The “Potsdam Gravity Potato” Shows Variations in Earth’s Gravity

The Geoid 2011 model, based on data from LAGEOS, GRACE, GOCE and surface data. Credit: GFZ

People tend to think of gravity here on Earth as a uniform and consistent thing. Stand anywhere on the globe, at any time of year, and you’ll feel the same downward pull of a single G. But in fact, Earth’s gravitational field is subject to variations that occur over time. This is due to a combination of factors, such as the uneven distributions of mass in the oceans, continents, and deep interior, as well as climate-related variables like the water balance of continents, and the melting or growing of glaciers.

And now, for the first time ever, these variations have been captured in the image known as the “Potsdam Gravity Potato” –  a visualization of the Earth’s gravity field model produced by the German Research Center for Geophysics’ (GFZ) Helmholtz’s Center in Potsdam, Germany.

And as you can see from the image above, it bears a striking resemblance to a potato. But what is more striking is the fact that through these models, the Earth’s gravitational field is depicted not as a solid body, but as a dynamic surface that varies over time.This new gravity field model (which is designated EIGEN-6C) was made using measurements obtained from the LAGEOS, GRACE, and GOCE satellites, as well as ground-based gravity measurements and data from the satellite altimetry.

The Geoid 2005 model, which was based on data of two satellites (CHAMP and GRACE) plus surface data. Credit: GFZ
The 2005 model, which was based on data from the CHAMP and GRACE satellites and surface data, was less refined than the latest one. Credit: GFZ

Compared to the previous model obtained in 2005 (shown above), EIGEN-6C has a fourfold increase in spatial resolution.

“Of particular importance is the inclusion of measurements from the satellite GOCE, from which the GFZ did its own calculation of the gravitational field,” says Dr. Christoph Foerste who directs the gravity field work group at GFZ along with Dr. Frank Flechtner.

The ESA mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) was launched in mid-March 2009 and has since been measuring the Earth’s gravitational field using satellite gradiometry – the study and measurement of variations in the acceleration due to gravity.

“This allows the measurement of gravity in inaccessible regions with unprecedented accuracy, for example in Central Africa and the Himalayas,” said Dr. Flechtner. In addition, the GOCE satellites offers advantages when it comes to measuring the oceans.

Within the many open spaces that lie under the sea, the Earth’s gravity field shows variations. GOCE is able to better map these, as well as deviations in the ocean’s surface – a factor known as “dynamic ocean topography” – which is a result of Earth’s gravity affecting the ocean’s surface equilibrium.

Twin-satellites GRACE with the earth's gravity field (vertically enhanceded) calculated from CHAMP data. Credit: GFZ
Twin-satellites GRACE with the earth’s gravity field (vertically enhanced) calculated from CHAMP data. Credit: GFZ

Long-term measurement data from the GFZ’s twin-satellite mission GRACE (Gravity Recovery And Climate Experiment) were also included in the model. By monitoring climate-based variables like the melting of large glaciers in the polar regions and the amount of seasonal water stored in large river systems, GRACE was able to determine the influence of large-scale temporal changes on the gravitational field.

Given the temporal nature of climate-related processes – not to mention the role played by Climate Change – ongoing missions are needed to see how they effect our planet long-term. Especially since the GRACE mission is scheduled to end in 2015.

In total, some 800 million observations went into the computation of the final model which is composed of more than 75,000 parameters representing the global gravitational field. The GOCE satellite alone made 27,000 orbits during its period of service (between March 2009 and November 2013) in order to collect data on the variations in the Earth’s gravitational field.

The final result achieved centimeter accuracy, and can serve as a global reference for sea levels and heights. Beyond the “gravity community,” the research has also piqued the interest of researchers in aerospace engineering, atmospheric sciences, and space debris.

But above all else, it offers scientists a way of imaging the world that is different from, but still complimentary to, approaches based on light, magnetism, and seismic waves. And it could be used for everything from determining the speed of ocean currents from space, monitoring rising sea levels and melting ice sheets, to uncovering hidden features of continental geology and even peeking at the convection force driving plate tectonics.

