds, and Lucas Bolyard of Clarksburg, WV, discovered a rapidly rotating radio transient, which astronomers believe is a pulsar that emits radio waves in bursts.

Those involved in the PSC hope that being a part of astronomy will give students an appreciation for science. Maybe the project will even produce some of the next generation of astronomers. Snider, surely, has been inspired.

“The PSC changed my career path,” confessed Thompson. “I’m going to study astrophysics.”
Snider is pleased with the idea of contributing to scientific knowledge. “I hope that astronomers at Green Bank and around the world can learn something from the discovery,” he said.

Mabry is simply awed. “We’ve actually been able to experience something,” she said.

The PSC will continue through 2011. Teachers interested in participating in the program can learn more at this link.

First Images from Europe-Wide Giant Radio Observatory

A patch of the sky 15 degrees wide (as large as a thousand full moons) taken in a single shot by LOFAR. The image reveals the stunning variety of objects which surround the quasar 3C196. Credit: ASTRON and LOFAR

[/caption]

An array of radio telescopes has connected for the first time to its various locations across Europe, creating the largest telescope in the world at almost 1000 km wide. With the connection, the LOFAR telescope has delivered its first ‘radio pictures’. The images of the 3C196 quasar, a black hole in a distant galaxy, were taken in January 2011 by the International LOFAR Telescope (ILT). LOFAR is a network of radio telescopes designed to study the sky at the lowest radio frequencies accessible from the surface of the Earth with unprecedented resolution.

The UK based telescope at Chilbolton Observatory in Hampshire, was added to the network, and is the western most ‘telescope station’ in LOFAR.

“This is a very significant event for the LOFAR project and a great demonstration of what the UK is contributing”, said Derek McKay-Bukowski, STFC/SEPnet Project Manager at LOFAR Chilbolton. “The new images are three times sharper than has been previously possible with LOFAR. LOFAR works like a giant zoom lens – the more radio telescopes we add, and the further apart they are, the better the resolution and sensitivity. This means we can see smaller and fainter objects in the sky which will help us to answer exciting questions about cosmology and astrophysics.”

A close up of the quasar 3C196 (Credit: ASTRON and LOFAR)

“This is fantastic”, said Professor Rob Fender, LOFAR-UK Leader from the University of Southampton. “Combining the LOFAR signals together is a very important milestone for this truly international facility. For the first time, the signals from LOFAR radio telescopes in the Netherlands, France, Germany and the United Kingdom have been successfully combined in the LOFAR BlueGene/P supercomputer in the Netherlands. The connection between the Chilbolton telescope and the supercomputer requires an internet speed of 10 gigabits per second – over 1000 times faster than the typical home broadband speeds,” said Professor Fender. “Getting that connection working without a hitch was a great feat requiring close collaboration between STFC, industry, universities around the country, and our international partners.”

“The images show a patch of the sky 15 degrees wide (as large as a thousand full moons) centred on the quasar 3C196”, said Dr Philip Best, Deputy LOFAR-UK leader from the University of Edinburgh. “In visible light, quasar 3C196 (even through the Hubble Space Telescope) is a single point. By adding the international stations like the one at Chilbolton we reveal two main bright spots. This shows how the International LOFAR Telescope will help us learn about distant objects in much more detail.”

LOFAR was designed and built by ASTRON in the Netherlands and is currently being extended across Europe. As well as deep cosmology, LOFAR will be used to monitor the Sun’s activity, study planets, and understand more about lightning and geomagnetic storms. LOFAR will also contribute to UK and European preparations for the planned global next generation radio telescope, the Square Kilometre Array (SKA).

Source: STFC

LOFAR Swedish Station Begins Construction

An aerial photograph shows the Onsala LOFAR station site. Credit: Onsala Space Observatory/Västkustflyg

[/caption]

Robert Cumming from the Onsala Space Observatory in Sweden sent us this image, letting us know that construction has officially begun for the Swedish station of the new LOFAR radio telescope. The LOw Frequency ARray is a multi-purpose sensor array, with its main purpose to search the sky at low frequencies (10-250 MHz) which will enable astronomers to see the fog of hydrogen gas that filled the universe during its first two hundred million years. It will also be able to image the regions around supermassive black holes in the centres of nearby galaxies. The headquarters are in the Netherlands, but eight stations will be spread over Europe.

