When astronomers talk about an optical telescope, they often mention the size of its mirror. That’s because the larger your mirror, the sharper your view of the heavens can be. It’s known as resolving power, and it is due to a property of light known as diffraction. When light passes through an opening, such as the opening of the telescope, it will tend to spread out or diffract. The smaller the opening, the more the light spreads making your image more blurry. This is why larger telescopes can capture a sharper image than smaller ones.
Continue reading “How Interferometry Works, and Why it’s so Powerful for Astronomy”A Rare Fast Radio Burst has been Found that Actually Repeats Every 16 Days
A team of scientists in Canada have found a Fast Radio Burst (FRB) that repeats every 16 days. This is in stark contrast to other FRBs, which are more sporadic. Some of those sporadic FRBs occur in clusters, and repeat irregularly, but FRBs with a regular, repeatable occurrence are rare.
Continue reading “A Rare Fast Radio Burst has been Found that Actually Repeats Every 16 Days”Astronomers See Space Twist Around A White Dwarf 12,000 Light Years Away
The theory of general relativity is packed with strange predictions about how space and time are affected by massive bodies. Everything from gravitational waves to the lensing of light by dark matter. But one of the oddest predictions is an effect known as frame-dragging. The effect is so subtle it was first measured just a decade ago. Now astronomers have measured the effect around a white dwarf, and it tells us how some supernovae occur.
Continue reading “Astronomers See Space Twist Around A White Dwarf 12,000 Light Years Away”China’s 500-Meter FAST Radio Telescope is Now Operational
The world’s largest and most sensitive radio telescope is officially open for business according to Xinhua, China’s official state-run media. The FAST Radio Telescope saw fist light in 2016 but has been undergoing testing and commissioning since then. FAST stands for Five-hundred meter Aperture Spherical Telescope.
Continue reading “China’s 500-Meter FAST Radio Telescope is Now Operational”This is the Milky Way’s Magnetic Field
The Milky Way galaxy has its own magnetic field. It’s extremely weak compared to Earth’s; thousands of times weaker, in fact. But astronomers want to know more about it because of what it can tell us about star formation, cosmic rays, and a host of other astrophysical processes.
Continue reading “This is the Milky Way’s Magnetic Field”There’s Now an Operational Radio Telescope on the Far Side of the Moon
The Chang’e-4 mission, the fourth installment in the Chinese Lunar Exploration Program, has made some significant achievements since it launched in December of 2018. In January of 2019, the mission lander and its Yutu 2 (Jade Rabbit 2) rover became the first robotic explorers to achieve a soft landing on the far side of the Moon. Around the same time, it became the first mission to grow plants on the Moon (with mixed results).
In the latest development, the Netherlands-China Low Frequency Explorer (NCLE) commenced operations after a year of orbiting the Moon. This instrument was mounted on the Queqiao communications satellite and consists of three 5-meter (16.4 ft) long monopole antennas that are sensitive to radio frequencies in the 80 kHz – 80 MHz range. With this instrument now active, Chang’e-4 has now entered into the next phase of its mission.
Continue reading “There’s Now an Operational Radio Telescope on the Far Side of the Moon”Astronomers Are About to Detect the Light from the Very First Stars in the Universe
A team of scientists working with the Murchison Widefield Array (WMA) radio telescope are trying to find the signal from the Universe’s first stars. Those first stars formed after the Universe’s Dark Ages. To find their first light, the researchers are looking for the signal from neutral hydrogen, the gas that dominated the Universe after the Dark Ages.
Continue reading “Astronomers Are About to Detect the Light from the Very First Stars in the Universe”Dead Planets Around White Dwarfs Could Emit Radio Waves We Can Detect, Sending Out Signals for Billions of Years
When a star reaches the end of its life cycle, it will blow off its outer layers in a fiery explosion known as a supernova. Where less massive stars are concerned, a white dwarf is what will be left behind. Similarly, any planets that once orbited the star will also have their outer layers blown off by the violent burst, leaving behind the cores behind.
For decades, scientists have been able to detect these planetary remnants by looking for the radio waves that are generated through their interactions with the white dwarf’s magnetic field. According to new research by a pair of researchers, these “radio-loud” planetary cores will continue to broadcast radio signals for up to a billion years after their stars have died, making them detectable from Earth.
Continue reading “Dead Planets Around White Dwarfs Could Emit Radio Waves We Can Detect, Sending Out Signals for Billions of Years”A Fast Radio Burst has Finally Been Traced Back to its Source: the Outskirts of a Galaxy 4 Billion Light-Years Away
Fast-Radio Bursts (FRBs) are one of the most puzzling phenomena facing astronomers today. Essentially, FRBs are brief radio emissions from distant astronomical sources whose cause remains unknown. In some cases, FRBs that have been detected that have been repeating, but most have been one-off events. And while repeating sources have been tracked back to their point of origin, no single events have ever been localized.
Until now. Using the Australian Square Kilometer Array Pathfinder (ASKAP) and other radio telescopes from around the world, an Australian-led team of astronomers managed to confirm the distance to an intense radio burst that flashed for just a thousandth of a second. The constitutes the first non-repeating FRB to be traced back to its source, which in this case was a galaxy located 4 billion light-years away.
Continue reading “A Fast Radio Burst has Finally Been Traced Back to its Source: the Outskirts of a Galaxy 4 Billion Light-Years Away”A Supercomputer has been Designed to run the World’s Largest Radio Telescope
When complete, the Square Kilometer Array (SKA) will be the largest radio telescope array in the entire world. The result of decades of work involving 40 institutions in 11 countries, the SKA will allow astronomers to monitor the sky in unprecedented detail and survey it much faster than with any system currently in existence.
Such a large array will naturally be responsible for gathering an unprecedented amount of data on a regular basis. To sort through all this data, the “brain” for this massive array will consist of two supercomputers. Recently, the SKA’s Science Data Processor (SDP) consortium concluded their engineering design work on one of these supercomputers.
Continue reading “A Supercomputer has been Designed to run the World’s Largest Radio Telescope”