Further Reading: GFZ

Flash! Iridium Flares Captured in Real Time by Thierry Legault

An Iridium flare so bright, it is reflected in a pond. Credit and copyright: Thierry Legault.

There are so many fun sights to see in the sky that are pure astronomical magic. And then there are the spectacular human-created sights. One of those sights is watching satellites from the Iridium constellation that — because of their odd shape — produce spectacular flares that can be brighter than the planet Venus.

Because most of these satellites are still under control by their parent company, their flare timings are easy to predict. And now astrophotographer Thierry Legualt has caught them in action on a video.

“Usually they are photographed in long exposures,” Legault told Universe Today via email. “But last summer I filmed three of them in the Big Dipper and Orion, and they were so bright a pond reflected the flare. In video you can see the real speed of the event.”

The third sequence on the video might look a little odd, but Legault said he rotated the camera 90°. “I found it funny like that,” he said. “Tilt your head or your screen!?”

According to a July Sky & Telescope article, the constellation includes 66 satellites — down from the planned 77 — and is named after element 77 in the periodic table. Normally these machines drift along like a faint star, but when the sunlight catches the side just right, out comes the flash.

“A really bright one can take your breath away,” wrote Bob King, who is also a writer here on Universe Today. “I’ve been lucky enough to witness a few –8 passes and can only describe the experience as alarming. It’s not natural to see a starlike object glow so brilliantly. If you’ve ever wondered what a nearby supernova might look like, treat yourself to one of these.”

One way to track these flares down is to use the Heavens-Above website.

See more of Thierry’s work at his website, and read our review of his wonderful observing and photography primer, “Astrophotography” here.

NASA’s Next Exoplanet Hunter Moves Into Development

A conceptual image of the Transiting Exoplanet Survey Satellite. Image Credit: MIT
A conceptual image of the Transiting Exoplanet Survey Satellite. Image Credit: MIT

NASA’s ongoing hunt for exoplanets has entered a new phase as NASA officially confirmed that the Transiting Exoplanet Survey Satellite (TESS) is moving into the development phase. This marks a significant step for the TESS mission, which will search the entire sky for planets outside our solar system (a.k.a. exoplanets). Designed as the first all-sky survey, TESS will spend two years of an overall three-year mission searching both hemispheres of the sky for nearby exoplanets.

Previous sky surveys with ground-based telescopes have mainly picked out giant exoplanets. In contrast, TESS will examine a large number of small planets around the very brightest stars in the sky. TESS will then record the nearest and brightest main sequence stars hosting transiting exoplanets, which will forever be the most favorable targets for detailed investigations. During the third year of the TESS mission, ground-based astronomical observatories will continue monitoring exoplanets identified by the TESS spacecraft.

“This is an incredibly exciting time for the search of planets outside our solar system,” said Mark Sistilli, the TESS program executive from NASA Headquarters, Washington. “We got the green light to start building what is going to be a spacecraft that could change what we think we know about exoplanets.”

“During its first two years in orbit, the TESS spacecraft will concentrate its gaze on several hundred thousand specially chosen stars, looking for small dips in their light caused by orbiting planets passing between their host star and us,” said TESS Principal Investigator George Ricker of the Massachusetts Institute of Technology..

Artistic representations of the only known planets around other stars (exoplanets) with any possibility to support life as we know it. Credit: Planetary Habitability Laboratory, University of Puerto Rico, Arecibo.
Artistic representations of known exoplanets with any possibility to support life. Image Credit: Planetary Habitability Laboratory, University of Puerto Rico, Arecibo.

All in all, TESS is expected to find more than 5,000 exoplanet candidates, including 50 Earth-sized planets. It will also find a wide array of exoplanet types, ranging from small, rocky planets to gas giants. Some of these planets could be the right sizes, and orbit at the correct distances from their stars, to potentially support life.

“The most exciting part of the search for planets outside our solar system is the identification of ‘earthlike’ planets with rocky surfaces and liquid water as well as temperatures and atmospheric constituents that appear hospitable to life,” said TESS Project Manager Jeff Volosin at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Although these planets are small and harder to detect from so far away, this is exactly the type of world that the TESS mission will focus on identifying.”