This aerial photograph shows the Onsala LOFAR station site at the lower right. Behind, the white radome of the observatory’s 20-metre telescope and the dish of the 25-meter telescope by the Kattegat shore.

The two circular areas where the LOFAR station’s high-band (snow-covered) and low-band antennas will be placed are already flattened. The cold weather has delayed the next stage in the work, deploying the fibre cables, but the Onsala station should still be fully operational by mid-2011.

Onsala is LOFAR’s northernmost station and will help give the array a close to circular beam. It will also contribute some of the array’s longest baselines.

“Each LOFAR station collects and handles up to 32 terabytes of data every day,” said John Conway, professor of observational radio astronomy at Chalmers University of Technology and Vice-Director of Onsala Space Observatory. “ At Chalmers we’re working together with our European colleagues to develop new kinds of software so that we can analyse radio signals from distant sources.”

Onsala’s LOFAR station will consist of 192 small antennas which together collect radio waves from space. The signals which are registered are then transferred by fiber link to the Netherlands to be combined with data from the other stations.

You can see more images from the Onsala Observatory at the Flickr page.

More information about LOFAR.

An Apertif to the Next Radio Astronomy Entrée

A new detector at the Westerbork Synthesis Radio Telescope (WSRT) allows for a much wider view of the sky in the radio spectrum. In this image, the two pulsars are separated by over 3.5 degrees of arc in the sky. Image Credit: ASTRON

[/caption]

To aid in the digestion of a new era in radio astronomy, a new technique for improving the is unfolding at the Westerbork Synthesis Radio Telescope (WSRT) in the Netherlands. By adding a plate of detectors to the focal plane of just one of the 14 radio antennas at the WSRT, astronomers at the Netherlands Institute for Radio Astronomy (ASTRON) have been able to image two pulsars separated by over 3.5 degrees of arc, which is about 7 times the size of the full Moon as seen from Earth.

The new project – called Apertif – uses an array of detectors in the focal plane of the radio telescope. This ‘phased array feed’ – made of 121 separate detectors – increases the field of view of the radio telescope by over 30 times. In doing so, astronomers are able to see a larger portion of the sky in the radio spectrum. Why is this important? Well, in keeping with our food course analogy, imagine trying to eat a bowl of soup with a thimble – you can only get a small portion of the soup into your mouth at a time. Then imagine trying to eat it with a ladle.

This same analogy of surveying and observing the sky for radio sources holds true. Dr. Tom Oosterloo, the Principle Investigator of the Apertif project, explains the meat of the new technique:

“The phased array feed consists of 121 small antennas, closely packed together. This matrix covers about 1 square meter. Each WSRT will have such a antenna matrix in its focus. This matrix fully samples the radiation field in the focal plane. By combining the signals of all 121 elements, a ‘compound beams'[sic] can be formed which can be steered to be pointing at any location inside a region of 3×3 degrees on the sky. By combining the signals of all 121 elements, the response of the telescope can be optimised, i.e. all optical distortions can be removed (because the radiation field is fully measured). This process is done in parallel 37 times, i.e. 37 compound beams are formed. Each compound beam basically functions as a separate telescope. If we do this in all WSRT dishes, we have 37 WSRTs in parallel. By steering all the beams to different locations within the 3×3 degree region, we can observe this region entirely.”

In other words, traditional radio telescopes use only a single detector in the focal plane of the telescope (where all of the radiation is focused by the telescope). The new detectors are somewhat like the CCD chip in your camera, or those in use in modern optical telescopes like Hubble. Each separate detector in the array receives data, and by combining the data into a composite image a high-quality image can be captured.

The new array will also widen the field of view of the radio telescope, which allowed for this most recent observation of widely separated pulsars in the sky, a milestone test for the project. As an added bonus, the new detector will increase the efficiency of the “aperture” to around 75%, up from 55% with the traditional antennas.