Now that NASA has confirmed the development of TESS, the next step is the Critical Design Review, which is scheduled to take place in 2015. This would clear the mission to build the necessary flight hardware for its proposed launch in 2017.

“After spending the past year building the team and honing the design, it is incredibly exciting to be approved to move forward toward implementing NASA’s newest exoplanet hunting mission,” Volosin said.

TESS is designed to complement several other critical missions in the search for life on other planets. Once TESS finds nearby exoplanets to study and determines their sizes, ground-based observatories and other NASA missions, like the James Webb Space Telescope, would make follow-up observations on the most promising candidates to determine their density and other key properties.

The James Webb Space Telescope. Image Credit: NASA/JPL
The James Webb Space Telescope. Image Credit: NASA/JPL

By figuring out a planet’s characteristics, like its atmospheric conditions, scientists could determine whether the targeted planet has a habitable environment.

“TESS should discover thousands of new exoplanets within two hundred light years of Earth,” Ricker said. “Most of these will be orbiting bright stars, making them ideal targets for characterization observations with NASA’s James Webb Space Telescope.”

“The Webb telescope and other teams will focus on understanding the atmospheres and surfaces of these distant worlds, and someday, hopefully identify the first signs of life outside of our solar system,” Volosin said.

TESS will use four cameras to study sections of the sky’s north and south hemispheres, looking for exoplanets. The cameras would cover about 90 percent of the sky by the end of the mission.

This makes TESS an ideal follow-up to the Kepler mission, which searches for exoplanets in a fixed area of the sky. Because the TESS mission surveys the entire sky, TESS is expected to find exoplanets much closer to Earth, making them easier for further study.

In addition, Ricker said TESS would provide precision, full-frame images for more than 20 million bright stars and galaxies.

“This unique new data will comprise a treasure trove for astronomers throughout the world for many decades to come,” Ricker said.

Now that TESS is cleared to move into the next development stage, it can continue towards its goal of being a key part of NASA’s search for life beyond Earth.

“I’m still hopeful that in my lifetime, we will discover the existence of life outside of our solar system and I’m excited to be part of a NASA mission that serves as a key stepping stone in that search,” Volosin said.

Further Reading: NASA

No, This Is Not a Photo of India on Diwali

Yes, it's India, but it's not a photo captured from space during Diwali night. (Credit: NASA)

Diwali, the Indian festival of lights, falls on Thursday, Oct. 23 this year and with it come celebrations, gift-giving, and brilliant lighting and firework displays all across the subcontinent of India… but this isn’t a picture of that. What is it exactly? Find out below…

Over the past several years this image has repeatedly resurfaced online, especially around the time of Diwali. And understandably so: it’s a beautiful view of India seemingly decorated for the festival… one can easily imagine the entire country awash in colorful lights from shore to shore.

But it’s not a photo at all, or even a singular image. Rather it’s a composite of many images acquired from a USAF Defense Meteorological Satellite Program (DMSP) satellite over the course of several years, and assembled by NOAA scientist Chris Elvidge to show the country’s growing population and urban areas.

In a 2012 article by Robert Johnson on Business Insider a NASA spokesperson described the colors in the image: “The white lights were the only illumination visible before 1992. The blue lights appeared in 1992. The green lights in 1998. And the red lights appeared in 2003.”

So what does India look like at night during the five-day-long Diwali festival? Click here and see.

While city lighting in India is definitely visible from space, it’s not the rainbow explosion of neon colors that Internet hoaxers and uninformed online enthusiasts would eagerly have you believe. According to Adam Voiland on the NASA Earth Observatory site, “in reality, any extra light produced during Diwali is so subtle that it is likely imperceptible when observed from space.”

So this year, don’t fall for any false descriptions of this picture… and, Happy Diwali!

Sources: Business Insider, Mashable, NASA Earth Observatory, EarthSky. Read more about the 2014 celebration of Diwali here.

HT to Peter Caltner on Twitter for re-alerting me of this.

Zap! Saturn Moon’s Electron Beam Beaned Cassini Spacecraft From Charged Surface

A false-color view of Saturn's moon Hyperion taken during a Cassini flyby in September 2005. Credit: NASA/JPL-Caltech/Space Science Institute

Ever taken a balloon and rubbed it against your hair? That’s an example of electrostatic charging, which you see as the balloon briefly attracts strands of hair against your head. Turns out a similar process is taking place on Saturn’s moon Hyperion. More astounding, it wasn’t until recently that scientists saw a curious effect on the Cassini spacecraft in 2005.

As the machine whizzed by the small moon, Cassini was blanketed in electrons from Hyperion’s electrostatically charged surface. It’s the first time scientists have seen static electricity in effect on any airless body outside of the Moon.

The charge comes partly from massive Saturn’s magnetic field, which hits Hyperion’s spongy surface constantly with electrons and ions. The Sun also plays a role, sending ultraviolet light that also strikes the moon’s surface. Scientists found out this happens while studying old data on the Cassini spacecraft, when they discovered “something unexpected” during a close flyby of Hyperion in September 2005.

NASA's Cassini spacecraft obtained this unprocessed image of Saturn's moon Hyperion on Aug. 25, 2011. Image credit: NASA/JPL-Caltech/Space Science Institute
NASA’s Cassini spacecraft obtained this unprocessed image of Saturn’s moon Hyperion on Aug. 25, 2011. Image credit: NASA/JPL-Caltech/Space Science Institute

Specifically, the spacecraft — which is still in operation today — was briefly connected through magnetism to Hyperion’s surface, receiving a surge of electrons. Cassini emerged from the encounter unharmed, even though team members estimate that it received the equivalent of a 200-volt shock from the moon. Charging events can hurt spacecraft, making this a valuable thing to know about for future missions.

“Our observations show that this is also an important effect at outer planet moons and that we need to take this into account when studying how these moons interact with their environment,” stated Geraint Jones of Mullard Space Science Laboratory (MSSL), University College London. He is a member of the Cassini Plasma Spectrometer (CAPS) team and one of the study’s supervisors.

CAPS is not in operation any more, since the instrument was turned off due to drawing excess current in 2012. But perhaps some of its past data, and observations from other Cassini instruments, can help unveil evidence of charging on other moons.

The tumbling motion of elongated Eros creates a changing brightness. (via transitofvenus.nl)
The tumbling motion of elongated Eros creates a changing brightness. (via transitofvenus.nl)

Previous research concerning some of Saturn’s moons, and the asteroid Eros, suggests that charged dust can move across the surface and perhaps even be able to sail into space against the force of gravity.

Several other instruments were used to gather data for this analysis, including Cassini’s magnetometer, magnetospheric imaging instrument, and radio and plasma wave science instrument.

You can read more about the research, which was led by Tom Nordheim, an MSSL doctoral candidate, in Geophysical Research Letters.

Source: NASA

Cat 4 Hurricane Gonzalo Threatens Bermuda and Delays Antares Launch to Space Station

NOAA's GOES-East satellite captured this image of Hurricane Gonzalo off the U.S. East Coast on Oct. 16 at 13:07 UTC (9:07 a.m. EDT). Gonzalo is classified as Category 4 storm. Credit: NASA/NOAA GOES Project

Hurricane Gonzalo, the first major Atlantic Ocean basin hurricane in three years, has strengthened to a dangerous Category 4 storm, threatening Bermuda and forcing a postponement of the upcoming launch of the Orbital Sciences Antares rocket to the space station from the Virginia shore to no earlier than Oct. 27.

A hurricane warning is in effect for the entire island of Bermuda.

NASA and Orbital Sciences had no choice but to delay the Antares blastoff from Oct. 24 to no earlier than Oct. 27 because Bermuda is home to an “essential tracking site” that must be operational to ensure public safety in case of a launch emergency situation.

Antares had been slated for an early evening liftoff with the Cygnus cargo carrier on the Orb-3 mission to the International Space Station (ISS).

NASA and Orbital issued the following statement:

“Due to the impending arrival of Hurricane Gonzalo on the island of Bermuda, where an essential tracking site used to ensure public safety during Antares launches is located, the previously announced “no earlier than” (NET) launch date of October 24 for the Orb-3 CRS mission to the International Space Station for NASA is no longer feasible.”