Dr. Oosterloo explained, “The aperture efficiency is higher because we have much more control over the radiation field in the focal plane. With the classic single antenna systems (as in the old WSRT or as in the eVLA), one measures the radiation field in a single point only. By measuring the radiation field over the entire focal plane, and by cleverly combining the signals of all elements, optical distortion effects can be minimised and a larger fraction of the incoming radiation can be used to image the sky.”

This image illustrates the larger field of view afforded by the new instrument. Image Credit: ASTRON

For now, there is only one of the 14 radio antennas equipped with Apertif. Dr. Joeri Van Leeuwen, a researcher at ASTRON, said in an email interview that in 2011, 12 of the antennas will be outfitted with the new detector array.

Sky surveys have been a boon for astronomers in recent years. By taking enormous amounts of data and making it available to the scientific community, astronomers have been able to make many more discoveries than they would have been able to by applying for time on disparate instruments.

Though there are some sky surveys in the radio spectrum that have been completed so far – the VLA FIRST Survey being the most prominent – the field has a long way to go. Apertif is the first step in the direction of surveying the whole sky in the radio spectrum with great detail, and many discoveries are expected to be made by using the new technique.

Apertif is expected to discover over 1,000 pulsars, based on current modeling of the Galactic pulsar population. It will also be a useful tool in studying neutral hydrogen in the Universe on large scales.

Dr. Oosterloo et. al. wrote in a paper published on Arxiv in July, 2010, “One of the main scientific applications of wide-field radio telescopes operating at GHz frequencies is to observe large volumes of space in order to make an inventory of the neutral hydrogen in the Universe. With such information, the properties of the neutral hydrogen in galaxies as function of mass, type and environment can be studied in great detail, and, importantly, for the first time the evolution of these properties with redshift can be addressed.”

Adding the radio spectrum to the visible and infrared sky surveys would help to fine-tune current theories about the Universe, as well as make new discoveries. The more eyes on the sky we have in different spectra, the better.

Though Apertif is the first such detector in use, there are plans to update other radio telescopes with the technology. Dr. Oosterloo said of other such projects, “Phased array feeds are also being built by ASKAP, the Australia SKA Pathfinder. This is an instrument of similar characteristics as Apertif. It is our main competitor, although we also collaborate on many things. I am also aware of a prototype being tested at Arecibo currently. In Canada, DRAO [Dominion Radio Astrophysical Observatory] is doing work on phased array feed development. However, only Apertif and ASKAP will construct an actual radio telescope with working phased array feeds in the short term.”

On November 22nd and 23rd, a science coordination meeting was held about the Apertif project in Dwingeloo, Drenthe, Netherlands. Dr. Oosterloo said that the meeting was attended by 40 astronomers, from Europe, the US, Australia and South Africa to discuss the future of the project, and that there has been much interest in the potential of the technique.

Sources: ASTRON press release, Arxiv, email interview with Dr. Tom Oosterloo and Dr. Joeri Van Leeuwen

Astronomy Without A Telescope – Black Hole Evolution

CaptionXXXXXXXXXXXXXXXXXXXX

[/caption]

While only observable by inference, the existence of supermassive black holes (SMBHs) at the centre of most – if not all – galaxies remains a compelling theory supported by a range of indirect observational methods. Within these data sources, there exists a strong correlation between the mass of the galactic bulge of a galaxy and the mass of its central SMBH – meaning that smaller galaxies have smaller SMBHs and bigger galaxies have bigger SMBHs.

Linked to this finding is the notion that SMBHs may play an intrinsic role in galaxy formation and evolution – and might have even been the first step in the formation of the earliest galaxies in the universe, including the proto-Milky Way.

Now, there are a number of significant assumptions built into this line of thinking, since the mass of a galactic bulge is generally inferred from the velocity dispersion of its stars – while the presence of supermassive black holes in the centre of such bulges is inferred from the very fast radial motion of inner stars – at least in closer galaxies where we can observe individual stars.

For galaxies too far away to observe individual stars – the velocity dispersion and the presence of a central supermassive black hole are both inferred – drawing on the what we have learnt from closer galaxies, as well as from direct observations of broad emission lines – which are interpreted as the product of very rapid orbital movement of gas around an SMBH (where the ‘broadening’ of these lines is a result of the Doppler effect).