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft prior to blast off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission bound for the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft prior to blast off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission bound for the International Space Station. Credit: Ken Kremer – kenkremer.com

The powerful Gonzalo is currently expected to make a direct hit on Bermuda on Friday afternoon, Oct. 17. It’s packing devastating maximum sustained winds exceeding 145 mph (225 kph).

NASA and NOAA satellites including the Terra, Aqua and GOES-East satellites are providing continuous coverage of Hurricane Gonzalo as it moves toward Bermuda, according to a NASA update today.

The ISS-RapidScat payload tracking ocean winds, that was just attached to the exterior of the ISS, is also designed to help with hurricane monitoring and forecasting.

Tropical storm force winds and 20 to 30 foot wave heights are expected to impact Bermuda throughout Friday and continue through Saturday and into Sunday.

“The National Hurricane Center expects hurricane-force winds, and rainfall totals of 3 to 6 inches in Bermuda. A storm surge with coastal flooding can be expected in Bermuda, with large and destructive waves along the coast. In addition, life-threatening surf and riptide conditions are likely in the Virgin Islands, Puerto Rico, Dominican Republic, Bahamas. Those dangerous conditions are expected along the U.S. East Coast and Bermuda today, Oct. 16,” according to NASA.

On Oct. 15 at 15:30 UTC (11:30 a.m. EDT) NASA's Terra satellite captured this image of Hurricane Gonzalo in the Atlantic Ocean. Credit: NASA Goddard MODIS Rapid Response Team
On Oct. 15 at 15:30 UTC (11:30 a.m. EDT) NASA’s Terra satellite captured this image of Hurricane Gonzalo in the Atlantic Ocean. Credit: NASA Goddard MODIS Rapid Response Team

After the hurricane passes, a team will be sent to assess the impact of the storm on Bermuda and the tracking station. Further delays are possible if Bermuda’s essential infrastructure systems are damaged, such as power, transportation and communications.

The Antares/Cygnus rocket and cargo ship launch from the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility along the eastrn shore of Virginia.

Liftoff is currently target for October 27 at 6:44 p.m. (EDT). The rendezvous and berthing of Cygnus with the ISS remains on November 2, with grapple of the spacecraft by the station’s robotic arm at approximately 4:58 a.m. (EST), according to a NASA update.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Sweet Success for SpaceX with Second Successful AsiaSat Launch This Summer

SpaceX Falcon 9 launch of AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida. Credit: John Studwell/AmericaSpace

Shortly after midnight this morning, Sunday, Sept. 7, SpaceX scored a major success with the spectacular night time launch of the commercial AsiaSat 6 satellite from Cape Canaveral, Florida, that briefly turned night into day along the Florida Space Coast.

A SpaceX Falcon 9 rocket carrying the AsiaSat 6 communications satellite blasted off at 1 a.m. EDT today from Space Launch Complex 40 on Cape Canaveral Air Force Station at the opening of the launch window.

The two stage, 224 foot-tall (68.4 meter-tall) Falcon 9 rocket performed flawlessly, soaring to space and placing the five ton AsiaSat 6 into a geosynchronous transfer orbit.

SpaceX confirmed a successful spacecraft separation about 32 minutes after liftoff and contact with the satellite following deployment at about 1:30 a.m. EDT.

The Falcon 9 delivered AsiaSat 6 satellite into a 185 x 35,786 km geosynchronous transfer orbit at 25.3 degrees.

Stunning “streak” effect, with high-level clouds illuminated, during first-stage flight of SpaceX Falcon 9 rocket with AsiaSat 6 on Sept. 7, 2014 from Cape Canaveral, FL. Credit: John Studwell/AmericaSpace
Stunning “streak” effect, with high-level clouds illuminated, during first-stage flight of SpaceX Falcon 9 rocket with AsiaSat 6 on Sept. 7, 2014 from Cape Canaveral, FL. Credit: John Studwell/AmericaSpace

Sunday’s liftoff marked a sweet success for SpaceX since it was the second successive launch of an AsiaSat communications satellite in about a month’s time. AsiaSat is a telecommunications operator based in Hong Kong.

The first launch of the two satellite series with AsiaSat 8 took place from Cape Canaveral on Aug. 5.

The launch was webcast live by SpaceX on the firm’s website.

The private satellites will serve markets in Southeast Asia and China.

Thailand’s leading satellite operator, Thaicom, is a partner of AsiaSat on AsiaSat 6 and will be using half of the satellite’s capacity to provide services under the name of THAICOM 7, according to the press kit.

SpaceX Falcon 9 launch of AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida.  Credit: Alan Walters/AmericaSpace
SpaceX Falcon 9 launch of AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida. Credit: Alan Walters/AmericaSpace

The AsiaSat 6 launch was originally scheduled for Aug. 26, just 3 weeks after AsiaSat 8, but was postponed at the last minute after the detonation of a Falcon 9R test rocket at a SpaceX test site in Texas.

SpaceX CEO Elon Musk said the team needed to recheck the rocket systems to insure a successful blastoff since both rockets use Merlin 1D engines, but are configured with different software.

The Falcon 9 first stage is loaded with liquid oxygen (LOX) and rocket-grade kerosene (RP-1) propellants and powered by nine Merlin 1D engines that generate about 1.3 million pounds of liftoff thrust.

The second stage is powered by a single, Merlin 1D vacuum engine.

SpaceX Falcon 9 soars to space with AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida.  Credit: Alan Walters/AmericaSpace
SpaceX Falcon 9 soars to space with AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida. Credit: Alan Walters/AmericaSpace

Today’s liftoff was critical in clearing the path for the next SpaceX launch – the CRS-4 cargo resupply mission for NASA bound for the International Space Station (ISS).

The Falcon 9 launch of the cargo Dragon on the CRS-4 mission is currently targeted for no earlier than Sept. 19. But a firm launch date has not been set.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The official AsiaSat 6 mission patch
The official AsiaSat 6 mission patch

Hunting for “Minimoons” Orbiting Earth

Credit: Used with permission

It’s an engaging thought experiment.

What if Earth had multiple moons?  Our world has one large natural satellite, just over a quarter the diameter, 1/50th the volume, and less than 1/80th the mass of our fair world. In fact, the Earth-Moon system has sometimes been referred to as a “binary planet,” and our Moon stands as the largest natural satellite of any planet — that is, if you subscribe to bouncing Pluto and Charon out of “the club” — in contrast to its primary of any moon in our solar system.

But what if we had two or more moons? And are there any tiny “moonlet” candidates lurking out there, awaiting discovery and perhaps exploration?

While historical searches for tiny secondary moons of the Earth — and even “moons of our Moon” — have turned up naught, the Earth does indeed capture asteroids as temporary moons and eject them back into solar orbit from time to time.

Now, a recent paper out of the University of Hawaii written in partnership with the SETI Institute and the Department of Physics at the University of Helsinki has looked at the possible prospects for the population of captured Near-Earth asteroids, and the feasibility of detecting these with existing and future systems about to come online.

The hunt for spurious moons of the Earth has a fascinating and largely untold history. Arthur Upgren’s outstanding book Many Skies devotes an entire chapter to the possible ramifications of an Earth with multiple moons… sure, more moons would be a bane for astrophotographers, but hey, eclipses and transits of the Sun would be more common, a definite plus.

In 1846, astronomer Frederic Petit announced the discovery of a tiny Earth-orbiting moon from Toulouse observatory. “Petit’s Moon” was said to orbit the Earth once every 2 hours and 44 minutes and reach an apogee of 3,570 kilometres and a perigee of just 11.4 (!) kilometres, placing it well inside the Earth’s atmosphere on closest approach.

Credit:
The announcement (in German) of the discovery of Waltemath’s Moon. “Ein zweiter Mond der Erde” translates into “a second Earth moon.” Credit: Wikimedia Commons image in the public domain.

A slightly more believable claim came from astronomer Georg Waltemath in 1898 for a moon 700 kilometres in size — he claimed it was, of course, a very dark body and not very easily visible — orbiting the Earth at about 2.5 times the distance of the Moon. Waltemath even made an announcement of his discovery, and claimed to have found a third moon of the Earth for good measure.