But despite the assumptions built on assumptions nature of this work, ongoing observations continue to support and hence strengthen the theoretical model. So, with all that said – it seems likely that, rather than depleting its galactic bulge to grow, both an SMBH and the galactic bulge of its host galaxy grow in tandem.

It is speculated that the earliest galaxies, which formed in a smaller, denser universe, may have started with the rapid aggregation of gas and dust, which evolved into massive stars, which evolved into black holes – which then continued to grow rapidly in size due to the amount of surrounding gas and dust they were able to accrete.

Distant quasars may be examples of such objects which have grown to a galactic scale. However, this growth becomes self-limiting as radiation pressure from an SMBH’s accretion disk and its polar jets becomes intense enough to push large amounts of gas and dust out beyond the growing SMBH’s sphere of influence. That dispersed material contains vestiges of angular momentum to keep it in an orbiting halo around the SMBH and it is in these outer regions that star formation is able to take place. Thus a dynamic balance is reached where the more material an SMBH eats, the more excess material it blows out – contributing to the growth of the galaxy that is forming around it.

The almost linear correlation between the SMBH mass (M) and velocity dispersion (sigma) of the galactic bulge (the 'M-sigma relation') suggests that there is some kind of co-evolution going on between an SMBH and its host galaxy. The only way an SMBH can get bigger is if its host galaxy gets bigger - and vice versa. The left chart shows data points derived from different objects in a galaxy - the right chart shows data points derived from different types of galaxies. Credit: Tremaine et al. (2002).

To further investigate the evolution of the relationship between SMBHs and their host galaxies – Nesvadba et al looked at a collection of very red-shifted (and hence very distant) radio galaxies (or HzRGs). They speculate that their selected group of galaxies have reached a critical point – where the feeding frenzy of the SMBH is blowing out about as much material as it is taking in – a point which probably represents the limit of the active growth of the SMBH and its host galaxy.

From that point, such galaxies might grow further by cannibalistic merging – but again this may lead to a co-evolution of the galaxy and the SMBH – as much of the contents of the galaxy being eaten gets used up in star formation within the feasting galaxy’s disk and bulge, before whatever is left gets through to feed the central SMBH.

Other authors (e.g. Schulze and Gebhardt), while not disputing the general concept, suggest that all the measurements are a bit out as a result of not incorporating dark matter into the theoretical model. But, that is another story…

Further reading: Nesvadba et al. The black holes of radio galaxies during the “Quasar Era”: Masses, accretion rates, and evolutionary stage.

J-E-T-S, Jets, Jets, Jets!

Bipolar jet from a young stellar object (YSO). Credit: Gemini Observatory, artwork by Lynette Cook

[/caption]

It seems oddly appropriate to be writing about astrophysical jets on Thanksgiving Day, when the New York football Jets will be featured on television. In the most recent issue of Science, Carlos Carrasco-Gonzalez and collaborators write about how their observations of radio emissions from young stellar objects (YSOs) shed light one of the unsolved problems in astrophysics; what are the mechanisms that form the streams of plasma known as polar jets? Although we are still early in the game, Carrasco-Gonzalez et al have moved us closer to the goal line with their discovery.

Astronomers see polar jets in many places in the Universe. The largest polar jets are those seen in active galaxies such as quasars. They are also found in gamma-ray bursters, cataclysmic variable stars, X-ray binaries and protostars in the process of becoming main sequence stars. All these objects have several features in common: a central gravitational source, such as a black hole or white dwarf, an accretion disk, diffuse matter orbiting around the central mass, and a strong magnetic field.

Relativistic jet from an AGN. Credit: Pearson Education, Inc., Upper Saddle River, New Jersey

When matter is emitted at speeds approaching the speed of light, these jets are called relativistic jets. These are normally the jets produced by supermassive black holes in active galaxies. These jets emit energy in the form of radio waves produced by electrons as they spiral around magnetic fields, a process called synchrotron emission. Extremely distant active galactic nuclei (AGN) have been mapped out in great detail using radio interferometers like the Very Large Array in New Mexico. These emissions can be used to estimate the direction and intensity of AGNs magnetic fields, but other basic information, such as the velocity and amount of mass loss, are not well known.