And a much more dubious claim came from the astrologer Walter Gornold in 1918 of a secondary moon, dubbed Lilith. Apparently, then (as now) astrologers never actually bothered to look at the skies…

Turns out, our large Moon makes a pretty good goaltender, ejecting —and sometimes taking a beating from — any tiny second moon hopeful. Of course, you can’t blame those astronomers of yore entirely. Though none of these spurious moons survived the test of observational verification, these discoveries often stemmed from early efforts to accurately predict the precise motion of the Moon. Astronomers therefore felt they were on the right track, looking for an unseen perturbing body.

Fast forward to the 21st century. Quasi-moons of the Earth, such as 3753 Cruithne, have horseshoe-shaped orbits and seem to approach and recede from our planet as both orbit the Sun. Similar quasi-moons of Venus have also been discovered.

And even returning space junk can masquerade as a moon of Earth, as was the case of J002E3 and 2010 QW1, which turned out to be boosters from Apollo 12 and the Chinese Chang’e-2 missions, respectively.

What modern researchers are looking for are termed Temporarily Captured Orbiters, or TCOs. The study notes that perhaps an average of a few dozen asteroids up to 1 to 2 metres in size are in a “steady state” population that may be orbiting the Earth at any given time on an enter, orbit, and eject sort of conveyor belt. Estimates suggest that a large 5 to 10 metre asteroid is captured every decade so, and a 100 metre or larger TCO is temporarily captured by the Earth every 100,000 years. The study also estimates that about 1% occasionally hit the Earth. And though it wasn’t a TCO, the ability to detect an Earthbound asteroid before impact was demonstrated in 2008 with the discovery of 2008 TC3, less than 24 hours prior to striking in the Sudanese desert.

“There are currently no projects that are solely looking for minimoons at this time,” lead researcher Bryce Bolin of the University of Hawaii told Universe Today. “There are several surveys, such as PanSTARRS, the Catalina Sky Survey and the Palomar Transit Factory that are currently in operation that have the capability of discovering minimoons.”

Credit:
The convoluted orbit of 2006 RH120 around the Earth-Moon system, to date the only confirmed TCO. Credit: Wikimedia Commons/Ohms law.

We’re getting better at this hazardous asteroid detection business, that’s for sure. The researchers modeled paths and orbits for TCOs in the study, and also noted that collections may “clump” at the anti-sunward L2 opposition point, and the L1 sunward point, with smaller distributions located at the east and west quadrature points located 90 degrees on either side of the Earth. The L2 point in particular might make a good place to start the search.

Ironically, systems such as LINEAR and PanSTARRS may have already captured a TCO in their data and disregarded them in their quest for traditional Near Earth Objects.

“Surveys such as PanSTARRS/LINEAR utilize a filtration process to remove artifacts and false positives in the data as it gets processed through the data pipeline,” Researcher Bryce Bolin told Universe Today. “A common method is to apply a rate of motion cut… this is effective in eliminating many artifacts (which) tend to have a rate of motion as measured by the pipeline which is very high.”

Such systems aren’t always looking for fast movers near Earth orbit that can produce a trail or streak which may reassemble space junk or become lost in the gaps over multiple detection devices. And speaking of which, researchers note that Arecibo and the U.S. Air Force’s Space Surveillance System may be recruited in this effort as well. To date, one definite TCO, named 2006 RH120 has been documented orbiting and departing from the vicinity of the Earth, and such worldlets might make enticing targets for future manned missions due to their relatively low Delta-V for arrival and departure.

Future asteroid mission. Credit: NASA
An artist’s concept of a possible future asteroid mission near Earth. Credit: NASA.

PanSTARRS-2 saw first light last year in 2013, and is slated to go online for full science operations by the end of 2014. Eventually, the PanSTARRS system will employ four telescopes, and may find a bevy of TCOs. The researchers estimate in the study that a telescope such as Subaru stands a 90% chance of nabbing a TCO after only five nights of dedicated sweeps of the sky.

Finally, the study also notes that evidence miniature moonlets orbiting Earth may lurk in the all sky data gathered by automated cameras and amateur observers during meteor showers.  Of course, we’re talking tiny, dust-to-pebble sized evidence, but there’s no lower limit as to what constitutes a moon…

And so, although moons such a “Lilith” and “Petit’s Moon” belong to the annuals of astronomical history, temporary “minimoons” of Earth are modern realities. And as events such as Chelyabinsk remind us, it’s always worthwhile to hunt for hazardous NEOs (and TCOs) that may be headed our way. Hey, to paraphrase science fiction author Larry Niven: unlike the dinosaurs, we have a space program!

Read more about the fascinating history of moons that never were and more in the classic book The Haunted Observatory.

Surf Saturn’s Rings In Amazing Raw Cassini Images From This Week

Sunlight and shadow combine in this photo of Saturn and its rings taken Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute

When Saturn is at its closest to Earth, it’s three-quarters of a billion miles away — or more than a billion kilometers! That makes these raw images from the ringed planet all the more remarkable.

Nearly every day, the Cassini spacecraft beams back what it sees at Saturn and the images are put up on this NASA website. This week, for example, it was checking out Saturn’s rings. We have a few of the pictures below, plus an older picture of the entire planet for reference.

Saturn’s rings are believed to be about 4.4 billion years old — that’s close to the age of the Solar System itself. Astronomers, however, have only known about them since the 1600s, when Galileo Galilei was trying to make sense of some funny-looking shapes on either side of the planet in his telescope.

According to NASA, the particles in the rings range from dust-sized to mountain-sized. Some of Saturn’s dozens of moons act as shepherds to the rings, keeping gaps open. You can read more about what we know about their origins here.

The Cassini spacecraft looks to the side of Saturn's rings in this picture from Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
The Cassini spacecraft looks to the side of Saturn’s rings in this picture from Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
Bands prominently feature in this raw picture of Saturn taken by the Cassini spacecraft Aug. 17, 2014. Credit: NASA/JPL/Space Science Institute
Bands prominently feature in this raw picture of Saturn taken by the Cassini spacecraft Aug. 17, 2014. Credit: NASA/JPL/Space Science Institute
Different shades shine in this raw image of Saturn's rings taken by the Cassini spacecraft taken Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
Different shades shine in this raw image of Saturn’s rings taken by the Cassini spacecraft taken Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute. Assembled by Gordan Ugarkovic.
Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute. Assembled by Gordan Ugarkovic.

Awesome Video of a Satellite in Orbit

Image of the TechDemoSat-1 in orbit, taken minutes after separation of the satellite from the Soyuz-2 launcher and shows a view of the Earth from Space, with the spacecraft's Antenna Pointing Mechanism in view. Credit: SSTL.

Here’s a great video from a camera mounted on the exterior of the TechDemoSat-1, an in-orbit technology demonstration mission from the UK. It launched on July 8, 2014 on a Soyuz-2, and the video shows the satellite moments after separation from the upper stage. The satellite even took a selfie, below.

The video shows the satellite’s rotation and reveals a spectacular vista of “blue marble” Earth (visible is cloudy skies over the Pacific, south of French Polynesia).

It’s interesting to note that some identified flying objects zip past the field of view: At :25 seconds, the Fregat upper stage of the Soyuz-2 rocket appears as a gold object passing away from the satellite left to right at a distance of approximately 60 meters. At :34 seconds a white “dot” crosses the frame left to right – which has been identified as one of the other satellites that shared the ride into orbit with TechDemoSat-1.

“It is very rare to see actual footage of our satellites in orbit,” said Sir Martin Sweeting, Executive Chairman of Surrey Satellite Technology Ltd (SSTL), the company behind the mission, “and so viewing the video taken from TechDemoSat-1 moments after separation from the rocket has been a hugely rewarding and exciting experience for everyone at SSTL. We are delighted with the progress of commissioning the TechDemoSat-1 platform, and are looking forward to the next phase – the demonstration of a range of new technologies being flown on this innovative mission.”

The satellite is roughly the size of a refrigerator but wieghs just 150kg. TechDemoSat (TDS-1) carries eight separate payloads from UK academia and industry plus other payloads from SSTL for product development. Find out more here from SSTL.