On the other hand, astronomers know a great deal about the polar jets emitted by young stars through the emission lines in their spectra. The density, temperature and radial velocity of nearby stellar jets can be measured very well. The only thing missing from the recipe is the strength of the magnetic field. Ironically, this is the one thing that we can measure well in distant AGN. It seemed unlikely that stellar jets would produce synchrotron emissions since the temperatures in these jets are usually only a few thousand degrees. The exciting news from Carrasco-Gonzalez et al is that jets from young stars do emit synchrotron radiation, which allowed them to measure the strength and direction of the magnetic field in the massive Herbig-Haro object, HH 80-81, a protostar 10 times as massive and 17,000 times more luminous than our Sun.

Finally obtaining data related to the intensity and orientation of the magnetic field lines in YSO’s and their similarity to the characteristics of AGN suggests we may be that much closer to understanding the common origin of all astrophysical jets. Yet another thing to be thankful for on this day.

New Technique Could Track Down Dark Energy

Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF

[/caption]

From an NRAO press release:

Dark energy is the label scientists have given to what is causing the Universe to expand at an accelerating rate, and is believed to make up nearly three-fourths of the mass and energy of the Universe. While the acceleration was discovered in 1998, its cause remains unknown. Physicists have advanced competing theories to explain the acceleration, and believe the best way to test those theories is to precisely measure large-scale cosmic structures. A new technique developed for the Robert C. Byrd Green Bank Telescope (GBT) have given astronomers a new way to map large cosmic structures such as dark energy.

Sound waves in the matter-energy soup of the extremely early Universe are thought to have left detectable imprints on the large-scale distribution of galaxies in the Universe. The researchers developed a way to measure such imprints by observing the radio emission of hydrogen gas. Their technique, called intensity mapping, when applied to greater areas of the Universe, could reveal how such large-scale structure has changed over the last few billion years, giving insight into which theory of dark energy is the most accurate.

“Our project mapped hydrogen gas to greater cosmic distances than ever before, and shows that the techniques we developed can be used to map huge volumes of the Universe in three dimensions and to test the competing theories of dark energy,” said Tzu-Ching Chang, of the Academia Sinica in Taiwan and the University of Toronto.

To get their results, the researchers used the GBT to study a region of sky that previously had been surveyed in detail in visible light by the Keck II telescope in Hawaii. This optical survey used spectroscopy to map the locations of thousands of galaxies in three dimensions. With the GBT, instead of looking for hydrogen gas in these individual, distant galaxies — a daunting challenge beyond the technical capabilities of current instruments — the team used their intensity-mapping technique to accumulate the radio waves emitted by the hydrogen gas in large volumes of space including many galaxies.

“Since the early part of the 20th Century, astronomers have traced the expansion of the Universe by observing galaxies. Our new technique allows us to skip the galaxy-detection step and gather radio emissions from a thousand galaxies at a time, as well as all the dimly-glowing material between them,” said Jeffrey Peterson, of Carnegie Mellon University.

The astronomers also developed new techniques that removed both man-made radio interference and radio emission caused by more-nearby astronomical sources, leaving only the extremely faint radio waves coming from the very distant hydrogen gas. The result was a map of part of the “cosmic web” that correlated neatly with the structure shown by the earlier optical study. The team first proposed their intensity-mapping technique in 2008, and their GBT observations were the first test of the idea.

“These observations detected more hydrogen gas than all the previously-detected hydrogen in the Universe, and at distances ten times farther than any radio wave-emitting hydrogen seen before,” said Ue-Li Pen of the University of Toronto.

“This is a demonstration of an important technique that has great promise for future studies of the evolution of large-scale structure in the Universe,” said National Radio Astronomy Observatory Chief Scientist Chris Carilli, who was not part of the research team.

In addition to Chang, Peterson, and Pen, the research team included Kevin Bandura of Carnegie Mellon University. The scientists reported their work in the July 22 issue of the scientific journal Nature.